Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = reproductive axis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 575 KiB  
Article
Polycystic Ovary Syndrome Attenuates TSH-Lowering Effect of Metformin in Young Women with Subclinical Hypothyroidism
by Robert Krysiak, Karolina Kowalcze, Johannes Ott, Sofia Burgio, Simona Zaami and Bogusław Okopień
Pharmaceuticals 2025, 18(8), 1149; https://doi.org/10.3390/ph18081149 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: The effect of metformin on the secretory function of thyrotropic cells is sex-dependent. The current study aimed to investigate whether the impact of this drug on activity of the hypothalamic–pituitary–thyroid axis in women is impacted by the androgen status of patients. Methods: [...] Read more.
Background/Objectives: The effect of metformin on the secretory function of thyrotropic cells is sex-dependent. The current study aimed to investigate whether the impact of this drug on activity of the hypothalamic–pituitary–thyroid axis in women is impacted by the androgen status of patients. Methods: The study population included 48 levothyroxine-naïve reproductive-aged women with subclinical hypothyroidism and prediabetes receiving 3.0 g of metformin daily. Women with (n = 24) and without (n = 24) polycystic ovary syndrome were matched for age, insulin sensitivity, TSH, and reasons for thyroid hypofunction. Circulating levels of glucose, glycated hemoglobin, insulin, TSH, thyroid hormones, gonadotropins, androgens, estradiol, SHBG, prolactin, ACTH, and IGF-1 were measured before metformin treatment and six months later. Results: At entry, women with and without polycystic ovary syndrome differed in LH, LH/FSH ratio, androgens, and estradiol. The decrease in TSH, fasting glucose and glycated hemoglobin, and the improvement in insulin sensitivity were less pronounced in women with than in women without polycystic ovary syndrome. In each group, there were no differences in the impact on TSH and thyroid hormones between patients with subclinical hypothyroidism of autoimmune and non-autoimmune origin. The changes in TSH inversely correlated with total testosterone and free androgen index. Only in women with coexisting polycystic ovary syndrome, did metformin slightly reduce LH, LH/FSH ratio, testosterone, and free androgen index. Conclusions: The results suggest that concurrent polycystic ovary syndrome attenuates metformin action on TSH secretion, which can be explained by increased androgen production. Moreover, the drug seems to alleviate PCOS-associated changes in the activity of the reproductive axis. Full article
Show Figures

Graphical abstract

26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 (registering DOI) - 1 Aug 2025
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

14 pages, 4802 KiB  
Article
Curcumin Attenuates Zearalenone-Induced Reproductive Damage in Mice by Modulating the Gut Microbe–Testis Axis
by Bangwang Peng, Shuaiju Guo, Junlong Niu, Yongpeng Guo, Zhixiang Wang and Wei Zhang
Foods 2025, 14(15), 2703; https://doi.org/10.3390/foods14152703 (registering DOI) - 31 Jul 2025
Abstract
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate [...] Read more.
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate the mechanism by which CUR alleviates ZEN-induced reductions in sperm quality through the modulation of the gut microbiota–testis axis. Forty-eight 6-week-old Balb/c male mice were randomly assigned to four treatment groups: control (CON), CUR (200 mg/kg body weight CUR), ZEN (40 mg/kg body weight ZEN), and ZEN + CUR (200 mg/kg CUR + 40 mg/kg ZEN). The degree of sperm damage was quantified by assessing both the survival rate and the morphological integrity of the spermatozoa. CUR was found to mitigate ZEN-induced reductions in the testosterone levels, testicular structural damage, and disrupted spermatogenesis. Exposure to ZEN markedly perturbed the gut microbiota, characterized by increased relative abundances of Prevotella and Bacteroides and a concomitant reduction in Lactobacillus. These alterations were accompanied by pronounced activation of the IL-17A–TNF-α signaling axis, as demonstrated by elevated transcriptional and translational expression of pathway-associated genes and proteins. Co-administration of CUR effectively reinstated microbial homeostasis and mitigated ZEN-induced IL-17A pathway activation. In conclusion, ZEN induces testicular inflammation and reduced sperm quality by lowering testosterone levels and disrupting gut microbial balance, which drives the testicular IL-17A signaling pathway. CUR alleviates ZEN-induced testicular inflammation and sperm quality reduction by restoring beneficial gut microbes and testosterone levels. Full article
Show Figures

Figure 1

24 pages, 1826 KiB  
Article
Reproductive Toxicity Effects of Phthalates Based on the Hypothalamic–Pituitary–Gonadal Axis: A Priority Control List Construction from Theoretical Methods
by Botian Xiao, Hao Yang, Yunxiang Li, Wenwen Wang and Yu Li
Int. J. Mol. Sci. 2025, 26(15), 7389; https://doi.org/10.3390/ijms26157389 (registering DOI) - 31 Jul 2025
Viewed by 194
Abstract
Phthalate esters (PAEs), frequently detected in various environmental media, are associated with multiple health issues, particularly reproductive toxicity. This study employed molecular docking and molecular dynamics simulations to investigate the reproductive toxicity risk of 22 PAEs on the regulation of the hypothalamic–pituitary–gonadal (HPG) [...] Read more.
Phthalate esters (PAEs), frequently detected in various environmental media, are associated with multiple health issues, particularly reproductive toxicity. This study employed molecular docking and molecular dynamics simulations to investigate the reproductive toxicity risk of 22 PAEs on the regulation of the hypothalamic–pituitary–gonadal (HPG) axis. Analysis revealed that when the carbon number of PAEs was the same, those with branched side chains exhibited more pronounced reproductive toxicity risks. In PAE molecules with branched side chains, reproductive toxicity risk was inversely proportional to the number of carbon atoms. Furthermore, five PAE molecules with unacceptable risk (DIPRP, DMEP, DMP, DPP, and DUP) and four key indicators were proposed. Key descriptors influencing PAEs’ reproductive toxicity risks were identified as Infrared and ATSC8e by machine learning analysis. Furthermore, carbonyl structure, substituent position, and electronegativity of PAE molecules are critical factors influencing PAE-induced reproductive toxicity risks via the HPG axis. This study provides a theoretical basis for further investigation of PAE-induced reproductive toxicity risk on the HPG axis, which facilitates the development of risk mitigation strategies for PAEs’ reproductive toxicity and provides novel perspectives and approaches for exploring the molecular mechanisms underlying the endocrine effects of emerging contaminants such as PAEs. Full article
Show Figures

Graphical abstract

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 394
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

17 pages, 5739 KiB  
Article
Impact of Heat Stress on Gene Expression in the Hypothalamic–Pituitary–Ovarian Axis of Hu Sheep
by Jianwei Zou, Lili Wei, Yishan Liang, Juhong Zou, Pengfei Cheng, Zhihua Mo, Wenyue Sun, Yirong Wei, Jun Lu, Wenman Li, Yulong Shen, Xiaoyan Deng, Yanna Huang and Qinyang Jiang
Animals 2025, 15(15), 2189; https://doi.org/10.3390/ani15152189 - 25 Jul 2025
Viewed by 333
Abstract
Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throughput RNA sequencing (RNA-seq) [...] Read more.
Heat stress (HS) is a major environmental factor negatively impacting the reproductive performance of livestock. This study investigates the molecular mechanisms of heat stress on the hypothalamic–pituitary–ovarian (HPO) axis in Hu sheep. A heat-stressed animal model was established, and high-throughput RNA sequencing (RNA-seq) was employed to analyze gene expression in the hypothalamus, pituitary, and ovarian tissues of both control and heat-stressed groups. The results revealed significant changes in estrus behavior, hormone secretion, and reproductive health in heat-stressed sheep, with a shortened estrus duration, prolonged estrous cycles, and decreased levels of FSH, LH, E2, and P4. A total of 520, 649, and 482 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary, and ovary, respectively. The DEGs were enriched in pathways related to hormone secretion, neurotransmission, cell proliferation, and immune response, with significant involvement of the p53 and cAMP signaling pathways. Tissue-specific responses to heat stress were observed, with distinct regulatory roles in each organ, including GPCR activity and cytokine signaling in the hypothalamus, calcium-regulated exocytosis in the pituitary, and cilium assembly and ATP binding in the ovary. Key genes such as SYN3, RPH3A, and IGFBP2 were identified as central to the coordinated regulation of the HPO axis. These findings provide new insights into the molecular basis of heat stress-induced impairments in reproductive function—manifested by altered estrous behavior, reduced hormone secretion (FSH, LH, E2, and P4), and disrupted gene expression in the hypothalamic–pituitary–ovarian (HPO) axis—and offer potential targets for improving heat tolerance and reproductive regulation in sheep. Full article
(This article belongs to the Special Issue Effects of Heat Stress on Animal Reproduction and Production)
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 281
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

33 pages, 1463 KiB  
Review
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility
by Patrycja Kalak, Piotr Kupczyk, Antoni Szumny, Tomasz Gębarowski, Marcin Jasiak, Artur Niedźwiedź, Wojciech Niżański and Michał Dzięcioł
Int. J. Mol. Sci. 2025, 26(15), 7095; https://doi.org/10.3390/ijms26157095 - 23 Jul 2025
Viewed by 299
Abstract
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. [...] Read more.
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. Although cannabinoids like cannabidiol (CBD) have garnered interest for their potential therapeutic effects, evidence regarding their safety, particularly for reproductive health, remains limited. This review summarizes the structure and molecular mechanisms of the ECS, its role in reproductive physiology—including its interactions with the hypothalamic–pituitary–gonadal axis (HPG axis), gametogenesis, implantation, and lactation—and the possible consequences of cannabinoid exposure for fertility. In addition, we focus on the involvement of the ECS and cannabinoids in breast cancer, highlighting emerging evidence on their dual role in tumor progression and therapy. These insights emphasize the need for further research to better define the therapeutic potential and risks associated with cannabinoid use in reproductive health and breast cancer. Full article
Show Figures

Figure 1

15 pages, 3311 KiB  
Article
Induction of Triploid Grass Carp (Ctenopharyngodon idella) and Changes in Embryonic Transcriptome
by Zixuan E, Han Wen, Yingshi Tang, Mingqing Zhang, Yaorong Wang, Shujia Liao, Kejun Chen, Danqi Lu, Haoran Lin, Wen Huang, Xiaoying Chen, Yong Zhang and Shuisheng Li
Animals 2025, 15(15), 2165; https://doi.org/10.3390/ani15152165 - 22 Jul 2025
Viewed by 252
Abstract
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing [...] Read more.
Grass carp is an economically important cultured species in China. Triploid embryo production is widely applied in aquaculture to achieve reproductive sterility, improve somatic growth, and reduce ecological risks associated with uncontrolled breeding. In this study, a simple cold shock method for inducing triploid grass carp was developed. The triploid induction rate of 71.73 ± 5.00% was achieved by applying a cold treatment at 4 °C for 12 min, starting 2 min after artificial fertilization. Flow cytometry and karyotype analysis revealed that triploid individuals exhibited a 1.5-fold increase in DNA content compared to diploid counterparts, with a chromosomal composition of 3n = 72 (33m + 36sm + 3st). Additionally, embryonic transcriptome analysis demonstrated that, in the cold shock-induced embryos, genes associated with abnormal mesoderm and dorsal–ventral axis formation, zygotic genome activation (ZGA), and anti-apoptosis were downregulated, whereas pro-apoptotic genes were upregulated, which may contribute to the higher abnormal mortality observed during embryonic development. Overall, this study demonstrates optimized conditions for inducing triploidy in grass carp via cold shock and provides insights into the transcriptomic changes that take place in cold shock-induced embryos, which could inform future grass carp genetic breeding programs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

11 pages, 796 KiB  
Case Report
The Double-Edged Nature of the Gonadotropin-Releasing Hormone Agonist (GnRHa) Long Protocol: A Case of Paradoxical Ovarian Hyperstimulation During the Expected Downregulation Phase
by Bernadett Nádasdi, Péter Kovács, Éva Adrienn Csajbók, Károly Wellinger, Anna Vágvölgyi and János Zádori
J. Clin. Med. 2025, 14(14), 4992; https://doi.org/10.3390/jcm14144992 - 15 Jul 2025
Viewed by 371
Abstract
Objectives: Our aim is to report an uncommon pituitary activation occurring during the desensitization phase of the gonadotropin-releasing hormone agonist (GnRHa) long protocol, a cornerstone of medically assisted reproduction (MAR) therapy, in a young woman. Results: We present a case of [...] Read more.
Objectives: Our aim is to report an uncommon pituitary activation occurring during the desensitization phase of the gonadotropin-releasing hormone agonist (GnRHa) long protocol, a cornerstone of medically assisted reproduction (MAR) therapy, in a young woman. Results: We present a case of a 33-year-old female patient with secondary infertility, who exhibited a prolonged and asynchronous follicular development during ovarian stimulation using the GnRH antagonist protocol. Therefore, during a repeat attempt, the long GnRH agonist protocol was employed. Surprisingly, rather than achieving suppression with the agonist, ultrasound detected many large follicles in both ovaries, accompanied by extremely elevated estrogen levels, indicating imminent ovarian hyperstimulation syndrome (OHSS). This unusual phenomenon was also observed during a subsequent attempt using the long protocol in another reproductive center. As part of the work-up to identify the underlying etiology, contrast-enhanced magnetic resonance imaging (MRI) of the sella turcica was performed, which revealed an 11 × 13 × 10 mm pituitary macroadenoma without evidence of pathological hormone secretion. The luteinizing hormone-releasing hormone (LHRH) stimulation test showed a normal luteinizing hormone and follicle-stimulating hormone response. Other abnormalities of the hypothalamo–hypophyseal–target-organ axis were not found. Neurosurgical intervention was deemed unnecessary; radiological follow-up of the lesion was recommended. Conclusions: In this case, the clinical presentation was markedly different from the expected suppressive effects of GnRH agonist therapy, with profoundly elevated estrogen levels and clinical signs of imminent OHSS. Notably, hypersensitivity of the adenohypophysis was not demonstrated following a single physiological LHRH stimulation test. However, the presence of a pituitary adenoma identified on MRI raises the possibility that gonadotropin receptor function was altered by the lesion—an effect revealed only after repeated GnRH agonist exposure, resulting in a paradoxical stimulatory response. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

28 pages, 3018 KiB  
Review
The Role of Neurohypophysial Hormones in the Endocrine and Paracrine Control of Gametogenesis in Fish
by Maya Zanardini and Hamid R. Habibi
Cells 2025, 14(14), 1061; https://doi.org/10.3390/cells14141061 - 10 Jul 2025
Viewed by 369
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT) are neuropeptides traditionally recognized for their roles in the control of osmoregulation, blood pressure, lactation, and parturition in mammals. However, growing evidence suggests that AVPand OXT also regulate gonadal functions in teleost fish. Their expression in both [...] Read more.
Arginine vasopressin (AVP) and oxytocin (OXT) are neuropeptides traditionally recognized for their roles in the control of osmoregulation, blood pressure, lactation, and parturition in mammals. However, growing evidence suggests that AVPand OXT also regulate gonadal functions in teleost fish. Their expression in both male and female gonads, the presence of their receptors in ovaries and testes, and their interactions with steroids and other gonadal factors indicate a role in modulating gametogenesis and steroidogenesis via autocrine and paracrine mechanisms. Here, we review the current findings on AVP and OXT in teleost gonads, compared to the observed functions in mammals, emphasizing their systemic interactions within the hypothalamic–pituitary–gonadal (HPG) axis. While highlighting the roles of gonadal AVP and OXT in fish reproduction, we underscore the need for further research to unravel their complex multifactorial regulatory networks. Insights into the vasopressinergic system could enhance aquaculture practices by improving spawning success and reproductive efficiency. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Graphical abstract

24 pages, 336 KiB  
Review
Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
by Charalampos Voros, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Charalampos Tsimpoukelis, Sofia Ivanidou, Anahit J. Stepanyan, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradi and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6604; https://doi.org/10.3390/ijms26146604 - 10 Jul 2025
Viewed by 533
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial concerns regarding their impact on female reproductive health. Epidemiological studies have demonstrated associations between PFAS exposure and reduced fertility; nevertheless, the underlying molecular pathways remain inadequately understood. This narrative review investigates the multifaceted effects of PFASs on ovarian physiology, including its disruption of the hypothalamic–pituitary–ovarian (HPO) axis, alteration of anti-Müllerian hormone (AMH) levels, folliculogenesis, and gonadotropin receptor signalling. Significant attention is directed towards the emerging association between PFASs and polycystic ovarian syndrome (PCOS), wherein PFAS-induced hormonal disruption may exacerbate metabolic issues and elevated androgen levels. Furthermore, we analyse the current data regarding PFAS exposure in women undergoing treatment based on assisted reproductive technologies (ARTs), specifically in vitro fertilisation (IVF), highlighting possible associations with diminished oocyte quality, suboptimal embryo development, and implantation failure. We examine potential epigenetic and transgenerational alterations that may influence women’s reproductive capabilities over time. This study underscores the urgent need for further research and regulatory actions to tackle PFAS-related reproductive toxicity, particularly in vulnerable populations, such as women of reproductive age and those receiving fertility treatments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
47 pages, 1839 KiB  
Review
Behavioral, Endocrine, and Neuronal Responses to Odors in Lampreys
by Philippe-Antoine Beauséjour, Barbara S. Zielinski and Réjean Dubuc
Animals 2025, 15(14), 2012; https://doi.org/10.3390/ani15142012 - 8 Jul 2025
Viewed by 438
Abstract
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating [...] Read more.
Lampreys are primitive fish that rely significantly on olfactory cues throughout their complex life cycle. The olfactory system of the sea lamprey (Petromyzon marinus) is among the best characterized in vertebrates. In recent decades, tremendous advances have been made by isolating individual compounds from sea lampreys that can replicate natural behavior when artificially applied in the wild. In no other aquatic vertebrate has the olfactory ecology been described in such extensive detail. In the first section, we provide a comprehensive review of olfactory behaviors induced by specific, individual odorants during every major developmental stage of the sea lamprey in behavioral contexts such as feeding, predator avoidance, and reproduction. Moreover, pheromonal inputs have been shown to induce neuroendocrine responses through the hypothalamic-pituitary-gonadal axis, triggering remarkable developmental and physiological effects, such as gametogenesis and increased pheromone release. In the second section of this review, we describe a hypothetical endocrine signaling pathway through which reproductive fitness is increased following pheromone detection. In the final section of this review, we focus on the neuronal circuits that transform olfactory inputs into motor output. We describe specific brain signaling pathways that underlie odor-evoked locomotion. Furthermore, we consider possible modulatory inputs to these pathways that may induce plasticity in olfactory behavior following changes in the external or internal environment. As a whole, this review synthesizes previous and recent progress in understanding the behavioral, endocrine, and neuronal responses of lampreys to chemosensory signals. Full article
Show Figures

Figure 1

18 pages, 2928 KiB  
Article
Multi-Omics Analysis of Gut Microbiota and Sperm Quality in Tibetan Breeding Boars
by Mingxuan Zhao, Mengjia Han, Hongliang Zhang, Xiangdong Wang, Yikai Yin, Jian Zhang and Peng Shang
Metabolites 2025, 15(7), 447; https://doi.org/10.3390/metabo15070447 - 2 Jul 2025
Viewed by 360
Abstract
Background/Objectives: Reproductive efficiency in breeding boars critically impacts swine industry productivity, with sperm quality being multifactorially regulated by gut microbiota. This study aimed to elucidate the microbiota–metabolite interactions underlying sperm quality differences in Tibetan boars. Methods: Integrated 16S rRNA sequencing and untargeted metabolomics [...] Read more.
Background/Objectives: Reproductive efficiency in breeding boars critically impacts swine industry productivity, with sperm quality being multifactorially regulated by gut microbiota. This study aimed to elucidate the microbiota–metabolite interactions underlying sperm quality differences in Tibetan boars. Methods: Integrated 16S rRNA sequencing and untargeted metabolomics were performed on fecal and semen samples from eight healthy Tibetan boars (31–33 months old), stratified into low-semen (CJ) and high-semen utilization (HJ) groups. Analyses included sperm quality assessment, microbial profiling, and metabolic pathway enrichment. Results: The HJ group exhibited significantly enhanced sperm motility and semen utilization rates (p < 0.05). Gut microbiota composition differed markedly, with Firmicutes and Proteobacteria enriched in HJ boars. Metabolomics identified key metabolites positively correlated with sperm quality (e.g., butyrate, phenyllactic acid), while lithocholic acid showed negative associations. KEGG analysis revealed predominant involvement in butanoate metabolism and bile acid biosynthesis. Core microbiota (e.g., Ruminococcus) modulated sperm quality through short-chain fatty acid networks and bile acid homeostasis. Conclusions: Gut microbiota regulated the sperm microenvironment via a “metabolic-immune” dual pathway mediated by the gut–testis axis. These findings establish a theoretical basis for probiotic or metabolite-targeted strategies to improve boar reproductive performance. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

26 pages, 2094 KiB  
Review
The Androbactome and the Gut Microbiota–Testis Axis: A Narrative Review of Emerging Insights into Male Fertility
by Aris Kaltsas, Ilias Giannakodimos, Eleftheria Markou, Marios Stavropoulos, Dimitrios Deligiannis, Zisis Kratiras and Michael Chrisofos
Int. J. Mol. Sci. 2025, 26(13), 6211; https://doi.org/10.3390/ijms26136211 - 27 Jun 2025
Viewed by 721
Abstract
Male infertility is an under-recognized global health burden. Accumulating evidence position the intestinal microbiota as a pivotal regulator of testicular function, underpinning the emerging gut microbiota–testis axis. This narrative review introduces the conceptual term “androbactome”, referring to gut microorganisms and microbial genes that [...] Read more.
Male infertility is an under-recognized global health burden. Accumulating evidence position the intestinal microbiota as a pivotal regulator of testicular function, underpinning the emerging gut microbiota–testis axis. This narrative review introduces the conceptual term “androbactome”, referring to gut microorganisms and microbial genes that are hypothesized to influence androgen biosynthesis, spermatogenesis, and broader reproductive endocrinology. The documented worldwide decline in sperm concentration heightens the urgency of clarifying microbe-mediated influences on male reproductive capacity. The synthesis of preclinical and clinical findings reveals four principal pathways by which dysbiosis compromises fertility: systemic inflammation, oxidative stress, endocrine disruption, and epigenetic alteration. Lipopolysaccharide-driven cytokinaemia, reactive oxygen species generation, hypothalamic–pituitary–gonadal axis suppression, and aberrant germ cell methylation collectively impair sperm quality and hormonal balance. Short-chain fatty acids, secondary bile acids, and indole derivatives emerge as pivotal messengers within this crosstalk. Therapeutic approaches targeting the androbactome, namely dietary optimization, probiotic or prebiotic supplementation, and fecal microbiota transplantation, have demonstrated encouraging improvements in sperm parameters and testosterone levels, yet the causal inference is constrained by predominantly cross-sectional designs and limited long-term safety data. Recognizing the androbactome as a modifiable determinant of male fertility may open new avenues for personalized diagnosis, risk stratification, and adjunctive therapy in regard to idiopathic infertility. The integration of multi-omics platforms to characterize microbial and metabolomic signatures promises to enrich diagnostic algorithms and guide precision interventions, but rigorously controlled longitudinal and interventional studies are required to secure a translational impact. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

Back to TopTop