Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach
Abstract
:1. Introduction
2. Results
2.1. Isolate Characteristics and Antibiotic Susceptibility Profiling
2.2. Genomic Characteristics
2.3. Antibiotic Resistance Gene Analysis
2.4. Mobilome (Plasmids, Insertion Sequences, Prophages, and Integrons) Analysis
2.5. Virulome in the E. coli Isolates
2.6. Multilocus Sequence Typing (MLST) and Phylogenomic Insights
3. Discussion
3.1. The Genetic Basis of Antibiotic Resistance and Their Mobile Genetic Support
3.2. Virulome Analysis
3.3. Multilocus Sequence Typing and Phylogenomic Analysis
4. Materials and Methods
4.1. Ethical Statement
4.2. Study Site and Sample Collection
4.3. E. coli Isolation, Confirmation, and Antibiotic Susceptibility Testing
4.4. Selection of Isolates, Whole-Genome Sequencing, and Bioinformatic Analysis
4.4.1. Isolate Selection
4.4.2. Genome Sequencing and Pre-Processing of Sequence Data
4.4.3. Molecular Typing of E. coli Isolates
4.5. Resistome, Mobilome, and Genetic Support Analysis
4.6. Putative Virulome Analysis
4.7. Phylogenomic Analyses and Metadata Insights of the E. coli Isolates
4.8. Nucleotide Sequence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Heredia, N.; Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2023; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Chai, Y.; Gu, X.; Sun, Y.; Li, J. Adenylate cyclase affects the virulence of extraintestinal pathogenic Escherichia coli derived from sheep lungs. Kafkas Univ. Vet. Fak. Derg. 2024, 30, 63–71. [Google Scholar] [CrossRef]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 289–316. [Google Scholar] [CrossRef]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. The Review on Antimicrobial Resistance; HM Government and Wellcome Trust: London, UK, 2014. [Google Scholar]
- World Health Organization (WHO). Ten Threats to Global Health in 2019; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Guo, S.; Tay, M.Y.F.; Aung, K.T.; Seow, K.L.G.; Ng, L.C.; Purbojati, R.W.; Drautz-Moses, D.I.; Schuster, S.C.; Schlundt, J. Phenotypic and genotypic characterisation of antimicrobial-resistant Escherichia coli isolated from ready-to-eat food in Singapore. Food Control 2019, 99, 89–97. [Google Scholar] [CrossRef]
- Sethuvel, D.P.M.; Perumalla, S.; Anandan, S.; Michael, J.S.; Ragupathi, N.K.D.; Gajendran, R.; Walia, K.; Veeraraghavan, B. Antimicrobial resistance, virulence, and plasmid profiles among clinical isolates of Shigella serogroups. Indian J. Med. Res. 2019, 149, 247–253. [Google Scholar] [CrossRef]
- Mbelle, N.M.; Feldman, C.; Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The resistome, mobilome, virulome, and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 16457. [Google Scholar] [CrossRef]
- Van den Honert, M.S.; Gouws, P.A.; Hoffman, L.C. Importance and implications of antibiotic resistance development in livestock and wildlife farming in South Africa: A review. S. Afr. J. Anim. Sci. 2018, 48, 401–412. [Google Scholar] [CrossRef]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in Food Animals in Africa: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef]
- Adenipekun, E.O.; Jackson, C.R.; Oluwadun, A.; Iwalokun, B.A.; Frye, J.G.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A. Prevalence and antimicrobial resistance in Escherichia coli from food animals in Lagos, Nigeria. Microb. Drug Resist. 2015, 21, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Nnah, E.P.; Asante, J.; Amoako, D.G.; Abia, A.L.K.; Essack, S.Y. Antibiotic-Resistant Escherichia coli at One Health Interfaces in Africa: A Scoping Review. Sci. Total Environ. 2025, 958, 177580. [Google Scholar] [CrossRef]
- Africa Pathogen Genomics Initiative (Africa-PGI). Scaling-Up Antimicrobial Resistance Genomic Surveillance in Africa; Africa CDC: Addis Ababa, Ethiopia, 2024. [Google Scholar]
- Baker, K.S.; Jauneikaite, E.; Hopkins, K.L.; Lo, S.W.; Sánchez-Busó, L.; Getino, M.; Howden, B.P.; Holt, K.E.; Musila, L.A.; Hendriksen, R.S.; et al. Genomics for public health and international surveillance of antimicrobial resistance. Lancet Microbe 2023, 4, e1047–e1055. [Google Scholar] [CrossRef]
- Kajumbula, H.M.; Amoako, D.G.; Tessema, S.K.; Aworh, M.K.; Chikuse, F.; Okeke, I.N.; Okomo, U.; Jallow, S.; Egyir, B.; Kanzi, A.M.; et al. Enhancing clinical microbiology for genomic surveillance of antimicrobial resistance implementation in Africa. Antimicrob. Resist. Infect. Control 2024, 13, 135. [Google Scholar] [CrossRef]
- Abdalla, S.E.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. From farm-to-fork: E. coli from an intensive pig production system in South Africa shows high resistance to critically important antibiotics for human and animal use. Antibiotics 2021, 10, 18. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef]
- Endale, H.; Mathewos, M.; Abdeta, D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective—A Review. Infect. Drug Resist. 2023, 16, 7515–7545. [Google Scholar] [CrossRef]
- Dohmen, W.; Bonten, M.J.; Bos, M.E.; Van Marm, S.; Scharringa, J.; Wagenaar, J.A.; Heederik, D.J. Carriage of extended-spectrum beta-lactamases in pig farmers is associated with occurrence in pigs. Clin. Microbiol. Infect. 2015, 21, 917–923. [Google Scholar] [CrossRef]
- Santiago, G.S.; Coelho, I.S.; Bronzato, G.F.; Moreira, A.B.; Gonçalves, D.; Alencar, T.A.; Ferreira, H.N.; Castro, B.G.; Souza, M.M.S.; Coelho, S.M.O. Extended-spectrum AmpC-producing Escherichia coli from milk and feces in dairy farms in Brazil. J. Dairy Sci. 2018, 101, 7808–7811. [Google Scholar] [CrossRef]
- Von Salviati, C.; Laube, H.; Guerra, B.; Roesler, U.; Friese, A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet. Microbiol. 2015, 175, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef]
- Adator, E.H.; Walker, M.; Narvaez-Bravo, C.; Zaheer, R.; Goji, N.; Cook, S.R.; Tymensen, L.; Hannon, S.J.; Church, D.; Booker, C.W.; et al. Whole-genome sequencing differentiates presumptive extended-spectrum β-lactamase-producing Escherichia coli. Microorganisms 2020, 8, 448. [Google Scholar] [CrossRef]
- Song, J.; Oh, S.S.; Kim, J.; Park, S.; Shin, J. Clinically relevant extended-spectrum β-lactamase-producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Tian, G.B.; Wang, H.N.; Zou, L.K.; Tang, J.N.; Zhao, Y.W.; Ye, M.Y.; Tang, J.Y.; Zhang, Y.; Zhang, A.Y.; Yang, X. Detection of CTX-M-15, CTX-M-22, and SHV-2 extended-spectrum β-lactamases (ESBLs) in Escherichia coli fecal-sample isolates from pig farms in China. Foodborne Pathog. Dis. 2009, 6, 297–304. [Google Scholar] [CrossRef]
- Rayamajhi, N.; Kang, S.G.; Lee, D.Y.; Kang, M.L.; Lee, S.I.; Park, K.Y.; Lee, H.S.; Yoo, H.S. Characterisation of TEM-, SHV-, and AmpC-type β-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int. J. Food Microbiol. 2008, 124, 183–187. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, N.; Dias, D.; Sousa, M.; Capelo-Martinez, J.L.; Brito, F.; Canica, M.; Igrejas, G.; Poeta, P. Clonal diversity of ESBL-producing Escherichia coli in pigs at slaughter level in Portugal. Foodborne Pathog. Dis. 2013, 10, 74–79. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Zhou, Y.; Tang, Y.; Gao, Y.; Miao, Z. Spread of extended-spectrum β-lactamase-producing Escherichia coli from a swine farm to the receiving river. Environ. Sci. Pollut. Res. 2015, 22, 13033–13047. [Google Scholar] [CrossRef]
- Bibbal, D.; Dupouy, V.; Ferre, J.P.; Toutain, P.L.; Fayet, O.; Prere, M.F.; Bousquet-Melou, A. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Appl. Environ. Microbiol. 2007, 73, 4785–4790. [Google Scholar] [CrossRef]
- Strasheim, W.; Lowe, M.; Smith, A.M.; Etter, E.M.C.; Perovic, O. Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics 2024, 13, 543. [Google Scholar] [CrossRef]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli. J. Antimicrob. Chemother. 2011, 66, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Skaradzinska, A.; Sliwka, P.; Kuzminska-Bajor, M.; Skaradzinski, G.; Rzasa, A.; Friese, A.; Roschanski, N.; Murugaiyan, J.; Roesler, U.H. The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and turkey farms. Front. Microbiol. 2017, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. 2011, 9, 2322. [Google Scholar] [CrossRef]
- Kallau, N.H.G.; Wibawan, I.W.T.; Lukman, D.W.; Sudarwanto, M.B. Detection of multidrug-resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. J. Adv. Vet. Anim. Res. 2018, 5, 388–396. [Google Scholar] [CrossRef]
- Mbanga, J.; Amoako, D.G.; Abia, A.L.K.; Allam, M.; Ismail, A.; Essack, S.Y. Genomic insights of multidrug-resistant Escherichia coli from wastewater sources and their association with clinical pathogens in South Africa. Front. Vet. Sci. 2021, 8, 636715. [Google Scholar] [CrossRef]
- Heng, J.; Zhao, Y.; Liu, M.; Liu, Y.; Fan, J.; Wang, X.; Zhao, Y.; Zhang, X.C. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 2015, 25, 1060–1073. [Google Scholar] [CrossRef]
- De Jong, A.; Thomas, V.; Simjee, S.; Godinho, K.; Schiessl, B.; Klein, U.; Butty, P.; Valle, M.; Marion, H.; Shryock, T.R. Pan-European monitoring of susceptibility to human-use antimicrobial agents in enteric bacteria isolated from healthy food-producing animals. J. Antimicrob. Chemother. 2012, 67, 638–651. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, N.; Canica, M.; Capelo-Martinez, J.L.; Brito, F.; Igrejas, G.; Poeta, P. High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: A food safety risk. J. Sci. Food Agric. 2013, 93, 517–526. [Google Scholar] [CrossRef]
- Osterberg, J.; Wingstrand, A.; Nygaard Jensen, A.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four European countries. PLoS ONE 2016, 11, e0157049. [Google Scholar] [CrossRef]
- Smith, M.G.; Jordan, D.; Gibson, J.S.; Cobbold, R.N.; Chapman, T.A.; Abraham, S.; Trott, D.J. Phenotypic and genotypic profiling of antimicrobial resistance in enteric Escherichia coli communities isolated from finisher pigs in Australia. Aust. Vet. J. 2016, 94, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Li, S.G.; Liu, W.J.; Zhang, H.X.; Zhang, W.-J.; Jiang, H.-X.; Zhang, M.-J.; Zhu, H.-Q.; Sun, Y.; Sun, J.; et al. Serotypes, virulence genes, and antimicrobial susceptibility of Escherichia coli isolates from pig. Foodborne Pathog. Dis. 2011, 8, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Dalsgaard, A.; Hammerum, A.M.; Porsbo, L.J.; Jensen, L.B. Prevalence and characterisation of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses, and humans. Acta Vet. Scand. 2010, 52, 47. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, J.; Bok, E.; Stosik, M.; Baldy-Chudzik, K. Antimicrobial resistance in commensal Escherichia coli from pigs during metaphylactic trimethoprim and sulfamethoxazole treatment and in the post-exposure period. Int. J. Environ. Res. Public Health 2015, 12, 2150–2163. [Google Scholar] [CrossRef]
- Hu, J.; Shi, J.; Chang, H.; Li, D.; Yang, M.; Kamagata, Y. Phenotyping and genotyping of antibiotic-resistant Escherichia coli isolated from a natural river basin. Environ. Sci. Technol. 2008, 42, 3415–3420. [Google Scholar] [CrossRef]
- Pholwat, S.; Pongpan, T.; Chinli, R.; Rogawski McQuade, E.T.; Thaipisuttikul, I.; Ratanakorn, P.; Liu, J.; Taniuchi, M.; Houpt, E.R.; Foongladda, S. Antimicrobial resistance in swine fecal specimens across different farm management systems. Front. Microbiol. 2020, 11, 1238. [Google Scholar] [CrossRef]
- Frye, J.G.; Lindsey, R.L.; Meinersmann, R.J.; Berrang, M.E.; Jackson, C.R.; Englen, M.D.; Turpin, J.B.; Fedorka-Cray, P.J. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog. Dis. 2011, 8, 663–679. [Google Scholar] [CrossRef]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the Development of Antimicrobial Resistance: Critical Review and Perspectives. Front. Microbiol. 2023, 14, 1231938. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as a reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648–1650. [Google Scholar] [CrossRef]
- Gomes, C.; Ruiz-Roldan, L.; Mateu, J.; Ochoa, T.J.; Ruiz, J. Azithromycin resistance levels and mechanisms in Escherichia coli. Sci. Rep. 2019, 9, 6089. [Google Scholar] [CrossRef]
- Beketskaia, M.S.; Bay, D.C.; Turner, R.J. Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J. Bacteriol. 2014, 196, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Guerra, B.; Junker, E.; Schroeter, A.; Malorny, B.; Lehmann, S.; Helmuth, R. Phenotypic and genotypic characterisation of antimicrobial resistance in German Escherichia coli isolates from cattle, swine, and poultry. J. Antimicrob. Chemother. 2003, 52, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Abuoun, M.; O’Connor, H.M.; Stubberfield, E.J.; Nunez-Garcia, J.; Sayers, E.; Crook, D.W.; Smith, R.P.; Anjum, M.F. Characterizing antimicrobial-resistant Escherichia coli and associated risk factors in a cross-sectional study of pig farms in Great Britain. Front. Microbiol. 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Kidsley, A.K.; Abraham, S.; Bell, J.M.; O’Dea, M.; Laird, T.J.; Jordan, D.; Mitchell, P.; McDevitt, C.A.; Trott, D.J. Antimicrobial susceptibility of Escherichia coli and Salmonella spp. isolates from healthy pigs in Australia: Results of a pilot national survey. Front. Microbiol. 2018, 9, 1207. [Google Scholar] [CrossRef]
- Osei Sekyere, J.; Govinden, U.; Bester, L.A.; Essack, S.Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016, 121, 601–617. [Google Scholar] [CrossRef]
- Yaghoudi, S.; Zekiy, A.O.; Krutov, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1003–1022. [Google Scholar]
- Yehouenou, C.L.; Bogaerts, B.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; Marchal, K.; Tchiakpe, E.; Affolabi, D.; Simon, A.; Dossou, F.M.; Vanneste, K.; et al. Whole-Genome Sequencing-Based Antimicrobial Resistance Characterization and Phylogenomic Investigation of 19 Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Positive Escherichia coli Strains Collected from Hospital Patients in Benin in 2019. Front. Microbiol. 2021, 12, 752883. [Google Scholar] [CrossRef]
- Martinez-Vazquez, A.V.; Rivera-Sanchez, G.; Lira-Mendez, K.; Reyes-Lopez, M.A.; Bocanegra-Garcia, V. Prevalence, antimicrobial resistance, and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. J. Glob. Antimicrob. Resist. 2018, 14, 266–272. [Google Scholar] [CrossRef]
- Reid, C.J.; Wyrsch, E.R.; Roy Chowdhury, P.; Zingali, T.; Liu, M.; Darling, A.E.; Chapman, T.A.; Djordjevic, S.P. Porcine commensal Escherichia coli: A reservoir for class 1 integrons associated with IS26. Microb. Genom. 2017, 3, e000143. [Google Scholar] [CrossRef]
- Brilhante, M.; Perreten, V.; Dona, V. Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland. Vet. J. 2019, 244, 60–68. [Google Scholar] [CrossRef]
- World Health Organization. Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach: Guidance from the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Sahibzada, W.A.; Sahibzadi, A.G.; Sana, F.; Tayba, K.; Adila, S.; Sahibzadi, S.G.; Umair, A. Detection of Escherichia coli and total microbial population in River Siran water of Pakistan using EMB and TPC agar. Afr. J. Microbiol. Res. 2018, 12, 908–912. [Google Scholar] [CrossRef]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Olsen, J.E.; Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE 2017, 12, e0178623. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of NARMS isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Kleinheinz, K.A.; Joensen, K.G.; Larsen, M.V. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 2014, 4, e27943. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef]
- Moura, A.; Soares, M.; Pereira, C.; Leitão, N.; Henriques, I.; Correia, A. INTEGRALL: A database and search engine for integrons, integrases, and gene cassettes. Bioinformatics 2009, 25, 1096–1098. [Google Scholar] [CrossRef]
- Ahrenfeldt, J.; Skaarup, C.; Hasman, H.; Pedersen, A.G.; Aarestrup, F.M.; Lund, O. Bacterial whole genome-based phylogeny: Construction of a new benchmarking dataset and assessment of some existing methods. BMC Genom. 2017, 18, 19. [Google Scholar] [CrossRef]
Isolate ID | Source | Resistance Type | Genes | Amino Acid Substitutions | Associated Phenotype |
---|---|---|---|---|---|
A2-5-R3 | Farm | Quinolone | gyrA, gyrB, parC, parE | S83L, D87N, E678D, S828A (gyrA); D185E (gyrB); E475D, A620V * (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
B4-6-R4 | Farm | Quinolone | gyrA, gyrB, parC, parE | E678D, S828A (gyrA); D185E (gyrB); E475D (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
B4-9-R5 | Farm | Quinolone | gyrA, gyrB, parC, parE | S83L, D87N, E678D, S828A (gyrA); D185E (gyrB); S80I, A58T *, E475D, A620V * (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
TB3-10 | Transport | Quinolone | gyrA, gyrB, parC, parE | E678D, S828A (gyrA); D185E (gyrB); E475D (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
W1-7-R5 | Farm | Quinolone | gyrA, gyrB, parC, parE | E678D, S828A (gyrA); D185E (gyrB); E475D (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
WA2-4-R1 | Farm | Quinolone | gyrA, gyrB, parC, parE | S83L, D87N, E678D, S828A (gyrA); D185E (gyrB); A58T *, S80I, E475D, A620V * (parC); I136V (parE) | Ciprofloxacin/Nalidixic acid |
B2-2-R1 | Farm | Tigecycline | acrA, acrR, marB, tolC | T104A (acrA); A212S, N214T (acrR); L27P (marB); tolC present | Tigecycline |
Isolate ID | MLST a | Integron Class | Integron | Cassette Arrays | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GC1 | GC2 b | GC3 | GC4 | GC5 | GC6 | GC7 | ||||
A1-10-R8 | 88 | IntI1 | In13 | - c | dfrA5 | - | - | - | - | - |
A2-4-R2 | 4373 | IntI2 | In2-32 | dfrA1 | - | - | aadA1 | - | - | sat2 |
A5-1-1R4 | 10 | IntI1 | In456 | - | - | - | aadA1 | aadA2 | cmlA1 | - |
W2-4-R8 | 10 | IntI1 | In649 | - | - | dfrA12 | aadA1 | aadA2 | cmlA1 | - |
W-5-R4 | 1109 | IntI1 | In456 | - | - | - | aadA1 | aadA2 | cmlA1 | - |
TB3-10 | 3531 | IntI1 | In774 | - | - | - | - | - | cmlA1 | - |
CAC1-7 | 206 | IntI1 | In127 | - | - | - | - | aadA2 | - | - |
CAC1-8 | 1109 | IntI1 | In456 | - | - | - | aadA1 | aadA2 | cmlA1 | - |
Isolate ID | Contig | Synteny of Resistance Genes and MGE | Plasmid/Chromosomal Sequence with Closest Nucleotide Homology (Accession Number) |
---|---|---|---|
A1-10-R8 | 6 | ::::incFII::::IS26:dfrA5:IntI1:TnAs1 | Escherichia coli strain 18MD05VL07 005213EC plasmid pVPS18EC0676-1, complete sequence (CP063726.1) |
A2-4-R2 | 28 | ::::emrD::::mdtL::::IntI2:dfrA1:sat2:ant(3″)-Ia:::: | No significant similarity found |
A2-5-R3 | 602 | tet(A):tetR(A)::aph(6)-Id:aph(3″)-Ib: sul2::::IS1:::: | Escherichia coli strain T28R chromosome, complete genome (CP049353.1) |
14 | ::::floR::IS91 | Escherichia coli strain AH25 chromosome, complete genome (CP055256.1) | |
A2-10-R7 | 1 | ::::TEM-1:Tn3 | Escherichia coli strain AMSCJX02 plasmid pAMSC5, complete sequence (CP031110.1) |
A5-1-R4 | 60 | IS1::::aph(6)-Id:aph(3″)-Ib:ISVsa5:::: IS26:::sul3:IS256::ant(3″)-Ia:cmlA1::: IntI1::TnAs3::tetR(B):tet(B):tetC:: | Salmonella enterica subsp. enterica serovar Indiana strain SI67 plasmid pSI67-1, complete sequence (CP050784.1) |
B1-1-R8 | 69 | :TEM-1:Tn3::::IS1 | Escherichia coli isolate MSB1_3C-sc-2280310 genome assembly, plasmid: 2 (LR890263.1) |
B2-2-R1 | 171 | ::::Tn3:::tet(A):tetR(A)::Tn3 | Escherichia coli O83:H1 str. NRG 857C plasmid pO83_CORR genomic sequence (CP001856.1) |
CAC1-7 | 98 | mef(B)::::sul3::IS256:qacL:aadA1: cmlA1:ant(3″)-Ia:::intI1::TnAs1 | Klebsiella pneumoniae strain k9 plasmid pk9, complete sequence (CP049891.1) |
CAC1-8- | 79 | mef(B):::sul3:IS256::ant(3″)-Ia:cmlA1:ant(3″)-Ia:::IntI1:::TnAs1 | Klebsiella pneumoniae strain k9 plasmid pk9, complete sequence (CP049891.1) |
W2-4-R8 | 127 | :::sul3:IS256::ant(3″)-Ia:cmlA1:ant(3″)-Ia::dfrA12:IntI1:TnAs3 | Escherichia coli strain 1919D3 plasmid p1919D3-1, complete sequence (CP046004.1) |
W5R4 | 53 | IS26:mef(B):::sul3:IS256:qacL:aadA1: cmlA1:ant(3″)-Ia:::IntI1:TnAs1 | No significant similarity found |
WA2-4-R1 | 145 | :aph(6)-Id:aph(3″)-Ib:sul2:::IS1:::: | Escherichia coli strain 13P484A chromosome, complete genome (CP019280.1) |
23 | ::ISVsa3::floR::IS91 | Escherichia coli strain AH25 chromosome, complete genome (CP055256.1) | |
WB1-1-R8 | 59 | tetR(A):tet(A)::::TnAs1:::: | Escherichia coli TCJ482-1 plasmid p482-1 contig COV43U1_c1 genomic sequence (MG692709.1) |
57 | ::::incFII::Tn3::TEM-1 | Escherichia coli strain ECOR 48 genome assembly, plasmid: RCS84_p (LT985305.1) | |
TB3-10 | 162 | :::sul3::IS256:::IntI1:::IS6 | Escherichia coli strain CP131_Sichuan plasmid pCP131-IncHI1, complete sequence (CP053721.1) |
376 | ::tet(A):tetR(A)::TnAs1:TEM-1:: | Klebsiella pneumoniae strain 20130907-4 plasmid p309074-1FIIK complete sequence (MN842293.1) |
Isolate ID | Contig | Virulence and MGE | Plasmid/Chromosomal Sequence with Closest Nucleotide Homology (Accession Number) |
---|---|---|---|
A1-10-R8 | 30 | :ireA:IS256:IS3:: | Escherichia coli strain Ecol_AZ159, complete genome (CP019008.1) |
A2-4-R2 | 28 | ::::eilA:::IntI2 | No significant similarity found |
B5-3-R8 | 44 | IS3 family transposase::tsh::IS3 family transposase:IS30-like element IS30 family transposase:IS3 family transposase | Escherichia coli strain CVM N55972 plasmid pN55972-1, complete sequence (CP043759.1) |
CR2-3 | 36 | ISAs1 family transposase:::gadC | Escherichia coli strain CVM N18EC0432 chromosome, complete genome (CP048290.1) |
CS4-4 | 19 | ::gadC::::IS200/IS605 family transposase | No significant similarity found |
H-1-1 | 29 | ::gadx::gadE::::IS5-like element ISKpn26 family transposase:: | Escherichia coli strain HS30-1 chromosome, complete genome (CP029492.1) |
H2(12) | 109 | ::::IS110 family transposase::ISL3 family transposase:IS30-like element IS30 family transposase::tsh | Escherichia coli strain 14EC001 chromosome, complete genome (CP024127.1) |
T3-9- | :gad:::ISAs1:: | No significant similarity found | |
TA3-1 | 66 | :stb:IS3 family transposase | Escherichia coli strain RHB38-C13 plasmid pRHB38-C13_2, complete sequence (CP055625.1) |
69 | ::IS1 family transposase:ISAs1 family transposase::::gad: | Escherichia coli strain EC11 chromosome, complete genome (CP027255.1) | |
TB3-2 | :gad:::ISAs1-like element ISEc1 family transposase | Escherichia coli strain LD27-1 chromosome, complete genome(CP047594.1) | |
TB3-10 | 660 | IS3 family transposase:capU:virK:IS30 family transposase | Escherichia coli strain G4/9 chromosome, complete genome (CP060073.1) |
W5-R4 | terC::IS21 family transposase | Escherichia coli PCN061, complete genome (CP006636.1) | |
WB1-1-R8 | 12 | ::gad:::IS605 family transposase | Escherichia coli strain 2 HS-C chromosome, complete genome (CP038180.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, S.E.; Bester, L.A.; Abia, A.L.K.; Allam, M.; Ismail, A.; Essack, S.Y.; Amoako, D.G. Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach. Antibiotics 2025, 14, 446. https://doi.org/10.3390/antibiotics14050446
Abdalla SE, Bester LA, Abia ALK, Allam M, Ismail A, Essack SY, Amoako DG. Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach. Antibiotics. 2025; 14(5):446. https://doi.org/10.3390/antibiotics14050446
Chicago/Turabian StyleAbdalla, Shima E., Linda A. Bester, Akebe L. K. Abia, Mushal Allam, Arshad Ismail, Sabiha Y. Essack, and Daniel G. Amoako. 2025. "Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach" Antibiotics 14, no. 5: 446. https://doi.org/10.3390/antibiotics14050446
APA StyleAbdalla, S. E., Bester, L. A., Abia, A. L. K., Allam, M., Ismail, A., Essack, S. Y., & Amoako, D. G. (2025). Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using ‘Farm-to-Fork’ Approach. Antibiotics, 14(5), 446. https://doi.org/10.3390/antibiotics14050446