Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = repair welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 246
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 232
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

20 pages, 54673 KiB  
Article
Mechanical Properties of Repaired Welded Pipe Joints Made of Heat-Resistant Steel P92
by Filip Vučetić, Branislav Đorđević, Dorin Radu, Stefan Dikić, Lazar Jeremić, Nikola Milovanović and Aleksandar Sedmak
Materials 2025, 18(12), 2908; https://doi.org/10.3390/ma18122908 - 19 Jun 2025
Viewed by 390
Abstract
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, [...] Read more.
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, and post-weld heat treatment (PWHT), with a particular emphasis on the metallurgical consequences arising from the application of repair welding thermal cycles. Through the analysis of three welding probes—initially welded pipes using the PF (vertical upwards) and PC (horizontal–vertical) welding positions, and a PF-welded pipe undergoing a simulated repair welding (also in the PF position)—the research compares microstructure in the parent material (PM), weld metal (WM), and heat-affected zone (HAZ). Recognizing the practical limitations and challenges associated with achieving complete removal of the original WM under the limited (in-field) repair welding, this study provides a comprehensive comparative analysis of uniaxial tensile properties, impact toughness evaluated via Charpy V-notch testing, and microhardness measurements conducted at room temperature. Furthermore, the research critically analyzes the influence of the complex thermal cycles experienced during both the initial welding and repair welding procedures to elucidate the practical application limits of this high-alloyed, heat-resistant P92 steel in demanding service conditions. Full article
Show Figures

Figure 1

27 pages, 9265 KiB  
Article
Seismic Behavior and Resilience of an Endplate Rigid Connection for Circular Concrete-Filled Steel Tube Columns
by Yu Gao, Peilin Zhu, Junping Liu and Feng Lou
Buildings 2025, 15(12), 2035; https://doi.org/10.3390/buildings15122035 - 13 Jun 2025
Viewed by 472
Abstract
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite [...] Read more.
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite element (FE) simulations. This study aims to address several engineering challenges commonly observed in existing joint configurations, including an irrational force-resisting mechanism, complicated detailing and installation, on-site construction difficulties, constraints on beam size, and limited repairability. By optimizing the force transfer path, the new joint effectively reduces the number of critical tension welds, thereby enhancing the ductility and reliability. The experimental results indicate that the joint exhibits adequate flexural strength, stiffness, and ductility, with stable moment–rotation hysteresis loops under cyclic loading. Moreover, full restoration of the joint can be achieved by replacing only the steel beam and endplate, facilitating post-earthquake repair. FE analysis reveals that, under the ultimate bending moment at the beam end, multiple through cracks develop in the high-strength grout—which serves as a key load-transferring component—and significant debonding occurs between the grout and the surrounding steel members. However, due to confinement from adjacent components, these internal cracks do not compromise the overall strength and stiffness of the joint. This research provides an efficient and practical connection solution, along with valuable experimental insights, for the application of CCFT columns in moment-resisting frames located in high seismic zones. Full article
Show Figures

Figure 1

16 pages, 4408 KiB  
Article
Evaluation of Adhesive Seams of High-Density Polyethylene Geomembrane Subjected to Wetting and Freeze-Thaw Cycles
by Xianlei Zhang, Jialong Zhai, Yuan Tang and Yunyun Wu
Materials 2025, 18(10), 2368; https://doi.org/10.3390/ma18102368 - 20 May 2025
Viewed by 482
Abstract
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the [...] Read more.
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the structure, extrusion welding often results in damage at the seams. The bonding method, which has lower requirements for construction conditions, has emerged as a currently viable alternative seaming technique. Bonding techniques are widely applied in small reservoirs and embankments. This study investigates the performance of high-density polyethylene (HDPE) GMB seams bonded using asphalt-based adhesive (ABA) and non-asphalt-based adhesive (NABA). Seam tensile tests were conducted under wetting and freeze-thaw cycles (FTCs) conditions to evaluate the mechanical properties of the seamed GMBs. The results indicated that the seam strength of specimens bonded with ABA increased as wetting time and FTCs increased (with a maximum increase of 113.8%). In contrast, specimens bonded with NABA exhibited decreased seam strength under similar conditions (with a maximum decrease of 93.4%). Both types of specimens exhibited enhanced seam strength with increasing seam width. Due to wetting and FTCs, the seam efficiency of NABA-bonded specimens decreased, while that of ABA-bonded specimens showed slight improvement. However, the improved seam efficiency remained below 1.2%, an extremely small value. The axial tensile strength of bonded specimens was significantly lower than that of seamless specimens, failing to fulfill long-term safety operation requirements. Therefore, bonding method should be used cautiously at non-critical structural components where the welding is impractical but repair and replacement are relatively simple. The findings provide insight for GMB installers and design engineers in order to improve the performance of HDPE GMB seams. Full article
Show Figures

Figure 1

15 pages, 15656 KiB  
Article
Oxidation of the Alloy Based on the Intermetallic Phase FeAl in the Temperature Range of 700–1000 °C in Air and Possibilities of Practical Application
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor and Andrzej Swinarew
Materials 2025, 18(8), 1835; https://doi.org/10.3390/ma18081835 - 16 Apr 2025
Viewed by 465
Abstract
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology [...] Read more.
The paper presents the results of oxidation tests on the alloy based on the intermetallic phase, Fe40Al5Cr0.2TiB, in the air at 700–1000 °C temperature. The kinetics of corrosion processes were determined, the surface condition after oxidation was assessed, and the type and morphology of the oxides formed were determined. In addition, the paper presents the possibility of applying the technology of surfacing Fe40Al5Cr0.2TiB alloy on the surface of steel grade S235JR as a protective coating that is resistant to high temperatures. The process was carried out using the TIG method by direct current (DC). After the surfacing, the structure of the surfacing weld made of the tested material on the base of structural steel grade S235JR was determined. It was found that a protective Al2O3 oxide layer is formed on the surface of the oxidized alloy based on the intermetallic phase from the FeAl system, and the oxidation kinetics have a parabolic course. Moreover, it was found that the morphology of the oxides formed on the surface varies depending on the oxidation temperature, which clearly indicates a different mechanism of oxide layer formation. The formation of a stable α-Al2O3 oxide variety on the surface of the Fe40Al5Cr0.2TiB alloy protects the material from further corrosion, which favors the application of this alloy on structures and fittings operating at elevated temperatures. The aim of the research was to use the Fe40Al5Cr0.2TiB alloy with very good oxidation resistance as a layer overlay on ordinary quality S235JR steel. In this way, conditions were created that fundamentally changed the surface condition (structure and physicochemical properties) of the system: steel as a substrate—intermetallic phase Fe40Al5Cr0.2TiB as a surfacing layer, in order to increase resistance to high-temperature corrosion and erosion (in the environment of gases and solid impurities in gases) often occurring in corrosive environments, especially in the power industry (boilers, pipes, installation elbows) and the chemical industry (fittings). At the same time, the surfacing method used is one of the cheapest methods of changing the surface properties of the material and regenerating or repairing the native material with a material with better properties, especially for applications in high-temperature corrosion conditions. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

18 pages, 11654 KiB  
Article
Analysis of the Fracture and the Repair of the Screw Spindle of a Friction Screw Press
by Rade Vasiljević and Dragan Pantelić
Machines 2025, 13(4), 309; https://doi.org/10.3390/machines13040309 - 10 Apr 2025
Viewed by 538
Abstract
The drive mechanism of a friction screw press consists of a screw transmission, a friction transmission and a belt transmission. Improper maintenance and axial misalignment of the screw spindle and the press are the main possible causes of screw spindle failure. The causes [...] Read more.
The drive mechanism of a friction screw press consists of a screw transmission, a friction transmission and a belt transmission. Improper maintenance and axial misalignment of the screw spindle and the press are the main possible causes of screw spindle failure. The causes of the screw spindle fracture are investigated in the first part of this paper. A visual examination of the screw spindle is carried out in the first step. In the second step, the chemical composition and mechanical properties of the material from which the screw spindle of the drive mechanism is made are experimentally examined, and a metallographic examination of the fracture surfaces on the screw spindle is carried out using an electronic microscope. In the second part of this paper, the effects of screw spindle disturbances on the fracture are analyzed by applying the finite element method. The third part of this paper shows how the problem of repairing the damaged screw spindle of the drive mechanism of the friction screw press is solved. Firstly, the repair solution is described. Then, a safety check of the welded joint is presented. The final part refers to the techno-economic justification of the performed repair of the screw spindle. The obtained research results are important because the same problems or similar problems could appear in machine elements of various types of machine tools. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

11 pages, 14848 KiB  
Article
A Comparative Study of Arc Welding and Laser Welding for the Fabrication and Repair of Multi-Layer Hydro Plant Bellows
by Lichao Cao, Kaiming Lv, Zhengjun Liu, Guoying Tu, Yi Zhang, Han Hu, Zirui Yang, Huikang Wang, Hao Zhang and Guijun Bi
Appl. Sci. 2025, 15(6), 3387; https://doi.org/10.3390/app15063387 - 20 Mar 2025
Viewed by 645
Abstract
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to [...] Read more.
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to the defects of pores and insufficient fusion when fabricating or repairing such bellows. Precise laser welding with a high energy density and a low heat input has the potential to join multi-layer bellows in a high-quality manner. In this study, a comparative investigation was conducted on the arc welding and laser welding of multi-layer 316L stainless steel sheets and B610CF high-strength steel plates regarding the weld quality, microstructure and tensile properties. The results show that laser-welded joints produced a narrower heat-affected zone and a full weld without visible defects. Compared with arc welding, laser welding had more equiaxed grain regions in the fusion zone and a homogeneous elemental distribution in the heat-affected zone. This led to a more reliable welded joint using laser welding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

13 pages, 5305 KiB  
Article
Applicability of Hf-Free 247LC as a Filler Metal for Hot Crack-Free 247LC Superalloy Welds Assisted by Varestraint Testing
by Seong-Jin Lee and Eun-Joon Chun
Materials 2025, 18(6), 1284; https://doi.org/10.3390/ma18061284 - 14 Mar 2025
Viewed by 528
Abstract
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, [...] Read more.
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, namely Hf-free and B-free 247LC superalloy welds, by individually removing Hf and B and performing a spot-Varestraint test. As a result, the liquation cracking temperature range (LCTR) of B-free 247LC was 370 K and 230 K for Hf-free 247LC. The results indicated a significant reduction in the liquation cracking temperature range (LCTR) to 230 K for the Hf-free alloy, from 620 K for the Hf-containing standard 247LC alloy. Direct microstructural analysis of the liquation cracking surfaces revealed a higher liquation initiation temperature at the γ/MC interface in the Hf-free alloy, ranging from 1460 to 1600 K, compared to that of the original 247LC alloy composition, which contributed to the reduced LCTR. These findings indicate that Hf-free 247LC superalloys offer enhanced weldability—particularly for manufacturing and repairing critical components of tools with high-temperature applications, such as gas-turbine blades. Finally, assuming the Hf-free 247LC alloy as a filler metal and the original 247LC alloy composition as a base metal, double square groove welding was performed. This clearly confirmed the possibility of hot crack-free welding with Hf-free 247LC filler metal, effectively suppressing both liquation and solidification cracking simultaneously. Full article
Show Figures

Figure 1

24 pages, 17505 KiB  
Article
Bayesian Updating of Fatigue Crack Growth Parameters for Failure Prognosis of Miter Gates
by Anita Brown, Brian Eick, Travis Fillmore and Hai Nguyen
Materials 2025, 18(5), 1172; https://doi.org/10.3390/ma18051172 - 6 Mar 2025
Viewed by 898
Abstract
Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often [...] Read more.
Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often experience fatigue cracking due to their loading and welded connections. Repairing every crack can lead to excessive miter gate downtime and serious economic impacts. However, if the rate of crack growth is shown to be sufficiently slow, e.g., using Paris’ law, immediate repairs may be deemed unnecessary, and this downtime can be avoided. Paris’ law is often obtained from laboratory testing with detailed crack measurements of specimens with relatively simple geometry. However, Paris’ law parameters for an in situ structure will likely deviate from those predicted from physical testing due to variations in loading and materials and a far more complicated geometry. To improve Paris’ law parameter prediction, this research proposes a framework that utilizes (1) convenient vision-based tracking of crack evolution both in the laboratory and the field and (2) numerical model estimation of stress intensity factors (SIFs). This study’s methodology provides an efficient tool for Paris’ law parameter prediction that can be updated as more data become available through vision-based monitoring and provide actionable information about the criticality of existing cracks. Full article
(This article belongs to the Special Issue Evaluation of Fatigue and Creep-Fatigue Damage of Steel)
Show Figures

Figure 1

15 pages, 9430 KiB  
Article
Marine Environment Effect on Welded Additively Manufactured Stainless Steel AISI 316L
by Goran Vukelic, Benjamin Mihaljec and Špiro Ivošević
J. Mar. Sci. Eng. 2025, 13(3), 459; https://doi.org/10.3390/jmse13030459 - 27 Feb 2025
Cited by 1 | Viewed by 648
Abstract
This experimental study deals with the effect of the natural marine environment in the Adriatic Sea on the properties of the welded additively manufactured stainless steel AISI 316L. The welding of additively manufactured materials is of special interest to the maritime industry, which [...] Read more.
This experimental study deals with the effect of the natural marine environment in the Adriatic Sea on the properties of the welded additively manufactured stainless steel AISI 316L. The welding of additively manufactured materials is of special interest to the maritime industry, which is seeking to introduce additive manufacturing technology in the repair and maintenance of ships and offshore installations. Three types of welded specimens were tested: a combination of two additively manufactured parts, a combination of additively manufactured and conventionally manufactured parts, and, for reference, a combination of two conventionally manufactured parts. The specimens were submerged below the sea for one, three, and six months. Once extracted, the specimens were tested for changes in mass, tensile strength, and surface morphology. The results show better behaviour of conventionally manufactured steel in the primary periods of exposure in terms of regaining tensile strength. EDS scans show the apparent influence of the sea, underlining the importance of conducting such experiments in the natural marine environment. The research highlights include exposure to the natural marine environment for prolonged periods and testing different additively and conventionally welded steel AISI 316L configurations. Full article
(This article belongs to the Special Issue Structural Analysis and Failure Prevention in Offshore Engineering)
Show Figures

Figure 1

13 pages, 8297 KiB  
Article
The Impact of Weld Repairs on the Microstructure and Mechanical Integrity of X80 Pipelines in Oil and Gas Transmission
by Lifeng Li, Lixia Zhu, Xiangzhen Yan, Haidong Jia, Shuyi Xie and Yangfan Zou
Processes 2025, 13(2), 512; https://doi.org/10.3390/pr13020512 - 12 Feb 2025
Cited by 3 | Viewed by 633
Abstract
The integrity of oil and gas pipelines is critical to energy transportation and has significant implications for national energy security. This study employs finite-element numerical simulation to investigate the impact of multiple repairs on the microstructure and mechanical integrity of X80 pipeline girth [...] Read more.
The integrity of oil and gas pipelines is critical to energy transportation and has significant implications for national energy security. This study employs finite-element numerical simulation to investigate the impact of multiple repairs on the microstructure and mechanical integrity of X80 pipeline girth welds. The effects of varying repair iterations on the microstructure, toughness, and loading capacity of high-strength steel pipes were analyzed. The results revealed that the microstructure of the welded joint remained unchanged across different repair instances, but the toughness, optimized by welding heat input, diminished after three repairs due to grain growth from repeated thermal cycles. Specifically, the impact toughness of the welding line, fusion line, and adjacent areas decreased significantly after three repairs, with the toughness of the welding line dropping to 25 J and the fusion line dropping to 30 J. The hardness of the welded joint decreased with repairs, and the dispersion of hardness increased. The average hardness at the welding line decreased from 25 HV to 20 HV after three repairs. Residual stress in the repaired girth weld was highest in the filling welding layer, increasing with the number of repairs. The loading capacity of the girth weld significantly decreased after the first repair (by 12.1%) and continued to decrease with additional repairs (15.3% after the second repair and 16.7% after the third repair). It is concluded that X80 pipeline girth welds should be repaired no more than twice to maintain optimal structural integrity. Full article
Show Figures

Figure 1

25 pages, 13746 KiB  
Article
Analysis of the Wear Mechanism and the Influence of the Chemical Composition and Repair Welds of the Pig Iron Wagon Wheels
by Janusz Krawczyk, Łukasz Frocisz and Piotr Matusiewicz
Lubricants 2025, 13(2), 79; https://doi.org/10.3390/lubricants13020079 - 11 Feb 2025
Viewed by 868
Abstract
The aim of the present study was to develop a concept for the inverse analysis of wear mechanisms in cast steel wheels of a pig iron wagon after long-term operation. Samples were taken from the flange and the tread edge area of fourteen [...] Read more.
The aim of the present study was to develop a concept for the inverse analysis of wear mechanisms in cast steel wheels of a pig iron wagon after long-term operation. Samples were taken from the flange and the tread edge area of fourteen wheels. The impact of wheel parameters and repair methods on their wear was assessed. An analysis was carried out to determine whether welds were made as part of casting correction or as repair welds. Changes in the microstructure of the weld area, the heat-affected zone, and the parent material resulting from operation were determined. The main wear mechanism in the area of the welds and the parent material is the plastic flow of the material resulting from high unit pressures. The hardness of the material is found to be contingent upon its chemical composition, the microstructural components, and the degree of plastic deformation resulting from wear (it has been established that increasing alloying results in increased hardness; a comparable effect is observed in the formation of non-equilibrium structures (bainite)). The increase in hardness is attributed to strain hardening, a consequence of exploitation. Research and analytical methods have been developed to differentiate the results of repair processes for wear effects in a highly loaded friction node with non-stationary lubrication conditions from repair processes applied to castings of large structural components. Full article
(This article belongs to the Special Issue Tribology in Vehicles)
Show Figures

Figure 1

29 pages, 28581 KiB  
Review
Peening Techniques for Mitigating Chlorine-Induced Stress Corrosion Cracking of Dry Storage Canisters for Nuclear Applications
by Subin Antony Jose, Merbin John, Manoranjan Misra and Pradeep L. Menezes
Materials 2025, 18(2), 438; https://doi.org/10.3390/ma18020438 - 18 Jan 2025
Cited by 3 | Viewed by 910
Abstract
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear [...] Read more.
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors. The CISCC failure leads to nuclear radiation leakage. Therefore, there is a critical need to enhance the CISCC resistance of DSC weld joints using promising repair techniques. This review article encapsulates the current state-of-the-art of peening techniques for mitigating the CISCC in DSCs. More specifically, conventional shot peening (CSP), ultrasonic impact peening (UIP), and laser shock peening (LSP) were elucidated with a focus on CISCC mitigation. The underlying mechanism of CISCC mitigation in each process was summarized. Finally, this review provides recent advances in surface modification techniques, repair techniques, and developments in welding techniques for CISCC mitigation in DSCs. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

31 pages, 6199 KiB  
Review
Conventional Thermoset Composites and Their Sustainable Alternatives with Vitrimer Matrix—Waste Management/Recycling Options with Focus on Carbon Fiber Reinforced Epoxy Resin Composites
by Paraskevi Markouti, Evanthia Tzouma, Alkiviadis S. Paipetis and Nektaria-Marianthi Barkoula
Materials 2025, 18(2), 351; https://doi.org/10.3390/ma18020351 - 14 Jan 2025
Viewed by 1873
Abstract
Carbon-fiber-reinforced polymers (CFRPs) with epoxy matrices are widely applied in high-performance structural applications and represent one of the biggest classes of materials with urgent need for end-of-life management. Available waste management methodologies for conventional thermoset composites with a focus on CFRPs are briefly [...] Read more.
Carbon-fiber-reinforced polymers (CFRPs) with epoxy matrices are widely applied in high-performance structural applications and represent one of the biggest classes of materials with urgent need for end-of-life management. Available waste management methodologies for conventional thermoset composites with a focus on CFRPs are briefly reviewed and their limitations are highlighted. In the quest to obtain materials with mechanical performance, thermal stability, and sustainability, the research community has turned its interest to develop polymer composites with adaptable and dynamic networks in their matrix, and lately also at an interface/interphase level. The current review focuses on the life extension/waste management options that are opened through the introduction of covalent adaptable networks in the epoxy matrix of CFRPs. The processing conditions that are applied for the healing/repairing, welding/reshaping, and/or recycling of CFRPs are presented in detail, and compared based on the most common dynamic exchange reactions. Full article
(This article belongs to the Special Issue Advanced Resin Composites: From Synthesis to Application)
Show Figures

Figure 1

Back to TopTop