Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,031)

Search Parameters:
Keywords = research flights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 913 KiB  
Article
Test of Diamond sCVD Detectors at High Flux of Fast Neutrons
by Leo Weissman, Asher Shor and Sergey Vaintraub
Particles 2025, 8(3), 75; https://doi.org/10.3390/particles8030075 - 7 Aug 2025
Abstract
We have tested the performance of spectroscopic single-crystal Chemical Vapor-Deposited (sCVD) diamond detectors with radioactive sources and with a pulsed deuterium-tritium neutron generator. The tests demonstrate that the detectors could provide good timing and spectroscopic information at high neutron fluxes. The spectroscopic information [...] Read more.
We have tested the performance of spectroscopic single-crystal Chemical Vapor-Deposited (sCVD) diamond detectors with radioactive sources and with a pulsed deuterium-tritium neutron generator. The tests demonstrate that the detectors could provide good timing and spectroscopic information at high neutron fluxes. The spectroscopic information can be obtained at a 14 MeV neutron rate as high as 1010 n/cm2/s, despite some limitations associated with pulse character of the used neutron generator. Monte-Carlo simulations were performed in order to achieve better understanding of neutron interaction with the detector material. Possible applications for the use of the detectors at Soreq Applied Research Accelerator Facility (SARAF) are considered. The detectors could be used as reliable neutron rate monitors in the vicinity of a strong accelerator-based source of energetic neutrons. The detectors could also be utilized as time-of-flight tagging counters in nuclear physics experiments under condition of high neutron fluxes during short beam pulses. In particular, measurement of the 12C(n,n′)3α cross-section is discussed. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

10 pages, 1284 KiB  
Article
Ibisia marginata (Fabricius, 1781) (Diptera, Athericidae): Distribution and Perennial Emergence Patterns in Croatia
by Marija Ivković, Jelena Fajdetić and Viktorija Ergović
Insects 2025, 16(8), 816; https://doi.org/10.3390/insects16080816 - 7 Aug 2025
Abstract
Ibisia marginata (Diptera, Athericidae) is an important species in macrozoobenthic communities in freshwater streams and rivers of Europe. It is a merolimnic insect whose larvae live in aquatic habitats and are predators. Pupation takes place out of water, mainly in moss, and adults [...] Read more.
Ibisia marginata (Diptera, Athericidae) is an important species in macrozoobenthic communities in freshwater streams and rivers of Europe. It is a merolimnic insect whose larvae live in aquatic habitats and are predators. Pupation takes place out of water, mainly in moss, and adults live in terrestrial habitats in close proximity to water. The goals of this study were to determine the distributional patterns of I. marginata in Croatia, both as larvae and adults. Additionally, a goal was to recognize emergence patterns through the 16 years of research at Plitvice Lakes NP. The preference of larvae towards the different substrates represented at Plitvice Lakes NP was also analyzed. Samples of larvae and adults were collected at 50 sampling sites. Adults of I. marginata were collected monthly using pyramid-type emergence traps at four sampling sites in Plitvice Lakes National Park. At two of these sites, samples were collected from 2007 to 2008, while at the other two sites, sampling was conducted from 2007 to 2022. A total of 374 adult specimens were collected during the 16 years of the emergence study. Ibisia marginata is a univoltine species with a peak emergence in July and a flight period lasting from June to August, depending on the year. Preferred larval substrates were moss and gravel. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Insects)
Show Figures

Figure 1

35 pages, 1824 KiB  
Article
Visual Flight Rules Stabilised Approach: Identifying Human-Factor Influences on Incidents and Accidents During Stabilised Approach, Landing, and Go-Around Flight Phases for General Aviation
by Riya Deshmukh and Arnab Majumdar
Appl. Sci. 2025, 15(15), 8647; https://doi.org/10.3390/app15158647 - 5 Aug 2025
Viewed by 37
Abstract
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It [...] Read more.
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It will review how pilot experience influences decision-making and identifies mitigation strategies, focusing on go-arounds to prevent accidents during these critical phases. Surveys and roundtable discussions were conducted to identify factors influencing pilot performance during approach, landing, and go-around manoeuvres. By using a mixed-methods approach that combined thematic and statistical analyses, key safety factors were identified, including situational awareness, decision-making, and operational complexity. The study also examined the relationship between experience and decision-making, highlighting areas for targeted interventions to improve safety. The research emphasises the importance of integrating decision-making considerations into training programmes and connecting these to human factors. Through identifying areas for improvement, this study offers a safety-driven framework to address decision-making challenges during approach, landing, and go-around phases, with the objective of reducing accident and incident rates in general aviation. Full article
(This article belongs to the Special Issue Research on Aviation Safety)
Show Figures

Figure 1

22 pages, 5136 KiB  
Article
Application of UAVs to Support Blast Design for Flyrock Mitigation: A Case Study from a Basalt Quarry
by Józef Pyra and Tomasz Żołądek
Appl. Sci. 2025, 15(15), 8614; https://doi.org/10.3390/app15158614 - 4 Aug 2025
Viewed by 114
Abstract
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in [...] Read more.
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in relation to controlling burden values and reducing flyrock. The research was conducted in a basalt quarry in Lower Silesia, where high rock fracturing complicated conventional blast planning. A DJI Mavic 3 Enterprise UAV was used to capture high-resolution aerial imagery, and 3D models were created using Strayos software. These models enabled precise analysis of bench face geometry and burden distribution with centimeter-level accuracy. The results showed a significant improvement in identifying zones with improper burden values and allowed for real-time corrections in blasthole design. Despite a ten-fold reduction in the number of images used, no loss in model quality was observed. UAV-based surveys followed software-recommended flight paths, and the application of this methodology reduced the flyrock range by an average of 42% near sensitive areas. This approach demonstrates the operational benefits and enhanced safety potential of integrating UAV-based photogrammetry into blasting design workflows. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

35 pages, 782 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 - 2 Aug 2025
Viewed by 126
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
Show Figures

Figure 1

33 pages, 7206 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 257
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
Show Figures

Graphical abstract

16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 - 1 Aug 2025
Viewed by 326
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Graphical abstract

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 - 31 Jul 2025
Viewed by 459
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

30 pages, 8795 KiB  
Article
Numerical Simulation of Flapping Airfoil Aerodynamic Characteristics
by Junjie Xu, Shizhen Zheng, Ziyu Guo and Jianlong Chang
Appl. Sci. 2025, 15(15), 8484; https://doi.org/10.3390/app15158484 - 30 Jul 2025
Viewed by 202
Abstract
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping [...] Read more.
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping layouts on the aerodynamic characteristics of the flapping airfoil is investigated through numerical calculation. It is found that an increase in the flutter frequency can lead to an increase in the lift and drag of the flutter airfoil, as well as the strength of the flutter airfoil leading edge vortex, thereby improving the aerodynamic characteristics of the flutter airfoil, but the increase in the frequency leads to the decrease in the lifting efficiency. With the same symmetry of the trajectory of the flapping airfoil, the flapping airfoil lift characteristics are the same, but the drag characteristics may be different. If the symmetry of the flapping airfoil trajectory is distinct, the lift and drag characteristics of the flapping airfoil are different, and it is also found that the best lifting efficiency occurred in the “∞” trajectory. If the curvature and thickness of the airfoil are different, the aerodynamic characteristics of the flapping airfoil are distinct. Finally, the effect of different layouts on the aerodynamic characteristics of the flapping airfoil is examined. It is found that both tandem and parallel layout flapping airfoils can effectively increase the lift drag, but both tandem and parallel layout flapping airfoils lead to a decrease in the lifting efficiency. Full article
(This article belongs to the Special Issue Application of Fluid Mechanics and Aerodynamics in Aerospace)
Show Figures

Figure 1

27 pages, 2829 KiB  
Article
A Study of Emergency Aircraft Control During Landing
by Mariusz Paweł Dojka and Marian Wysocki
Appl. Sci. 2025, 15(15), 8472; https://doi.org/10.3390/app15158472 - 30 Jul 2025
Viewed by 190
Abstract
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation [...] Read more.
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation control characteristics, a review of existing control systems, and a detailed description of the development process, including the research platform configuration, identification of the aircraft state-space model, control law design, integration of system components within the MATLAB and Simulink environment, and software-in-the-loop testing conducted in the X-Plane 11 flight simulator using a Boeing 757-200 model. The study also investigates the issue of control channel cross-coupling and its impact on simultaneous control of the aircraft’s longitudinal and lateral dynamics. The simulation results demonstrate that the proposed emergency system provides adequate controllability, with settling times of approximately 12 s for achieving a flight path angle setpoint of +5°, and 13 s for attaining a maximum (limited) roll angle of 20°, achieved in separate manoeuvres. Furthermore, simulated landing attempts suggest that the system could potentially enable successful landings at approach speeds significantly higher than standard recommendations. However, further investigation is required to address decoupling of control channels, ensure system stability, and evaluate control performance across a broader range of aircraft configurations. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

24 pages, 2458 KiB  
Review
Vapor Compression Refrigeration System for Aircrafts: Current Status, Large-Temperature-Range Challenges and Emerging Auto-Cascade Refrigeration Technologies
by Hainan Zhang, Qinghao Wu, Shuo Feng, Sujun Dong and Zanjun Gao
Aerospace 2025, 12(8), 681; https://doi.org/10.3390/aerospace12080681 - 30 Jul 2025
Viewed by 303
Abstract
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This [...] Read more.
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This paper reviews global research progress on aircraft vapor compression refrigeration systems, covering performance optimization, dynamic characteristics, control strategies, fault detection, and international development histories and typical applications. Analysis identifies emerging challenges under large-temperature-range cooling requirements, with comparative assessment establishing zeotropic mixture auto-cascade vapor compression refrigeration systems as the optimal forward-looking solution. Finally, recognizing current research gaps, we propose future research directions for onboard auto-cascade vapor compression refrigeration systems: optimizing refrigerant mixtures for flight conditions, achieving efficient gas-liquid separation during variable overloads and attitude conditions, and developing model predictive control with intelligent optimization to ensure reliability. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

23 pages, 783 KiB  
Article
An Effective QoS-Aware Hybrid Optimization Approach for Workflow Scheduling in Cloud Computing
by Min Cui and Yipeng Wang
Sensors 2025, 25(15), 4705; https://doi.org/10.3390/s25154705 - 30 Jul 2025
Viewed by 198
Abstract
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling [...] Read more.
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling algorithms to find optimal or near-optimal task-to-VM allocation solutions that meet users’ specific QoS requirements still remains an open area of research. In this paper, we propose a hybrid QoS-aware workflow scheduling algorithm named HLWOA to address the problem of simultaneously minimizing the completion time and execution cost of workflow scheduling in cloud computing. First, the workflow scheduling problem in cloud computing is modeled as a multi-objective optimization problem. Then, based on the heterogeneous earliest finish time (HEFT) heuristic optimization algorithm, tasks are reverse topologically sorted and assigned to virtual machines with the earliest finish time to construct an initial workflow task scheduling sequence. Furthermore, an improved Whale Optimization Algorithm (WOA) based on Lévy flight is proposed. The output solution of HEFT is used as one of the initial population solutions in WOA to accelerate the convergence speed of the algorithm. Subsequently, a Lévy flight search strategy is introduced in the iterative optimization phase to avoid the algorithm falling into local optimal solutions. The proposed HLWOA is evaluated on the WorkflowSim platform using real-world scientific workflows (Cybershake and Montage) with different task scales (100 and 1000). Experimental results demonstrate that HLWOA outperforms HEFT, HEPGA, and standard WOA in both makespan and cost, with normalized fitness values consistently ranking first. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

13 pages, 3728 KiB  
Article
Arrayable TDC with Voltage-Controlled Ring Oscillator for dToF Image Sensors
by Liying Chen, Bangtian Li and Chuantong Cheng
Sensors 2025, 25(15), 4589; https://doi.org/10.3390/s25154589 - 24 Jul 2025
Viewed by 321
Abstract
As the resolution and conversion speed of time-to-digital conversion (TDC) chips continue to improve, the bit error rate also increases, leading to a decrease in the linearity of TDC and seriously affecting measurement accuracy. This paper presents a high-linearity, low-power-consumption, and wide dynamic [...] Read more.
As the resolution and conversion speed of time-to-digital conversion (TDC) chips continue to improve, the bit error rate also increases, leading to a decrease in the linearity of TDC and seriously affecting measurement accuracy. This paper presents a high-linearity, low-power-consumption, and wide dynamic range TDC that was achieved based on the SMIC 180 nm BCD process. Compared with previous research methods, the proposed phase arbiter structure can eliminate sampling errors and improve the linearity of TDC. The preprocessing circuit can eliminate fixed errors caused by START and STOP signal transmission delays. Post-simulation results show that the TDC has high linearity, with ranges of DNL and INL being −0.98 LSB < DNL < 0.93 LSB and −0.88 LSB < INL < 0.95 LSB, respectively. The highest resolution is 156 ps, the maximum measurement time range is 1.2 μs, and the power consumption is 1.625 mW. The overall system architecture of TDC is very simple, and it can be applied to dToF LIDAR to measure photon flight time, capable of measuring a range of up to hundreds of meters, with an accuracy of 2.25 cm, high linearity, and without any post-processing or time calibration. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 999 KiB  
Article
Unmanned Aerial Vehicle Position Tracking Using Nonlinear Autoregressive Exogenous Networks Learned from Proportional-Derivative Model-Based Guidance
by Wilson Pavon, Jorge Chavez, Diego Guffanti and Ama Baduba Asiedu-Asante
Math. Comput. Appl. 2025, 30(4), 78; https://doi.org/10.3390/mca30040078 - 24 Jul 2025
Viewed by 265
Abstract
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing [...] Read more.
The growing demand for agile and reliable Unmanned Aerial Vehicles (UAVs) has spurred the advancement of advanced control strategies capable of ensuring stability and precision under nonlinear and uncertain flight conditions. This work addresses the challenge of accurately tracking UAV position by proposing a neural-network-based approach designed to replicate the behavior of classical control systems. A complete nonlinear model of the quadcopter was derived and linearized around a hovering point to design a traditional proportional derivative (PD) controller, which served as a baseline for training a nonlinear autoregressive exogenous (NARX) artificial neural network. The NARX model, selected for its feedback structure and ability to capture temporal dynamics, was trained to emulate the control signals of the PD controller under varied reference trajectories, including step, sinusoidal, and triangular inputs. The trained networks demonstrated performance comparable to the PD controller, particularly in the vertical axis, where the NARX model achieved a minimal Mean Squared Error (MSE) of 7.78×105 and an R2 value of 0.9852. These results confirm that the NARX neural network, trained via supervised learning to emulate a PD controller, can replicate and even improve classical control strategies in nonlinear scenarios, thereby enhancing robustness against dynamic changes and modeling uncertainties. This research contributes a scalable approach for integrating neural models into UAV control systems, offering a promising path toward adaptive and autonomous flight control architectures that maintain stability and accuracy in complex environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

18 pages, 479 KiB  
Article
Mitigating the Health Impairment Vicious Cycle of Air Traffic Controllers Using Intra-Functional Flexibility: A Mediation-Moderated Model
by Bader Alaydi, Siew-Imm Ng and Xin-jean Lim
Safety 2025, 11(3), 70; https://doi.org/10.3390/safety11030070 - 23 Jul 2025
Viewed by 219
Abstract
Air traffic controllers (ATCOs) make a significant contribution to ensuring flight safety, making this profession a highly stressful job globally. Job demands–resources (JDR) theory proposes a health impairment process stemming from job demand (complexity) to mental workload, which causes job stress, resulting in [...] Read more.
Air traffic controllers (ATCOs) make a significant contribution to ensuring flight safety, making this profession a highly stressful job globally. Job demands–resources (JDR) theory proposes a health impairment process stemming from job demand (complexity) to mental workload, which causes job stress, resulting in compromised flight safety. This vicious cycle is evident among ATCOs and is recognized as an unsustainable management practice. To curb this process, we propose intra-functional flexibility as a conditional factor. Intra-functional flexibility refers to the flexibility in the reallocation and coordination of resources among team members to help in urgent times. This is a relatively new concept and is yet to be empirically tested in the ATCO context. ATCOs work in a dynamic environment filled with sudden surges of urgent jobs to be handled within short time limits. Intra-functional flexibility allows standby crews to be called to ease these tensions when needed. To ascertain the role of intra-functional flexibility in mitigating health impairment among ATCOs, a questionnaire was administered to 324 ATCOs distributed across Saudi Arabia. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis exhibited two critical findings: First, the study revealed the prevalence of a vicious cycle of health impairment among Saudi ATCOs, whereby job complexity leads to increased mental workload, resulting in elevated levels of job stress. Secondly, the presence of intra-functional flexibility weakened this vicious cycle by mitigating the influence exerted by mental workload on job stress. That is, the mediation-moderated model proposed in this study provides empirical evidence supporting the applicability of intra-functional flexibility in mitigating the dire suffering of ATCOs. This study discusses limitations and future research directions in the end. Full article
Show Figures

Figure 1

Back to TopTop