Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = replicon systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1009 KB  
Review
Advances in Genetic Transformation of Lactic Acid Bacteria: Overcoming Barriers and Enhancing Plasmid Tools
by Aleksei S. Rozanov, Leonid A. Shaposhnikov, Kseniya D. Bondarenko and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(18), 9146; https://doi.org/10.3390/ijms26189146 - 19 Sep 2025
Viewed by 351
Abstract
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and [...] Read more.
Lactic acid bacteria (LAB) are central to food fermentation, probiotic delivery, and emerging synthetic biology applications, yet their robust cell envelopes and restriction–modification systems complicate DNA uptake. This review synthesizes practical routes for introducing DNA into LAB—natural competence, electroporation, conjugation, phage-mediated transduction, and biolistics—and outlines vector systems for expression and chromosomal editing, including food-grade strategies. We highlight recent advances that broaden strain tractability while noting strain-to-strain variability and host-specific barriers that still require tailored solutions. These advances directly enable applications in food and probiotic biotechnology, including improving starter robustness, tailoring flavor and texture pathways, and installing food-grade traits without residual selection markers. We close with near-term priorities for standardizing protocols, widening replicon compatibility, and leveraging modern genome-editing platforms to accelerate safe, marker-free engineering of industrial and probiotic LAB. Full article
Show Figures

Figure 1

19 pages, 8583 KB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 782
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 4103 KB  
Article
SARS-CoV-2 Remdesivir Exposure Leads to Different Evolutionary Pathways That Converge in Moderate Levels of Drug Resistance
by Carlota Fernandez-Antunez, Line A. Ryberg, Kuan Wang, Long V. Pham, Lotte S. Mikkelsen, Ulrik Fahnøe, Katrine T. Hartmann, Henrik E. Jensen, Kenn Holmbeck, Jens Bukh and Santseharay Ramirez
Viruses 2025, 17(8), 1055; https://doi.org/10.3390/v17081055 - 29 Jul 2025
Viewed by 844
Abstract
Various SARS-CoV-2 remdesivir resistance-associated substitutions (RAS) have been reported, but a comprehensive comparison of their resistance levels is lacking. We identified novel RAS and performed head-to-head comparisons with known RAS in Vero E6 cells. A remdesivir escape polyclonal virus exhibited a 3.6-fold increase [...] Read more.
Various SARS-CoV-2 remdesivir resistance-associated substitutions (RAS) have been reported, but a comprehensive comparison of their resistance levels is lacking. We identified novel RAS and performed head-to-head comparisons with known RAS in Vero E6 cells. A remdesivir escape polyclonal virus exhibited a 3.6-fold increase in remdesivir EC50 and mutations throughout the genome, including substitutions in nsp12 (E796D) and nsp14 (A255S). However, in reverse-genetics infectious assays, viruses harboring both these substitutions exhibited only a slight decrease in remdesivir susceptibility (1.3-fold increase in EC50). The nsp12-E796D substitution did not impair viral fitness (Vero E6 cells or Syrian hamsters) and was reported in a remdesivir-treated COVID-19 patient. In replication assays, a subgenomic replicon containing nsp12-E796D+nsp14-A255S led to a 16.1-fold increase in replication under remdesivir treatment. A comparison with known RAS showed that S759A, located in the active site of nsp12, conferred the highest remdesivir resistance (106.1-fold increase in replication). Nsp12-RAS V166A/L, V792I, E796D or C799F, all adjacent to the active site, caused intermediate resistance (2.0- to 11.5-fold), whereas N198S, D484Y, or E802D, located farther from the active site, showed no resistance (≤2.0-fold). In conclusion, our classification system, correlating replication under remdesivir treatment with RAS location in nsp12, shows that most nsp12-RAS cause moderate resistance. Full article
(This article belongs to the Special Issue Viral Resistance)
Show Figures

Figure 1

15 pages, 2823 KB  
Article
Discovery of Small Molecules Targeting Norovirus 3CL Protease by Multi-Stage Virtual Screening
by Zhongling Shi, Na Liu, Fabao Zhao, Dongwei Kang, Steven De Jonghe, Johan Neyts, Ni Gao and Xinyong Liu
Int. J. Mol. Sci. 2025, 26(12), 5625; https://doi.org/10.3390/ijms26125625 - 12 Jun 2025
Viewed by 788
Abstract
Human noroviruses (HuNoVs) are the primary cause of acute viral gastroenteritis. There are no antivirals or vaccines available to treat and/or prevent HuNoV. Norovirus 3C-like protease (3CLpro) is essential for viral replication; consequently, the inhibition of this enzyme is a fruitful avenue for [...] Read more.
Human noroviruses (HuNoVs) are the primary cause of acute viral gastroenteritis. There are no antivirals or vaccines available to treat and/or prevent HuNoV. Norovirus 3C-like protease (3CLpro) is essential for viral replication; consequently, the inhibition of this enzyme is a fruitful avenue for antinorovirus therapeutics. To discover novel 3CLpro inhibitors with diverse scaffolds, a multi-stage virtual screening approach was performed by docking >10 million compounds into the 3CLpro catalytic site. An initial subset of 18 compounds was selected, and compounds YY-1029 and YY-4204 were identified as the best two molecules. Molecular dynamics (MD) simulations and binding free energy calculations (MM/GBSA) of YY-1029 and YY-4204 were performed to elucidate the binding mechanisms. The ADMET properties were also estimated to predict the potential druggability of representative molecules. All 18 compounds were evaluated for their antinorovirus activity and cytotoxicity in a cell-based replicon system. This work could provide information for the development of 3CL pro inhibitors. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 2604 KB  
Article
A Novel SARS-CoV-2-Derived Infectious Vector System
by Ghada Elfayres, Yong Xiao, Qinghua Pan, Chen Liang, Benoit Barbeau and Lionel Berthoux
Microbiol. Res. 2025, 16(6), 125; https://doi.org/10.3390/microbiolres16060125 - 11 Jun 2025
Viewed by 1131
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of easy and precise methods for quantification of infection. Here, we developed a SARS-CoV-2 viral vector composed of all four SARS-CoV-2 structural proteins constitutively expressed in lentivirally transduced cells, combined with an RNA replicon deleted for SARS-CoV-2 structural protein genes S, M, and E, and expressing a luciferase–GFP fusion protein. We show that, after concentrating viral stocks by ultracentrifugation, the SARS-CoV-2 viral vector is able to infect two human cell lines expressing receptors ACE2 and TMPRSS2. Both luciferase activity and GFP fluorescence were detected, and transduction was remdesivir-sensitive. We also show that this vector is inhibited by three type I interferon (IFN-I) subtypes. Although improvements are needed to increase infectious titers, this vector system may prove useful for antiviral drug screening and SARS-CoV-2-related investigations. Full article
Show Figures

Figure 1

24 pages, 4343 KB  
Article
Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach
by Shima E. Abdalla, Linda A. Bester, Akebe L. K. Abia, Mushal Allam, Arshad Ismail, Sabiha Y. Essack and Daniel G. Amoako
Antibiotics 2025, 14(5), 446; https://doi.org/10.3390/antibiotics14050446 - 28 Apr 2025
Viewed by 1108
Abstract
Background/Objectives: Intensive pig farming is a critical component of food security and economic activity in South Africa; however, it also presents a risk of amplifying antimicrobial resistance (AMR). This study provides genomic insights into antibiotic-resistant Escherichia coli (E. coli) circulating [...] Read more.
Background/Objectives: Intensive pig farming is a critical component of food security and economic activity in South Africa; however, it also presents a risk of amplifying antimicrobial resistance (AMR). This study provides genomic insights into antibiotic-resistant Escherichia coli (E. coli) circulating across the pork production chain, using a ‘farm-to-fork’ approach. Methods: A total of 417 samples were collected from various points along the production continuum, including the farm (n = 144), transport (n = 60), and abattoir (n = 213). E. coli isolates were identified using the Colilert-18 system, and their phenotypic resistance was tested against 20 antibiotics. Thirty-one isolates were selected for further characterization based on their resistance profiles and sampling sources, utilizing whole-genome sequencing and bioinformatic analysis. Results: The isolates exhibited varying resistance to critical antibiotics used in both human and animal health, including ampicillin (31/31, 100%), tetracycline (31/31, 100%), amoxicillin–clavulanate (29/31, 94%), chloramphenicol (25/31, 81%), and sulfamethoxazole–trimethoprim (10/31, 33%). Genetic analysis revealed the presence of resistance genes for β-lactams (blaEC, blaTEM), trimethoprim/sulfonamides (dfrA1, dfrA5, dfrA12, sul2, sul3), tetracyclines (tetA, tetB, tetR, tet34), aminoglycosides (aadA, strA, aph variants), and phenicols (catB4, floR, cmlA1), most of which were plasmid-borne. Virulome analysis identified 24 genes, including toxins and adhesion factors. Mobile genetic elements included 24 plasmid replicons, 43 prophages, 19 insertion sequence families, and 7 class 1 integrons. The E. coli isolates belonged to a diverse range of sequence types, demonstrating significant genetic variability. Further phylogenomic analysis revealed eight major clades, with isolate clustering by sequence type alongside South African environmental and clinical E. coli strains, regardless of their sampling source. Conclusions: The genetic complexity observed across the pork production continuum threatens food safety and may impact human health. These findings underscore the need for enhanced AMR monitoring in livestock systems and support the integration of AMR surveillance into food safety policy frameworks. Full article
Show Figures

Figure 1

27 pages, 4886 KB  
Article
A Novel Toolkit of SARS-CoV-2 Sub-Genomic Replicons for Efficient Antiviral Screening
by Maximilian Erdmann, Peter A. C. Wing, Isobel Webb, Maia Kavanagh Williamson, Tuksin Jearanaiwitayakul, Edward Sullivan, James Bazire, Iart Luca Shytaj, Jane A. McKeating, David A. Matthews and Andrew D. Davidson
Viruses 2025, 17(5), 597; https://doi.org/10.3390/v17050597 - 23 Apr 2025
Viewed by 1049
Abstract
SARS-CoV-2 is classified as a containment level 3 (CL3) pathogen, limiting research access and antiviral testing. To address this, we developed a non-infectious viral surrogate system using reverse genetics to generate sub-genomic replicons. These replicons contained the nsp1 mutations K164A and H165A and [...] Read more.
SARS-CoV-2 is classified as a containment level 3 (CL3) pathogen, limiting research access and antiviral testing. To address this, we developed a non-infectious viral surrogate system using reverse genetics to generate sub-genomic replicons. These replicons contained the nsp1 mutations K164A and H165A and had the spike, membrane, ORF6, and ORF7a coding sequences replaced with various reporter and selectable marker genes. Replicons based on the ancestral Wuhan Hu-1 strain and the Delta variant of concern were replication-competent in multiple cell lines, as assessed by Renilla luciferase activity, fluorescence, immunofluorescence staining, and single-molecule fluorescent in situ hybridization. Antiviral assays using transient replicon expression showed that remdesivir effectively inhibited both replicon and viral replication. Ritonavir and cobicistat inhibited Delta variant replicons similarly to wild-type virus but did not inhibit Wuhan Hu-1 replicon replication. To further investigate the impact of nsp1 mutations, we generated a recombinant SARS-CoV-2 virus carrying the K164A and H165A mutations. The virus exhibited attenuated replication across a range of mammalian cell lines, was restricted by the type I interferon response, and showed reduced cytopathic effects. These findings highlight the utility of sub-genomic replicons as reliable CL2-compatible surrogates for studying SARS-CoV-2 replication and drug activity mechanisms. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

22 pages, 4027 KB  
Article
Physiology, Heavy Metal Resistance, and Genome Analysis of Two Cupriavidus gilardii Strains Isolated from the Naica Mine (Mexico)
by Antonio González-Sánchez, Luis Lozano-Aguirre, Guadalupe Jiménez-Flores, Mariana López-Sámano, Alejandro García-de Los Santos, Miguel A. Cevallos and Sylvie Le Borgne
Microorganisms 2025, 13(4), 809; https://doi.org/10.3390/microorganisms13040809 - 2 Apr 2025
Viewed by 1069
Abstract
Here, we report the characterization of two Cupriavidus strains, NOV2-1 and OV2-1, isolated from an iron-oxide deposit in an underground tunnel of the Naica mine in Mexico. This unique biotope, characterized by its high temperature (≈50 °C) and the presence of heavy metals, [...] Read more.
Here, we report the characterization of two Cupriavidus strains, NOV2-1 and OV2-1, isolated from an iron-oxide deposit in an underground tunnel of the Naica mine in Mexico. This unique biotope, characterized by its high temperature (≈50 °C) and the presence of heavy metals, is no longer available for sampling at this time. The genomes of NOV2-1 and OV2-1 comprised two replicons: a chromosome of 3.58 and 3.53 Mb, respectively, and a chromid of 2.1 Mb in both strains. No plasmids were found. The average nucleotide identity and the core genome phylogeny showed that NOV2-1 and OV2-1 belonged to the Cupriavidus gilardii species. NOV2-1 and OV2-1 grew up to 48 °C, with an optimal temperature of 42 °C. Discrete differences were observed between C. gilardii CCUG38401T, NOV2-1, and OV2-1 in the biochemical tests. NOV2-1 and OV2-1 presented resistance to zinc, lead, copper, cadmium, nickel, and cobalt. Several complete and incomplete gene clusters related to the resistance to these heavy metals (ars, czc, cop 1, sil-cop 2, cup, mmf, and mer) were detected in the genome of these strains. Although further studies are needed to determine the origin and role of the detected gene clusters, it is suggested that the czc system may have been mobilized by horizontal gene transfer. This study expands the extreme biotopes where Cupriavidus strains can be retrieved. Full article
(This article belongs to the Special Issue Microbial Life and Ecology in Extreme Environments)
Show Figures

Figure 1

26 pages, 3677 KB  
Article
Application of Pseudoinfectious Viruses in Transient Gene Expression in Mammalian Cells: Combining Efficient Expression with Regulatory Compliance
by Gulzat Zauatbayeva, Tolganay Kulatay, Bakytkali Ingirbay, Zhanar Shakhmanova, Viktoriya Keyer, Mikhail Zaripov, Maral Zhumabekova and Alexandr V. Shustov
Biomolecules 2025, 15(2), 274; https://doi.org/10.3390/biom15020274 - 13 Feb 2025
Viewed by 1789
Abstract
Transient gene expression (TGE) is commonly employed for protein production, but its reliance on plasmid transfection makes it challenging to scale up. In this paper, an alternative TGE method is presented, utilizing pseudoinfectious alphavirus as an expression vector. Pseudoinfectious viruses (PIV) and a [...] Read more.
Transient gene expression (TGE) is commonly employed for protein production, but its reliance on plasmid transfection makes it challenging to scale up. In this paper, an alternative TGE method is presented, utilizing pseudoinfectious alphavirus as an expression vector. Pseudoinfectious viruses (PIV) and a replicable helper construct were derived from the genome of the Venezuelan equine encephalitis virus. The PIV carries a mutant capsid protein that prevents packaging into infectious particles, while the replicable helper encodes a wild-type capsid protein but lacks other viral structural proteins. Although PIV and the helper cannot independently spread infection, their combination results in increased titers in cell cultures, enabling easier scale-up of producing cultures. The PIV-driven production of a model protein outperforms that of alphavirus replicon vectors or simple plasmid vectors. Another described feature of the expression system is the modification to immobilized metal affinity chromatography (IMAC), allowing purification of His-tagged recombinant proteins from a conditioned medium in the presence of substances that can strip metal from the IMAC columns. The PIV-based expression system allows for the production of milligram quantities of recombinant proteins in static cultures, without the need for complex equipment such as bioreactors, and complies with regulatory requirements due to its distinction from common recombinant viruses. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Figure 1

14 pages, 3206 KB  
Article
A Gemini Virus-Derived Autonomously Replicating System for HDR-Mediated Genome Editing of the EPSP Synthase Gene in Indica Rice
by Bhabesh Borphukan, Muslima Khatun, Dhirendra Fartyal, Donald James and Malireddy K. Reddy
Plants 2025, 14(3), 477; https://doi.org/10.3390/plants14030477 - 6 Feb 2025
Cited by 3 | Viewed by 4405
Abstract
CRISPR/Cas9-mediated homology-directed repair (HDR) is a powerful tool for precise genome editing in plants, but its efficiency remains low, particularly for targeted amino acid substitutions or gene knock-ins. Successful HDR requires the simultaneous presence of Cas9, guide RNA, and a repair template (RT) [...] Read more.
CRISPR/Cas9-mediated homology-directed repair (HDR) is a powerful tool for precise genome editing in plants, but its efficiency remains low, particularly for targeted amino acid substitutions or gene knock-ins. Successful HDR requires the simultaneous presence of Cas9, guide RNA, and a repair template (RT) in the same cell nucleus. Among these, the timely availability of the RT at the double-strand break (DSB) site is a critical bottleneck. To address this, we developed a sequential transformation strategy incorporating a deconstructed wheat dwarf virus (dWDV)-based autonomously replicating delivery system, effectively simplifying the process into a two-component system. Using this approach, we successfully achieved the targeted editing of the OsEPSPS gene in rice with a 10 percent HDR efficiency, generating three lines (TIPS1, TIPS2, and TIPS3) with amino acid substitutions (T172I and P177S) in the native EPSPS protein. The modifications were confirmed through Sanger sequencing and restriction digestion assays, and the edited lines showed no yield penalties compared to wild-type plants. This study demonstrates the utility of viral replicons in delivering gene-editing tools for precise genome modification, offering a promising approach for efficient HDR in crop improvement programs. Full article
(This article belongs to the Special Issue Plant Biotechnological Approaches Towards Crop Improvement)
Show Figures

Figure 1

19 pages, 3264 KB  
Article
Sindbis Virus Replicon-Based SARS-CoV-2 and Dengue Combined Vaccine Candidates Elicit Immune Responses and Provide Protective Immunity in Mice
by Yihan Zhu, Wenfeng He, Rui Hu, Xiahua Liu, Mengzhu Li and Yuan Liu
Vaccines 2024, 12(11), 1292; https://doi.org/10.3390/vaccines12111292 - 19 Nov 2024
Viewed by 2059
Abstract
Background/Objectives: Since its emergence in 2019, the rapid spread of SARS-CoV-2 led to the global pandemic. Recent large-scale dengue fever outbreaks overlapped with the COVID-19 pandemic, leading to increased cases of co-infection and posing severe public health risks. Accordingly, the development of [...] Read more.
Background/Objectives: Since its emergence in 2019, the rapid spread of SARS-CoV-2 led to the global pandemic. Recent large-scale dengue fever outbreaks overlapped with the COVID-19 pandemic, leading to increased cases of co-infection and posing severe public health risks. Accordingly, the development of effective combined SARS-CoV-2 and dengue virus (DENV) vaccines is necessary to control the spread and prevalence of both viruses. Methods: In this study, we designed Sindbis virus (SINV) replicon-based SARS-CoV-2 and DENV chimeric vaccines using two delivery strategies: DNA-launched self-replicating RNA replicon (DREP) and viral replicon particle (VRP) systems. Results: Cellular and animal experiments confirmed that the vaccines effectively produced viral proteins and elicited strong immunogenicity. These vaccines induced robust immune responses and neutralizing activity against live SARS-CoV-2, DENV1, and DENV2 viruses. In addition, passively transferred sera from BALB/c mice immunized with these vaccines into AG129 mice provided significant protection against lethal DENV2 challenge. The transferred sera protected the mice from physical symptoms, reduced viral loads in the kidney, spleen, liver, and intestine, and prevented DENV2-induced vascular leakage in these tissues. Conclusions: Therefore, combined vaccines based on the SINV replicon system are promising candidates for pandemic control. These results lay a foundation for further development of a safe and effective combination vaccine against SARS-CoV-2 and DENV. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

18 pages, 3173 KB  
Article
Interrelation Between Pathoadaptability Factors and Crispr-Element Patterns in the Genomes of Escherichia coli Isolates Collected from Healthy Puerperant Women in Ural Region, Russia
by Yulia Mikhaylova, Marina Tyumentseva, Konstantin Karbyshev, Aleksandr Tyumentsev, Anna Slavokhotova, Svetlana Smirnova, Andrey Akinin, Andrey Shelenkov and Vasiliy Akimkin
Pathogens 2024, 13(11), 997; https://doi.org/10.3390/pathogens13110997 - 14 Nov 2024
Viewed by 4792
Abstract
Escherichia coli is a commensal and opportunistic bacterium widely distributed around the world in different niches including intestinal of humans and animals, and its extraordinary genome plasticity led to the emergence of pathogenic strains causing a wide range of diseases. E. coli is [...] Read more.
Escherichia coli is a commensal and opportunistic bacterium widely distributed around the world in different niches including intestinal of humans and animals, and its extraordinary genome plasticity led to the emergence of pathogenic strains causing a wide range of diseases. E. coli is one of the monitored species in maternity hospitals, being the main etiological agent of urogenital infections, endometriosis, puerperal sepsis, and neonatal diseases. This study presents a comprehensive analysis of E. coli isolates obtained from the maternal birth canal of healthy puerperant women 3–4 days after labor. According to whole genome sequencing data, 31 sequence types and six phylogenetic groups characterized the collection containing 53 isolates. The majority of the isolates belonged to the B2 phylogroup. The data also includes phenotypic and genotypic antibiotic resistance profiles, virulence factors, and plasmid replicons. Phenotypic and genotypic antibiotic resistance testing did not demonstrate extensive drug resistance traits except for two multidrug-resistant E. coli isolates. The pathogenic factors revealed in silico were assessed with respect to CRISPR-element patterns. Multiparametric and correlation analyses were conducted to study the interrelation of different pathoadaptability factors, including antimicrobial resistance and virulence genomic determinants carried by the isolates under investigation. The data presented will serve as a valuable addition to further scientific investigations in the field of bacterial pathoadaptability, especially in studying the role of CRISPR/Cas systems in the E. coli genome plasticity and evolution. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

14 pages, 501 KB  
Review
Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents
by Kenneth Lundstrom
Viruses 2024, 16(11), 1762; https://doi.org/10.3390/v16111762 - 12 Nov 2024
Cited by 3 | Viewed by 2604
Abstract
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications [...] Read more.
Alphaviruses are known for being model viruses for studying cellular functions related to viral infections but also for causing epidemics in different parts of the world. More recently, alphavirus-based expression systems have demonstrated efficacy as vaccines against infectious diseases and as therapeutic applications for different cancers. Point mutations in the non-structural alphaviral replicase genes have generated enhanced transgene expression and created temperature-sensitive expression vectors. The recently engineered trans-amplifying RNA system can provide higher translational efficiency and eliminate interference with cellular translation. The self-replicating feature of alphaviruses has provided the advantage of extremely high transgene expression of vaccine-related antigens and therapeutic anti-tumor and immunostimulatory genes, which has also permitted significantly reduced doses for prophylactic and therapeutic applications, potentially reducing adverse events. Furthermore, alphaviruses have shown favorable flexibility as they can be delivered as recombinant viral particles, RNA replicons, or DNA-replicon-based plasmids. In the context of infectious diseases, robust immune responses against the surface proteins of target agents have been observed along with protection against challenges with lethal doses of infectious agents in rodents and primates. Similarly, the expression of anti-tumor genes and immunostimulatory genes from alphavirus vectors has provided tumor growth inhibition, tumor regression, and cures in animal cancer models. Moreover, protection against tumor challenges has been observed. In clinical settings, patient benefits have been reported. Alphaviruses have also been considered for the treatment of neurological disorders due to their neurotrophic preference. Full article
(This article belongs to the Special Issue Self-Replicating RNA Viruses)
Show Figures

Figure 1

16 pages, 7789 KB  
Article
First Experimental Application of DNA-Layered Salmonid Alphavirus-Based Replicon Vaccine in Non-Salmonid Fish: Induced Early Semi-Specific Protection against Spring Viraemia of Carp Virus (SVCV) in Common Carp (Cyprinus carpio)
by Flóra Abonyi, Edit Eszterbauer, Ferenc Baska, Tímea Hardy and Andor Doszpoly
Animals 2024, 14(18), 2698; https://doi.org/10.3390/ani14182698 - 18 Sep 2024
Cited by 2 | Viewed by 1568
Abstract
Our study demonstrates the first application of the salmonid alphavirus-based replicon vector system (pSAV) as a DNA vaccine in a non-salmonid fish species, in common carp (Cyprinus carpio) against spring viraemia of carp virus (SVCV). SAV replicon encoding the glycoprotein of [...] Read more.
Our study demonstrates the first application of the salmonid alphavirus-based replicon vector system (pSAV) as a DNA vaccine in a non-salmonid fish species, in common carp (Cyprinus carpio) against spring viraemia of carp virus (SVCV). SAV replicon encoding the glycoprotein of the SVCV was used as a DNA-layered plasmid, and its efficacy was compared with a previously described conventional DNA vaccine construct (pcDNA3.1 based vector) and with a control group (pcDNA3.1-empty-plasmid) in an SVCV challenge at a water temperature of 14 ± 1 °C. Vaccine prototypes were administered intramuscularly at a dose of 0.1 µg/g of fish (n = 25 per group). The DNA-layered SAV replicon resulted in 88% survival, compared to around 50% in all other groups. The DNA-layered pSAV vaccination induced the innate immune genes at the injection site, and increased IgM upregulation was also observed. Our preliminary results show that the SAV-based replicon construct may serve as a potential vaccine candidate for the protection of non-salmonid fish in the future provided that further clinical and field trials confirm its efficiency. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

16 pages, 2775 KB  
Article
Development of a Cell Culture Model for Inducible SARS-CoV-2 Replication
by Xiaoyan Wang, Yuanfei Zhu, Qiong Wu, Nan Jiang, Youhua Xie and Qiang Deng
Viruses 2024, 16(5), 708; https://doi.org/10.3390/v16050708 - 29 Apr 2024
Cited by 2 | Viewed by 2446
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces direct cytopathic effects, complicating the establishment of low-cytotoxicity cell culture models for studying its replication. We initially developed a DNA vector-based replicon system utilizing the CMV promoter to generate a recombinant viral genome bearing reporter [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces direct cytopathic effects, complicating the establishment of low-cytotoxicity cell culture models for studying its replication. We initially developed a DNA vector-based replicon system utilizing the CMV promoter to generate a recombinant viral genome bearing reporter genes. However, this system frequently resulted in drug resistance and cytotoxicity, impeding model establishment. Herein, we present a novel cell culture model with SARS-CoV-2 replication induced by Cre/LoxP-mediated DNA recombination. An engineered SARS-CoV-2 transcription unit was subcloned into a bacterial artificial chromosome (BAC) vector. To enhance biosafety, the viral spike protein gene was deleted, and the nucleocapsid gene was replaced with a reporter gene. An exogenous sequence was inserted within NSP1 as a modulatory cassette that is removable after Cre/LoxP-mediated DNA recombination and subsequent RNA splicing. Using the PiggyBac transposon strategy, the transcription unit was integrated into host cell chromatin, yielding a stable cell line capable of inducing recombinant SARS-CoV-2 RNA replication. The model exhibited sensitivity to the potential antivirals forsythoside A and verteporfin. An innovative inducible SARS-CoV-2 replicon cell model was introduced to further explore the replication and pathogenesis of the virus and facilitate screening and assessment of anti-SARS-CoV-2 therapeutics. Full article
Show Figures

Figure 1

Back to TopTop