Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = renal salt wasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3581 KiB  
Article
MAGED2 Enhances Expression and Function of NCC at the Cell Surface via cAMP Signaling Under Hypoxia
by Aline Radi, Sadiq Nasrah, Michelle Auer, Aparna Renigunta, Stefanie Weber, Elie Seaayfan and Martin Kömhoff
Cells 2025, 14(3), 175; https://doi.org/10.3390/cells14030175 - 23 Jan 2025
Viewed by 1767
Abstract
Mutations in MAGED2 cause transient antenatal Bartter syndrome (tBS) characterized by excessive amounts of amniotic fluid due to impaired renal salt transport via NKCC2 and NCC, high perinatal mortality, and pre-term birth. Surprisingly, renal salt handling completely normalizes after birth. Previously, we demonstrated [...] Read more.
Mutations in MAGED2 cause transient antenatal Bartter syndrome (tBS) characterized by excessive amounts of amniotic fluid due to impaired renal salt transport via NKCC2 and NCC, high perinatal mortality, and pre-term birth. Surprisingly, renal salt handling completely normalizes after birth. Previously, we demonstrated that, under hypoxic conditions, MAGED2 depletion enhances endocytosis of GalphaS (Gαs), reducing adenylate cyclase (AC) activation and cAMP production. This impaired cAMP signaling likely contributes to the dysfunction of salt transporters NKCC2 and NCC, explaining salt wasting and the subsequent recovery with renal oxygenation after birth. In this study, we show that MAGED2 depletion significantly decreases both total cellular and plasma membrane NCC expression and activity. We further demonstrate that MAGED2 depletion disrupts NCC trafficking by reducing exocytosis, increasing endocytosis, and promoting lysosomal degradation via enhanced ubiquitination. Additionally, forskolin (FSK), which increases cAMP production by activating AC, rescues NCC expression and localization in MAGED2-depleted cells. Conversely, MAGED2 overexpression increases NCC expression and membrane localization, although this effect is diminished in Gαs-depleted cells, indicating that Gαs acts downstream of MAGED2. In summary, our findings reveal the essential role of MAGED2 in regulating NCC function and trafficking under hypoxic conditions, providing new insights into the mechanisms behind salt loss in tBS and identifying potential therapeutic targets. Full article
(This article belongs to the Special Issue Kidney Disease Models, Cellular Mechanism and Potential Treatment)
Show Figures

Graphical abstract

15 pages, 2471 KiB  
Review
Haptoglobin-Related Protein without Signal Peptide as Biomarker of Renal Salt Wasting in Hyponatremia, Hyponatremia-Related Diseases and as New Syndrome in Alzheimer’s Disease
by John K. Maesaka, Louis J. Imbriano, Candace Grant and Nobuyuki Miyawaki
Biomolecules 2023, 13(4), 638; https://doi.org/10.3390/biom13040638 - 1 Apr 2023
Cited by 1 | Viewed by 2445
Abstract
The application of pathophysiologic tenets has created significant changes in our approach to hyponatremia and hyponatremia-related conditions. This new approach incorporated the determination of fractional excretion (FE) of urate before and after the correction of hyponatremia and the response to isotonic saline infusion [...] Read more.
The application of pathophysiologic tenets has created significant changes in our approach to hyponatremia and hyponatremia-related conditions. This new approach incorporated the determination of fractional excretion (FE) of urate before and after the correction of hyponatremia and the response to isotonic saline infusion to differentiate the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) from renal salt wasting (RSW). FEurate simplified the identification of the different causes of hyponatremia, especially the diagnosis of a reset osmostat and Addison’s disease. Differentiating SIADH from RSW has been extremely difficult because both syndromes present with identical clinical parameters, which could be overcome by successfully carrying out the difficult protocol of this new approach. A study of 62 hyponatremic patients from the general medical wards of the hospital identified 17 (27%) to have SIADH, 19 (31%) with reset osmostat, and 24 (38%) with RSW with 21 of these RSW patients presenting without clinical evidence of cerebral disease to warrant changing the nomenclature from cerebral to renal salt wasting. The natriuretic activity found in the plasma of 21 and 18 patients with neurosurgical and Alzheimer’s disease, respectively, was later identified as haptoglobin-related protein without signal peptide (HPRWSP). The high prevalence of RSW creates a therapeutic dilemma of deciding whether to water-restrict water-logged patients with SIADH as compared to administering saline to volume-depleted patients with RSW. Future studies will hopefully achieve the following: 1. Abandon the ineffective volume approach; 2. Develop HPRWSP as a biomarker to identify hyponatremic and a projected large number of normonatremic patients at risk of developing RSW, including Alzheimer’s disease; 3. Facilitate differentiating SIADH from RSW on the first encounter and improve clinical outcomes. Full article
(This article belongs to the Special Issue Biomarkers in Renal Diseases)
Show Figures

Figure 1

11 pages, 1625 KiB  
Opinion
Hyponatremia Associated with Congestive Heart Failure: Involvement of Vasopressin and Efficacy of Vasopressin Receptor Antagonists
by San-e Ishikawa and Hiroshi Funayama
J. Clin. Med. 2023, 12(4), 1482; https://doi.org/10.3390/jcm12041482 - 13 Feb 2023
Cited by 5 | Viewed by 3668
Abstract
Hyponatremia is frequently found in patients with congestive heart failure. A reduction in effective circulatory blood volume in a volume-expanded patient with decreased cardiac output is linked to a baroreceptor-mediated non-osmotic release of arginine vasopressin (AVP). The increased production of AVP and salt [...] Read more.
Hyponatremia is frequently found in patients with congestive heart failure. A reduction in effective circulatory blood volume in a volume-expanded patient with decreased cardiac output is linked to a baroreceptor-mediated non-osmotic release of arginine vasopressin (AVP). The increased production of AVP and salt and water retention in the proximal and distal tubules of the kidney by humoral, hemodynamic, and neural mechanisms increase circulatory blood volume and contribute to hyponatremia. Recent studies have indicated that hyponatremia predicts the short-term and long-term prognosis of heart failure by increasing cardiac death and rehospitalization. In addition, the early development of hyponatremia in acute myocardial infarction also predicts the long-term prognosis of worsening heart failure. AVP V2 receptor antagonism may relieve water retention, but it is unknown whether the V2 receptor inhibitor, tolvaptan, improves the long-term prognosis of congestive heart failure. The newly identified natriuretic factor in renal salt wasting has the potential of improving clinical outcomes when combined with a distal diuretic. Full article
(This article belongs to the Special Issue Clinical Management of Hyponatremia)
Show Figures

Figure 1

14 pages, 1186 KiB  
Review
Modus operandi of ClC-K2 Cl Channel in the Collecting Duct Intercalated Cells
by Anna Stavniichuk, Kyrylo Pyrshev, Viktor N. Tomilin, Mariya Kordysh, Oleg Zaika and Oleh Pochynyuk
Biomolecules 2023, 13(1), 177; https://doi.org/10.3390/biom13010177 - 14 Jan 2023
Cited by 3 | Viewed by 4065
Abstract
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water–electrolyte homeostasis, acid–base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl-permeable channel expressed on the basolateral membrane [...] Read more.
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water–electrolyte homeostasis, acid–base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl-permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters’ syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters’ syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl intake and maintaining systemic acid–base homeostasis. Full article
(This article belongs to the Special Issue Featured Papers in Ion Channels Diseases)
Show Figures

Figure 1

23 pages, 2206 KiB  
Review
Sodium Homeostasis, a Balance Necessary for Life
by Antonio Bernal, María A. Zafra, María J. Simón and Javier Mahía
Nutrients 2023, 15(2), 395; https://doi.org/10.3390/nu15020395 - 12 Jan 2023
Cited by 48 | Viewed by 12259
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral [...] Read more.
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin–angiotensin–aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis. Full article
(This article belongs to the Special Issue Salt Appetite and Diet)
Show Figures

Figure 1

7 pages, 334 KiB  
Article
Normonatremic Transient Renal Salt Wasting (TRSW) Is Not Rare in a Department of Internal Medicine
by Wim Musch and Guy Decaux
J. Clin. Med. 2023, 12(2), 397; https://doi.org/10.3390/jcm12020397 - 4 Jan 2023
Viewed by 2080
Abstract
Background: We previously reported that for around 5% of patients hospitalized with hyponatremia, it was related to what is called “transient renal salt wasting” (TRSW). In the present study we ask whether TRSW can also be observed in patients without hyponatremia. Methods: In [...] Read more.
Background: We previously reported that for around 5% of patients hospitalized with hyponatremia, it was related to what is called “transient renal salt wasting” (TRSW). In the present study we ask whether TRSW can also be observed in patients without hyponatremia. Methods: In this observational retrospective study we analyze the urine solute excretion of 200 consecutive normonatremic patients with normal kidney function and admitted in our department over one year. Patients were selected for analyses of FE.K, UCa/UCr and FE.PO4 if FE.Na was higher than 2% (N < 1.6%) before any treatment, and only if they were not taking diuretics. Result: Eleven normonatremic patients presented with transient high FE.Na > 2% on admission (2.9 ± 0.6% with a high FE.K of 28 ± 6.4%; a high UCa/UCr of 0.37 ± 0.13 and a high FE.PO4 of 23.2 ± 9.6%). All of these patients were elderly. Seven were female and four were male. Neurological disorders were observed in six patients (three strokes, one transient ischemic attack, one syncope and one epileptic attack). Heart problems were observed in three patients (all angina pectoris, two of which also had HBP). One patient presented with rectal bleeding with HBP, and another presented COPD with a pneumothorax. One patient with angina pectoris showed a transient relapse after four days of hospitalization (FE.Na 3.6%). The urine electrolyte excretion in these patients are similar to those observed after furosemide intake. Conclusion: Normonatremic TRSW is not a rare observation, particularly in patients with neurological or cardiac problems. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

13 pages, 1580 KiB  
Review
New Approach to Hyponatremia: High Prevalence of Cerebral/Renal Salt Wasting, Identification of Natriuretic Protein That Causes Salt Wasting
by John K. Maesaka, Louis J. Imbriano, Candace Grant and Nobuyuki Miyawaki
J. Clin. Med. 2022, 11(24), 7445; https://doi.org/10.3390/jcm11247445 - 15 Dec 2022
Cited by 7 | Viewed by 6960
Abstract
Our understanding of hyponatremic conditions has undergone major alterations. There is a tendency to treat all patients with hyponatremia because of common subtle symptoms that include unsteady gait that lead to increased falls and bone fractures and can progress to mental confusion, irritability, [...] Read more.
Our understanding of hyponatremic conditions has undergone major alterations. There is a tendency to treat all patients with hyponatremia because of common subtle symptoms that include unsteady gait that lead to increased falls and bone fractures and can progress to mental confusion, irritability, seizures, coma and even death. We describe a new approach that is superior to the ineffectual volume approach. Determination of fractional excretion (FE) of urate has simplified the diagnosis of a reset osmostat, Addison’s disease, edematous causes such as congestive heart failure, cirrhosis and nephrosis, volume depletion from extrarenal salt losses with normal renal tubular function and the difficult task of differentiating the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) from cerebral/renal salt wasting (C/RSW). SIADH and C/RSW have identical clinical and laboratory parameters but have diametrically opposite therapeutic goals of water-restricting water-loaded patients with SIADH or administering salt water to dehydrated patients with C/RSW. In a study of nonedematous patients with hyponatremia, we utilized FEurate and response to isotonic saline infusions to differentiate SIADH from C/RSW. Twenty-four (38%) of 62 hyponatremic patients had C/RSW with 21 having no clinical evidence of cerebral disease to support our important proposal to change cerebral to renal salt wasting (RSW). Seventeen (27%) had SIADH and 19 (31%) had a reset osmostat. One each from hydrochlorothiazide and Addison’s disease. We demonstrated natriuretic activity in the plasma of patients with neurosurgical and Alzheimer diseases (AD) in rat clearance studies and have now identified the natriuretic protein to be haptoglobin related protein without signal peptide (HPRWSP). We introduce a new syndrome of RSW in AD that needs further confirmation. Future studies intend to develop HPRWSP as a biomarker to simplify the diagnosis of RSW in hyponatremic and normonatremic patients and explore other clinical applications that can improve clinical outcomes. Full article
(This article belongs to the Special Issue Clinical Management of Hyponatremia)
Show Figures

Figure 1

14 pages, 1238 KiB  
Review
Altered Serum Uric Acid Levels in Kidney Disorders
by Gheun-Ho Kim and Jae-Bum Jun
Life 2022, 12(11), 1891; https://doi.org/10.3390/life12111891 - 15 Nov 2022
Cited by 20 | Viewed by 9182
Abstract
Serum uric acid levels are altered by kidney disorders because the kidneys play a dominant role in uric acid excretion. Here, major kidney disorders which accompany hyperuricemia or hypouricemia, including their pathophysiology, are discussed. Chronic kidney disease (CKD) and hyperuricemia are frequently associated, [...] Read more.
Serum uric acid levels are altered by kidney disorders because the kidneys play a dominant role in uric acid excretion. Here, major kidney disorders which accompany hyperuricemia or hypouricemia, including their pathophysiology, are discussed. Chronic kidney disease (CKD) and hyperuricemia are frequently associated, but recent clinical trials have not supported the pathogenic roles of hyperuricemia in CKD incidence and progression. Diabetes mellitus (DM) is often associated with hyperuricemia, and hyperuricemia may be associated with an increased risk of diabetic kidney disease in patients with type 2 DM. Sodium-glucose cotransporter 2 inhibitors have a uricosuric effect and can relieve hyperuricemia in DM. Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an important hereditary kidney disease, mainly caused by mutations of uromodulin (UMOD) or mucin-1 (MUC-1). Hyperuricemia and gout are the major clinical manifestations of ADTKD-UMOD and ADTKD-MUC1. Renal hypouricemia is caused by URAT1 or GLUT9 loss-of-function mutations and renders patients susceptible to exercise-induced acute kidney injury, probably because of excessive urinary uric acid excretion. Hypouricemia derived from renal uric acid wasting is a component of Fanconi syndrome, which can be hereditary or acquired. During treatment for human immunodeficiency virus, hepatitis B or cytomegalovirus, tenofovir, adefovir, and cidofovir may cause drug-induced renal Fanconi syndrome. In coronavirus disease 2019, hypouricemia due to proximal tubular injury is related to disease severity, including respiratory failure. Finally, serum uric acid and the fractional excretion of uric acid are indicative of plasma volume status; hyperuricemia caused by the enhanced uric acid reabsorption can be induced by volume depletion, and hypouricemia caused by an increased fractional excretion of uric acid is the characteristic finding in syndromes of inappropriate anti-diuresis, cerebral/renal salt wasting, and thiazide-induced hyponatremia. Molecular mechanisms by which uric acid transport is dysregulated in volume or water balance disorders need to be investigated. Full article
(This article belongs to the Special Issue Feature Papers in Medical Research)
Show Figures

Figure 1

16 pages, 2905 KiB  
Article
MAGED2 Is Required under Hypoxia for cAMP Signaling by Inhibiting MDM2-Dependent Endocytosis of G-Alpha-S
by Elie Seaayfan, Sadiq Nasrah, Lea Quell, Maja Kleim, Stefanie Weber, Hemmo Meyer, Kamel Laghmani and Martin Kömhoff
Cells 2022, 11(16), 2546; https://doi.org/10.3390/cells11162546 - 16 Aug 2022
Cited by 11 | Viewed by 5274
Abstract
Mutations in MAGED2 cause transient Bartter syndrome characterized by severe renal salt wasting in fetuses and infants, which leads to massive polyhydramnios causing preterm labor, extreme prematurity and perinatal death. Notably, this condition resolves spontaneously in parallel with developmental increase in renal oxygenation. [...] Read more.
Mutations in MAGED2 cause transient Bartter syndrome characterized by severe renal salt wasting in fetuses and infants, which leads to massive polyhydramnios causing preterm labor, extreme prematurity and perinatal death. Notably, this condition resolves spontaneously in parallel with developmental increase in renal oxygenation. MAGED2 interacts with G-alpha-S (Gαs). Given the role of Gαs in activating adenylyl cyclase at the plasma membrane and consequently generating cAMP to promote renal salt reabsorption via protein kinase A (PKA), we hypothesized that MAGED2 is required for this signaling pathway under hypoxic conditions such as in fetuses. Consistent with that, under both physical and chemical hypoxia, knockdown of MAGED2 in renal (HEK293) and cancer (HeLa) cell culture models caused internalization of Gαs, which was fully reversible upon reoxygenation. In contrast to Gαs, cell surface expression of the β2-adrenergic receptor, which is coupled to Gαs, was not affected by MAGED2 depletion, demonstrating specific regulation of Gαs by MAGED2. Importantly, the internalization of Gαs due to MAGED2 deficiency significantly reduced cAMP generation and PKA activity. Interestingly, the internalization of Gαs was blocked by preventing its endocytosis with dynasore. Given the role of E3 ubiquitin ligases, which can be regulated by MAGE-proteins, in regulating endocytosis, we assessed the potential role of MDM2-dependent ubiquitination in MAGED2 deficiency-induced internalization of Gαs under hypoxia. Remarkably, MDM2 depletion or its chemical inhibition fully abolished Gαs-endocytosis following MAGED2 knockdown. Moreover, endocytosis of Gαs was also blocked by mutation of ubiquitin acceptor sites in Gαs. Thus, we reveal that MAGED2 is essential for the cAMP/PKA pathway under hypoxia to specifically regulate Gαs endocytosis by blocking MDM2-dependent ubiquitination of Gαs. This may explain, at least in part, the transient nature of Bartter syndrome caused by MAGED2 mutations and opens new avenues for therapy in these patients. Full article
(This article belongs to the Special Issue Cyclic AMP/PKA/Epac Signaling in Health and Disease)
Show Figures

Figure 1

5 pages, 853 KiB  
Case Report
A Neonate with Autosomal Dominant Pseudohypoaldosteronism Type 1 Due to a Novel Microdeletion of the NR3C2 Gene at 4q31.23
by Su Jin Kim, Dasom Park, Woori Jang and Juyoung Lee
Children 2021, 8(12), 1090; https://doi.org/10.3390/children8121090 - 25 Nov 2021
Cited by 3 | Viewed by 2318
Abstract
Dehydration with hyponatremia can occur from a variety of causes and can be potentially fatal to infants. Pseudohypoaldosteronism type 1 (PHA1) is a rare disease that can cause severe dehydration along with hyponatremia and hyperkalemia because of renal tubular unresponsiveness to mineralocorticoids. Autosomal [...] Read more.
Dehydration with hyponatremia can occur from a variety of causes and can be potentially fatal to infants. Pseudohypoaldosteronism type 1 (PHA1) is a rare disease that can cause severe dehydration along with hyponatremia and hyperkalemia because of renal tubular unresponsiveness to mineralocorticoids. Autosomal dominant PHA1 (ADPHA1, OMIM #177735) is caused by inactivating mutations in the NR3C2 gene, which encodes the mineralocorticoid receptor, and it can lead to renal salt-wasting, dehydration, and failure to thrive during infancy. Here, we report a case of a 20-day-old female neonate who presented as severe dehydration with hyponatremia and polyuria. We suspected that her diagnosis might be PHA1 based on markedly elevated plasma renin activity and serum aldosterone levels. For the genetic diagnosis of PHA1, we performed targeted exome sequencing of all causative genes of PHA1, but the result was negative. We confirmed by chromosomal microarray that a novel heterozygous microdeletion was found in the 4q31.23 region spanning exons 7–9 of the NR3C2 gene, and the patient was diagnosed with ADPHA1. In conclusion, our patient is a case of ADPHA1 that developed into a salt-wasting crisis in the neonatal period due to a microdeletion of the 4q31.23 region inherited from her father. Full article
(This article belongs to the Section Pediatric Nephrology & Urology)
Show Figures

Figure 1

24 pages, 12765 KiB  
Review
Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians
by Laura Nuñez-Gonzalez, Noa Carrera and Miguel A. Garcia-Gonzalez
Int. J. Mol. Sci. 2021, 22(21), 11414; https://doi.org/10.3390/ijms222111414 - 22 Oct 2021
Cited by 34 | Viewed by 13950
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both [...] Read more.
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies. Full article
Show Figures

Figure 1

10 pages, 7703 KiB  
Case Report
Autosomal Dominant Hypophosphatemic Rickets: A Case Report and Review of the Literature
by Chiara Mameli, Arianna Sangiorgio, Valeria Colombo, Mirko Gambino, Luigina Spaccini, Elisa Cattaneo and Gian Vincenzo Zuccotti
Int. J. Environ. Res. Public Health 2021, 18(16), 8771; https://doi.org/10.3390/ijerph18168771 - 19 Aug 2021
Cited by 9 | Viewed by 3707
Abstract
Autosomal dominant hypophosphatemic rickets (ADHR) is an extremely rare form of genetic rickets caused by mutations in the fibroblast growth factor 23 gene. ADHR is characterized by hypophosphatemia secondary to isolated renal phosphate wasting. Only a few cases of ADHR have been reported [...] Read more.
Autosomal dominant hypophosphatemic rickets (ADHR) is an extremely rare form of genetic rickets caused by mutations in the fibroblast growth factor 23 gene. ADHR is characterized by hypophosphatemia secondary to isolated renal phosphate wasting. Only a few cases of ADHR have been reported in the literature to date. We describe the case of a 17-month-old girl who presented with severe failure to thrive (length: −4.08 standard deviation (SD), weight: −2.2 SD) and hypotonia. Hypophosphatemia, decreased tubular phosphate reabsorption (69%), and rachitic lesions were found. Genetic analysis showed the heterozygous variant c.536G>A (NM_020638.3:c.536G>A) in exon 3 of the FGF23 gene, leading to the diagnosis of ADHR. She was treated with phosphate salts and oral alfacalcidol. After 4 years of treatment, at 5 years of age, the patient’s ADHR resolved spontaneously. Considering the lack of knowledge regarding ADHR, we reviewed the literature to describe the features of this rare and poorly understood disease. Eleven ADHR pediatric cases have been described thus far, with cases tending to be more common in females than males. Similar to the general population, two groups of patients with ADHR can be described depending on the mutations present: patients with an R179 and R176 mutation have early-onset of disease and higher frequency of rickets, and a milder and late-onset of disease, respectively. Symptoms and disease severity may fluctuate. Spontaneous remission may occur during the pediatric age. Full article
(This article belongs to the Collection Feature Papers in Children's Health)
Show Figures

Figure 1

24 pages, 1303 KiB  
Review
Hyponatremia in Patients with Hematologic Diseases
by Epameinondas Koumpis, Matilda Florentin, Eleftheria Hatzimichael and George Liamis
J. Clin. Med. 2020, 9(11), 3721; https://doi.org/10.3390/jcm9113721 - 19 Nov 2020
Cited by 13 | Viewed by 17314
Abstract
Hyponatremia is the most common electrolyte disorder in clinical practice and is associated with increased morbidity and mortality. It is frequently encountered in hematologic patients with either benign or malignant diseases. Several underlying mechanisms, such as hypovolemia, infections, toxins, renal, endocrine, cardiac, and [...] Read more.
Hyponatremia is the most common electrolyte disorder in clinical practice and is associated with increased morbidity and mortality. It is frequently encountered in hematologic patients with either benign or malignant diseases. Several underlying mechanisms, such as hypovolemia, infections, toxins, renal, endocrine, cardiac, and liver disorders, as well as the use of certain drugs appear to be involved in the development or the persistence of hyponatremia. This review describes the pathophysiology of hyponatremia and discusses thoroughly the contributing factors and mechanisms that may be encountered specifically in patients with hematologic disorders. The involvement of the syndrome of inappropriate antidiuretic hormone (SIADH) secretion and renal salt wasting syndrome (RSWS) in the development of hyponatremia in such patients, as well as their differential diagnosis and management, are also presented. Furthermore, the distinction between true hyponatremia and pseudohyponatremia is explained. Finally, a practical algorithm for the evaluation of hyponatremia in hematologic patients, as well as the principles of hyponatremia management, are included in this review. Full article
(This article belongs to the Special Issue Hyponatremia: Challenges and Solutions)
Show Figures

Figure 1

10 pages, 777 KiB  
Review
Dietary Chloride Deficiency Syndrome: Pathophysiology, History, and Systematic Literature Review
by Giulia C. Signorelli, Mario G. Bianchetti, Luca M. M. Jermini, Carlo Agostoni, Gregorio P. Milani, Giacomo D. Simonetti and Sebastiano A. G. Lava
Nutrients 2020, 12(11), 3436; https://doi.org/10.3390/nu12113436 - 9 Nov 2020
Cited by 9 | Viewed by 6195
Abstract
Metabolic alkalosis may develop as a consequence of urinary chloride (and sodium) wasting, excessive loss of salt in the sweat, or intestinal chloride wasting, among other causes. There is also a likely underrecognized association between poor salt intake and the mentioned electrolyte and [...] Read more.
Metabolic alkalosis may develop as a consequence of urinary chloride (and sodium) wasting, excessive loss of salt in the sweat, or intestinal chloride wasting, among other causes. There is also a likely underrecognized association between poor salt intake and the mentioned electrolyte and acid–base abnormality. In patients with excessive loss of salt in the sweat or poor salt intake, the maintenance of metabolic alkalosis is crucially modulated by the chloride–bicarbonate exchanger pendrin located on the renal tubular membrane of type B intercalated cells. In the late 1970s, recommendations were made to decrease the salt content of foods as part of an effort to minimize the tendency towards systemic hypertension. Hence, the baby food industry decided to remove added salt from formula milk. Some weeks later, approximately 200 infants (fed exclusively with formula milks with a chloride content of only 2–4 mmol/L), were admitted with failure to thrive, constipation, food refusal, muscular weakness, and delayed psychomotor development. The laboratory work-up disclosed metabolic alkalosis, hypokalemia, hypochloremia, and a reduced urinary chloride excretion. In all cases, both the clinical and the laboratory features remitted in ≤7 days when the infants were fed on formula milk with a normal chloride content. Since 1982, 13 further publications reported additional cases of dietary chloride depletion. It is therefore concluded that the dietary intake of chloride, which was previously considered a “mendicant” ion, plays a crucial role in acid–base and salt balance. Full article
(This article belongs to the Special Issue Influence of Nutrients on Acid-Base Balance)
Show Figures

Figure 1

9 pages, 1346 KiB  
Article
Cisplatin Decreases ENaC Activity Contributing to Renal Salt Wasting Syndrome
by Antonio G. Soares, Elena Mironova, Crystal R. Archer, Jorge Contreras, James D. Stockand and Tarek Mohamed Abd El-Aziz
Cancers 2020, 12(8), 2140; https://doi.org/10.3390/cancers12082140 - 1 Aug 2020
Cited by 10 | Viewed by 3695
Abstract
Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases [...] Read more.
Cisplatin (CDDP) is an important anticancer drug. A common side effect of CDDP is renal salt and water-wasting syndrome (RSWS). The origin of RSWS is obscure. Emerging evidence, though, suggests that broad inhibition of sodium transport proteins by CDDP may result in decreases in tubular reabsorption, causing increases in sodium and water excretion. In this sense, CDDP would be acting like a diuretic. The effect of CDDP on the epithelial Na+ channel (ENaC), which is the final arbiter fine-tuning renal Na+ excretion, is unknown. We test here whether CDDP affects ENaC to promote renal salt and water excretion. The effects of CDDP and benzamil (BZM), a blocker of ENaC, on excretion of a sodium load were quantified. Similar to BZM, CDDP facilitated renal Na+ excretion. To directly quantify the effects on ENaC, principal cells in split-open tubules were patch clamped. CDDP, at doses comparable to those used for chemotherapy (1.5 µM), significantly decreased ENaC activity in native tubules. To further elaborate on this mechanism, the dose-dependent effects of CDDP on mouse ENaC (mENaC) heterologously expressed in Chinese Hamster Ovary (CHO) cells were tested using patch clamping. As in native tubules, CDDP significantly decreased the activity of mENaC expressed in CHO cells. Dose–response curves and competition with amiloride identified CDDP as a weak inhibitor of ENaC (apparent IC50 = 1 µM) that competes with amiloride for inhibition of the channel, weakening the inhibitory actions of the latter. Such observations are consistent with CDDP being a partial modulator of ENaC, which possibly has a binding site that overlaps with that of amiloride. These findings are consistent with inhibition of ENaC by CDDP contributing to the RSWS caused by this important chemotherapy drug. Full article
(This article belongs to the Collection Drug Resistance and Novel Therapies in Cancers)
Show Figures

Figure 1

Back to TopTop