Sodium Homeostasis, a Balance Necessary for Life
Abstract
:1. Introduction
2. Behavioral Mechanism: Salt Intake
2.1. Detection and Processing in the Oral Cavity
2.2. Sodium Detection and Processing in the Gastrointestinal System
3. Central Nervous System
3.1. Circumventricular Organs and Nucleus of the Solitary Tract
3.2. Excitatory and Inhibitory Circuits
3.3. Posterior Hypothalamus in Sodium Intake Regulation
Tuberomammillary System
4. Physiological Mechanism: Kidney and Sodium Excretion
4.1. Renin–Angiotensin System
4.2. Aldosterone
4.3. Pressure Natriuresis
4.4. Sympathetic Nervous System
4.5. Cardiac Natriuretic Peptides
4.6. Antidiuretic Hormone
4.7. Oxytocin
4.8. Salt Sensitivity and Hypertension
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fessler, D.M.T. An Evolutionary Explanation of the Plasticity of Salt Preferences: Prophylaxis against Sudden Dehydration. Med. Hypotheses 2003, 61, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Leshem, M. Salt Need Needs Investigation. Br. J. Nutr. 2020, 123, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Schulkin, J. Sodium Hunger: The Search for a Salty Taste; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0-521-35368-7. [Google Scholar]
- Bie, P. Mechanisms of Sodium Balance: Total Body Sodium, Surrogate Variables, and Renal Sodium Excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R945–R962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strazzullo, P.; Leclercq, C. Sodium. Adv. Nutr. 2014, 5, 188–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbalis, J.G.; Stricker, E.M. Neuroendocrine Regulation of Fluid Intake and Homeostasis. In Neuroendocrinology in Physiology and Medicine; Conn, P.M., Freeman, M.E., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 317–334. ISBN 978-1-61737-153-0. [Google Scholar]
- Mahía, J.; Bernal, A. Animal Models for Diabetes Insipidus. Handb. Clin. Neurol. 2021, 181, 275–288. [Google Scholar] [CrossRef]
- Noda, M.; Matsuda, T. Central Regulation of Body Fluid Homeostasis. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 283–324. [Google Scholar] [CrossRef]
- Lundy, R.F. Potential Mechanisms for Functional Changes in Taste Receptor Cells Following Sodium Deficiency in Mammals. Neurosci. Biobehav. Rev. 1998, 23, 103–109. [Google Scholar] [CrossRef]
- McCaughey, S.A.; Scott, T.R. The Taste of Sodium. Neurosci. Biobehav. Rev. 1998, 22, 663–676. [Google Scholar] [CrossRef]
- Bigiani, A. Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients 2020, 12, 1195. [Google Scholar] [CrossRef]
- Diepeveen, J.; Moerdijk-Poortvliet, T.C.W.; van der Leij, F.R. Molecular Insights into Human Taste Perception and Umami Tastants: A Review. J. Food Sci. 2022, 87, 1449–1465. [Google Scholar] [CrossRef]
- Lindemann, B. Taste Reception. Physiol. Rev. 1996, 76, 719–766. [Google Scholar] [CrossRef]
- Wu, A.; Dvoryanchikov, G.; Pereira, E.; Chaudhari, N.; Roper, S.D. Breadth of Tuning in Taste Afferent Neurons Varies with Stimulus Strength. Nat. Commun. 2015, 6, 8171. [Google Scholar] [CrossRef] [Green Version]
- DeSimone, J.A.; Lyall, V. Taste Receptors in the Gastrointestinal Tract III. Salty and Sour Taste: Sensing of Sodium and Protons by the Tongue. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G1005–G1010. [Google Scholar] [CrossRef]
- Miyamoto, T.; Fujiyama, R.; Okada, Y.; Sato, T. Acid and Salt Responses in Mouse Taste Cells. Prog. Neurobiol. 2000, 62, 135–157. [Google Scholar] [CrossRef]
- Oakley, B.; Witt, M. Building Sensory Receptors on the Tongue. J. Neurocytol. 2004, 33, 631–646. [Google Scholar] [CrossRef] [Green Version]
- Travers, J.B.; Travers, S.P.; Norgren, R. Gustatory Neural Processing in the Hindbrain. Annu. Rev. Neurosci. 1987, 10, 595–632. [Google Scholar] [CrossRef]
- Kinnamon, S.C.; Finger, T.E. Recent Advances in Taste Transduction and Signaling. F1000Res 2019, 8, F1000 Faculty Rev-2117. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, J.; Kuhn, C.; Oka, Y.; Yarmolinsky, D.A.; Hummler, E.; Ryba, N.J.P.; Zuker, C.S. The Cells and Peripheral Representation of Sodium Taste in Mice. Nature 2010, 464, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herness, M.S. Aldosterone Increases the Amiloride-Sensitivity of the Rat Gustatory Neural Response to NaCl. Comp. Biochem. Physiol. Comp. Physiol. 1992, 103, 269–273. [Google Scholar] [CrossRef]
- Shigemura, N.; Iwata, S.; Yasumatsu, K.; Ohkuri, T.; Horio, N.; Sanematsu, K.; Yoshida, R.; Margolskee, R.F.; Ninomiya, Y. Angiotensin II Modulates Salty and Sweet Taste Sensitivities. J. Neurosci. 2013, 33, 6267–6277. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.E.; Contreras, R.J.; Hettinger, T.P. Nerve Fibers Sensitive to Ionic Taste Stimuli in Chorda Tympani of the Rat. J. Neurophysiol. 1983, 50, 941–960. [Google Scholar] [CrossRef] [PubMed]
- McCaughey, S.A. Characterization of Mouse Chorda Tympani Responses Evoked by Stimulation of Anterior or Posterior Fungiform Taste Papillae. Neurosci. Res. 2019, 141, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Spector, A.C.; Grill, H.J. Salt Taste Discrimination after Bilateral Section of the Chorda Tympani or Glossopharyngeal Nerves. Am. J. Physiol. 1992, 263, R169–R176. [Google Scholar] [CrossRef] [PubMed]
- Stricker, E.M.; Gannon, K.S.; Smith, J.C. Thirst and Salt Appetite Induced by Hypovolemia in Rats: Analysis of Drinking Behavior. Physiol. Behav. 1992, 51, 27–37. [Google Scholar] [CrossRef]
- Altschuler, S.M.; Bao, X.; Bieger, D.; Hopkins, D.A.; Miselis, R.R. Viscerotopic Representation of the Upper Alimentary Tract in the Rat: Sensory Ganglia and Nuclei of the Solitary and Spinal Trigeminal Tracts. J. Comp. Neurol. 1989, 283, 248–268. [Google Scholar] [CrossRef]
- Hamilton, R.B.; Norgren, R. Central Projections of Gustatory Nerves in the Rat. J. Comp. Neurol. 1984, 222, 560–577. [Google Scholar] [CrossRef]
- Arnedo, M.; Gallo, M.; Agüero, A.; Puerto, A. Effects of Medullary Afferent Vagal Axotomy and Area Postrema Lesions on Short-Term and Long-Term NaCl-Induced Taste Aversion Learning. Physiol. Behav. 1990, 47, 1067–1074. [Google Scholar] [CrossRef]
- Burman, A.; Kaji, I. Luminal Chemosensory Cells in the Small Intestine. Nutrients 2021, 13, 3712. [Google Scholar] [CrossRef]
- Sbarbati, A.; Osculati, F. The Taste Cell-Related Diffuse Chemosensory System. Prog. Neurobiol. 2005, 75, 295–307. [Google Scholar] [CrossRef]
- Zafra, M.A.; Prados, M.; Molina, F.; Puerto, A. Capsaicin-Sensitive Afferent Vagal Fibers Are Involved in Concurrent Taste Aversion Learning. Neurobiol. Learn. Mem. 2006, 86, 349–352. [Google Scholar] [CrossRef]
- Zimmerman, C.A.; Huey, E.L.; Ahn, J.S.; Beutler, L.R.; Tan, C.L.; Kosar, S.; Bai, L.; Chen, Y.; Corpuz, T.V.; Madisen, L.; et al. A Gut-to-Brain Signal of Fluid Osmolarity Controls Thirst Satiation. Nature 2019, 568, 98–102. [Google Scholar] [CrossRef]
- Johnson, A.K.; Thunhorst, R.L. The Neuroendocrinology of Thirst and Salt Appetite: Visceral Sensory Signals and Mechanisms of Central Integration. Front. Neuroendocr. 1997, 18, 292–353. [Google Scholar] [CrossRef]
- Mediavilla, C.; Bernal, A.; Mahía, J.; Puerto, A. Nucleus of the Solitary Tract and Flavor Aversion Learning: Relevance in Concurrent but Not Sequential Behavioral Test. Behav. Brain Res. 2011, 223, 287–292. [Google Scholar] [CrossRef]
- Mediavilla, C.; Molina, F.; Puerto, A. Concurrent Conditioned Taste Aversion: A Learning Mechanism Based on Rapid Neural versus Flexible Humoral Processing of Visceral Noxious Substances. Neurosci. Biobehav. Rev. 2005, 29, 1107–1118. [Google Scholar] [CrossRef]
- Contreras, R.J.; Kosten, T. Changes in Salt Intake after Abdominal Vagotomy: Evidence for Hepatic Sodium Receptors. Physiol. Behav. 1981, 26, 575–582. [Google Scholar] [CrossRef]
- Chernigovsky, V.N. The Significance of Interoceptive Signals in the Food Behavior in Animals. In The Internal Environment and Alimentary Behavior; Brazier, M.A.B., Ed.; Brain and Behavior; American Institute of Biological Sciences, University of California: Los Angeles, CA, USA, 1963; pp. 319–349. [Google Scholar]
- Blackshaw, L.A.; Grundy, D. Effects of 5-Hydroxytryptamine on Discharge of Vagal Mucosal Afferent Fibres from the Upper Gastrointestinal Tract of the Ferret. J. Auton. Nerv. Syst. 1993, 45, 41–50. [Google Scholar] [CrossRef]
- Mei, N. Intestinal Chemosensitivity. Physiol. Rev. 1985, 65, 211–237. [Google Scholar] [CrossRef]
- Mei, N.; Garnier, L. Osmosensitive Vagal Receptors in the Small Intestine of the Cat. J. Auton. Nerv. Syst. 1986, 16, 159–170. [Google Scholar] [CrossRef]
- Zhu, J.X.; Wu, X.Y.; Owyang, C.; Li, Y. Intestinal Serotonin Acts as a Paracrine Substance to Mediate Vagal Signal Transmission Evoked by Luminal Factors in the Rat. J. Physiol. 2001, 530, 431–442. [Google Scholar] [CrossRef]
- Kahrilas, P.J.; Rogers, R.C. Rat Brainstem Neurons Responsive to Changes in Portal Blood Sodium Concentration. Am. J. Physiol. 1984, 247, R792–R799. [Google Scholar] [CrossRef]
- Morita, H.; Yamashita, Y.; Nishida, Y.; Tokuda, M.; Hatase, O.; Hosomi, H. Fos Induction in Rat Brain Neurons after Stimulation of the Hepatoportal Na-Sensitive Mechanism. Am. J. Physiol. 1997, 272, R913–R923. [Google Scholar] [CrossRef] [PubMed]
- Barraco, R.; El-Ridi, M.; Ergene, E.; Parizon, M.; Bradley, D. An Atlas of the Rat Subpostremal Nucleus Tractus Solitarius. Brain Res. Bull. 1992, 29, 703–765. [Google Scholar] [CrossRef] [PubMed]
- Herbert, H.; Moga, M.M.; Saper, C.B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 1990, 293, 540–580. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Guyton, A.C.; Hall, M.E. Tratado de Fisiología Médica; 14th ed.; Elsevier: Barcelona, Spain, 2021; ISBN 978-84-13-82013-2. [Google Scholar]
- Linz, B.; Saljic, A.; Hohl, M.; Gawałko, M.; Jespersen, T.; Sanders, P.; Böhm, M.; Linz, D. Inhibition of Sodium-Proton-Exchanger Subtype 3-Mediated Sodium Absorption in the Gut: A New Antihypertensive Concept. IJC Heart Vasc. 2020, 29, 100591. [Google Scholar] [CrossRef] [PubMed]
- Spiller, R.C. Intestinal Absorptive Function. Gut 1994, 35, S5–S9. [Google Scholar] [CrossRef] [Green Version]
- Binder, H.J. Movimiento de Fluidos y Electrolitos Intestinales—Boron y Boulpaep.Manual de Fisiología Médica. In Boron & Boulpaep Concise Medical Physiology; Boron, W.F., Boulpaep, E.L., Eds.; Elsevier: Philadelphia, PA, USA, 2021; pp. 476–484. ISBN 978-0-323-65530-9. [Google Scholar]
- Negussie, A.B.; Dell, A.C.; Davis, B.A.; Geibel, J.P. Colonic Fluid and Electrolyte Transport 2022: An Update. Cells 2022, 11, 1712. [Google Scholar] [CrossRef]
- Afsar, B.; Vaziri, N.D.; Aslan, G.; Tarim, K.; Kanbay, M. Gut Hormones and Gut Microbiota: Implications for Kidney Function and Hypertension. J. Am. Soc. Hypertens. 2016, 10, 954–961. [Google Scholar] [CrossRef] [Green Version]
- Coric, T.; Hernandez, N.; de la Rosa, D.A.; Shao, D.; Wang, T.; Canessa, C.M. Expression of ENaC and Serum- and Glucocorticoid-Induced Kinase 1 in the Rat Intestinal Epithelium. Am. J. Physiol. Liver Physiol. 2004, 286, G663–G670. [Google Scholar] [CrossRef]
- Musch, M.W.; Lucioni, A.; Chang, E.B. Aldosterone Regulation of Intestinal Na Absorption Involves SGK-Mediated Changes in NHE3 and Na+ Pump Activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G909–G919. [Google Scholar] [CrossRef] [Green Version]
- Ch’ng, S.S.; Lawrence, A.J. The Subfornical Organ in Sodium Appetite: Recent Insights. Neuropharmacology 2019, 154, 107–113. [Google Scholar] [CrossRef]
- Sladek, C.D.; Armstrong, W.E. Osmotic Control of Vasopressin Release. Trends Neurosci. 1985, 8, 166–169. [Google Scholar] [CrossRef]
- Hiyama, T.Y.; Noda, M. Sodium Sensing in the Subfornical Organ and Body-Fluid Homeostasis. Neurosci. Res. 2016, 113, 1–11. [Google Scholar] [CrossRef]
- Miller, R.L.; Wang, M.H.; Gray, P.A.; Salkoff, L.B.; Loewy, A.D. ENaC-Expressing Neurons in the Sensory Circumventricular Organs Become c-Fos Activated Following Systemic Sodium Changes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1141–R1152. [Google Scholar] [CrossRef] [Green Version]
- Solár, P.; Zamani, A.; Kubíčková, L.; Dubový, P.; Joukal, M. Choroid Plexus and the Blood-Cerebrospinal Fluid Barrier in Disease. Fluids Barriers CNS 2020, 17, 35. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Cai, H.; Liu, K.; He, Y.; Liu, S.; Guo, Y.; Guo, L. High Salt Diet Elevates the Mean Arterial Pressure of SLC14α1 Gene Depletion Mice. Life Sci. 2020, 254, 117751. [Google Scholar] [CrossRef]
- Peruzzo, M.; Milani, G.P.; Garzoni, L.; Longoni, L.; Simonetti, G.D.; Bettinelli, A.; Fossali, E.F.; Bianchetti, M.G. Body Fluids and Salt Metabolism—Part II. Ital. J. Pediatr. 2010, 36, 78. [Google Scholar] [CrossRef] [Green Version]
- Geerling, J.C.; Loewy, A.D. Aldosterone in the Brain. Am. J. Physiol. Physiol. 2009, 297, F559–F576. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 3rd ed.; Academic Press: San Diego, CA, USA, 1997; ISBN 978-0-12-547623-2. [Google Scholar]
- McKinley, M.J.; McAllen, R.M.; Davern, P.; Giles, M.E.; Penschow, J.; Sunn, N.; Uschakov, A.; Oldfield, B.J. The Sensory Circumventricular Organs of the Mammalian Brain. Adv. Anat. Embryol. Cell Biol. 2003, 172, 1–122. [Google Scholar] [CrossRef]
- Matsuda, T.; Hiyama, T.Y.; Niimura, F.; Matsusaka, T.; Fukamizu, A.; Kobayashi, K.; Kobayashi, K.; Noda, M. Distinct Neural Mechanisms for the Control of Thirst and Salt Appetite in the Subfornical Organ. Nat. Neurosci. 2017, 20, 230–241. [Google Scholar] [CrossRef]
- Simpson, F.O.; Waal-Manning, H.J.; Bolli, P.; Phelan, E.L.; Spears, G.F. Relationship of Blood Pressure to Sodium Excretion in a Population Survey. Clin. Sci. Mol. Med. Suppl. 1978, 4, 373s–375s. [Google Scholar] [CrossRef]
- Thrasher, T.N. Osmoreceptor Mediation of Thirst and Vasopressin Secretion in the Dog. Fed. Proc. 1982, 41, 2528–2532. [Google Scholar] [PubMed]
- Shapiro, R.E.; Miselis, R.R. The Central Neural Connections of the Area Postrema of the Rat. J. Comp. Neurol. 1985, 234, 344–364. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.K.; Loewy, A.D. Area Postrema Projects to FoxP2 Neurons of the Pre-Locus Coeruleus and Parabrachial Nuclei: Brainstem Sites Implicated in Sodium Appetite Regulation. Brain Res. 2010, 1359, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.L.; Loewy, A.D. ENaC γ-Expressing Astrocytes in the Circumventricular Organs, White Matter, and Ventral Medullary Surface: Sites for Na+ Regulation by Glial Cells. J. Chem. Neuroanat. 2013, 53, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.L.; Loewy, A.D. 5-HT Neurons of the Area Postrema Become c-Fos-Activated after Increases in Plasma Sodium Levels and Transmit Interoceptive Information to the Nucleus Accumbens. Am. J. Physiol. Integr. Comp. Physiol. 2014, 306, R663–R673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunn, N.; McKinley, M.J.; Oldfield, B.J. Circulating Angiotensin II Activates Neurones in Circumventricular Organs of the Lamina Terminalis That Project to the Bed Nucleus of the Stria Terminalis. J. Neuroendocrinol. 2003, 15, 725–731. [Google Scholar] [CrossRef]
- Jarvie, B.C.; Palmiter, R.D. HSD2 Neurons in the Hindbrain Drive Sodium Appetite. Nat. Neurosci. 2017, 20, 167–169. [Google Scholar] [CrossRef]
- Han, W.; Tellez, L.A.; Perkins, M.H.; Perez, I.O.; Qu, T.; Ferreira, J.; Ferreira, T.L.; Quinn, D.; Liu, Z.-W.; Gao, X.-B.; et al. A Neural Circuit for Gut-Induced Reward. Cell 2018, 175, 665–678.e23. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.M.; McCutcheon, J.E.; Roitman, M.F. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Front. Psychiatry 2018, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, E.C.; Fernando, A.B.P.; Irvine, E.E.; Tossell, K.; Kokkinou, M.; Glegola, J.; Smith, M.A.; Howes, O.D.; Withers, D.J.; Ungless, M.A. Phasic Stimulation of Midbrain Dopamine Neuron Activity Reduces Salt Consumption. eNeuro 2018, 5, e0064-18.2018 1–15. [Google Scholar] [CrossRef]
- Lee, S.; Augustine, V.; Zhao, Y.; Ebisu, H.; Ho, B.; Kong, D.; Oka, Y. Chemosensory Modulation of Neural Circuits for Sodium Appetite. Nature 2019, 568, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.L.; Beltz, T.G.; Power, J.D.; Johnson, A.K. Rapid-Onset “Need-Free” Sodium Appetite after Lesions of the Dorsomedial Medulla. Am. J. Physiol. Integr. Comp. Physiol. 1993, 264, R1242–R1247. [Google Scholar] [CrossRef]
- Menani, J.V.; Thunhorst, R.L.; Johnson, A.K. Lateral Parabrachial Nucleus and Serotonergic Mechanisms in the Control of Salt Appetite in Rats. J. Physiol. Integr. Comp. Physiol. 1996, 270, R162–R168. [Google Scholar] [CrossRef]
- De Gobbi, J.I.F.; De Luca, L.A.; Menani, J.V. Serotonergic Mechanisms of the Lateral Parabrachial Nucleus on DOCA-Induced Sodium Intake. Brain Res. 2000, 880, 131–138. [Google Scholar] [CrossRef]
- De luca, L.A.; Barbosa, S.P.; Menani, J.V. Brain Serotonin Blockade and Paradoxical Salt Intake in Rats. Neuroscience 2003, 121, 1055–1061. [Google Scholar] [CrossRef]
- Andrade-Franzé, G.M.F.; Andrade, C.A.F.; De Luca, L.A.; De Paula, P.M.; Menani, J.V. Lateral Parabrachial Nucleus and Central Amygdala in the Control of Sodium Intake. Neuroscience 2010, 165, 633–641. [Google Scholar] [CrossRef]
- Godino, A.; Margatho, L.O.; Caeiro, X.E.; Antunes-Rodrigues, J.; Vivas, L. Activation of Lateral Parabrachial Afferent Pathways and Endocrine Responses during Sodium Appetite Regulation. Exp. Neurol. 2010, 221, 275–284. [Google Scholar] [CrossRef]
- Margatho, L.O.; Porcari, C.Y.; Macchione, A.F.; da Silva Souza, G.D.; Caeiro, X.E.; Antunes-Rodrigues, J.; Vivas, L.; Godino, A. Temporal Dissociation between Sodium Depletion and Sodium Appetite Appearance: Involvement of Inhibitory and Stimulatory Signals. Neuroscience 2015, 297, 78–88. [Google Scholar] [CrossRef]
- Andrade-Franzé, G.M.F.; Andrade, C.A.F.; De Luca, L.A.; De Paula, P.M.; Colombari, D.S.A.; Menani, J.V. Lesions in the Central Amygdala Impair Sodium Intake Induced by the Blockade of the Lateral Parabrachial Nucleus. Brain Res. 2010, 1332, 57–64. [Google Scholar] [CrossRef]
- David, R.B.; Roncari, C.F.; Lauar, M.R.; Vendramini, R.C.; Antunes-Rodrigues, J.; Menani, J.V.; De Luca, L.A. Sodium Intake, Brain c-Fos Protein and Gastric Emptying in Cell-Dehydrated Rats Treated with Methysergide into the Lateral Parabrachial Nucleus. Physiol. Behav. 2015, 151, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Fulwiler, C.E.; Saper, C.B. Subnuclear Organization of the Efferent Connections of the Parabrachial Nucleus in the Rat. Brain Res. 1984, 319, 229–259. [Google Scholar] [CrossRef] [PubMed]
- Menani, J.V.; De Luca, L.A.; Johnson, A.K. Role of the Lateral Parabrachial Nucleus in the Control of Sodium Appetite. American Am. J. Physiol. Integr. Comp. Physiol. 2014, 306, R201–R210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, P.J.; Ross, S.I.; Campos, C.A.; Derkach, V.A.; Palmiter, R.D. Oxytocin-Receptor-Expressing Neurons in the Parabrachial Nucleus Regulate Fluid Intake. Nat. Neurosci. 2017, 20, 1722–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cort, J.H. Spontaneous Salt Intake in the Rat Following Lesions in the Posterior Hypothalamus. Physiol. Bohemoslov. 1963, 12, 502–505. [Google Scholar] [PubMed]
- Natcheff, N.; Piryova, B.; Garchev, R.; Kirkova, L. Influence of the Hypothalamic Mammillary Area on the Kidney Function in Rats. Agressologie 1975, 16, 367–372. [Google Scholar] [PubMed]
- Mahía, J.; Bernal, A.; Puerto, A. Inhibition of Natriuresis in Median Eminence Polydipsia: Effects after Intake of Diets with Different Osmolalities and after Hypertonic NaCl Administration. Acta Neurobiol. Exp. 2013, 73, 326–337. [Google Scholar]
- Mahía, J.; Bernal, A.; García Del Rio, C.; Puerto, A. The Natriuretic Effect of Oxytocin Blocks Medial Tuberomammillary Polydipsia and Polyuria in Male Rats. Eur. J. Neurosci. 2009, 29, 1440–1446. [Google Scholar] [CrossRef]
- Bacić, A.; Gluncić, I.; Gluncić, V. Disturbances in Plasma Sodium in Patients with War Head Injuries. Mil. Med. 1999, 164, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Cerdà-Esteve, M.; Cuadrado-Godia, E.; Chillaron, J.J.; Pont-Sunyer, C.; Cucurella, G.; Fernández, M.; Goday, A.; Cano-Pérez, J.F.; Rodríguez-Campello, A.; Roquer, J. Cerebral Salt Wasting Syndrome: Review. Eur. J. Intern. Med. 2008, 19, 249–254. [Google Scholar] [CrossRef]
- Yee, A.H.; Burns, J.D.; Wijdicks, E.F.M. Cerebral Salt Wasting: Pathophysiology, Diagnosis, and Treatment. Neurosurg. Clin. N. Am. 2010, 21, 339–352. [Google Scholar] [CrossRef]
- Verbalis, J.G. Disorders of Body Water Homeostasis. Best Pr. Res. Clin. Endocrinol. Metab. 2003, 17, 471–503. [Google Scholar] [CrossRef]
- Antunes-Rodrigues, J.; Turrin, M.Q.; Gutkowska, J.; McCann, S.M. Blockade of Volume Expansion-Induced Release of Atrial Natriuretic Peptide by Median Eminence Lesions in the Rat. Braz. J. Med. Biol. Res. 1990, 23, 355–359. [Google Scholar]
- Hennessy, J.W.; Grossman, S.P.; Kanner, M. A Study of the Etiology of the Hyperdipsia Produced by Coronal Knife Cuts in the Posterior Hypothalamus. Physiol. Behav. 1977, 18, 73–80. [Google Scholar] [CrossRef]
- Mahía, J.; Bernal, A.; Puerto, A. Hyperphagia and Increased Body Weight Induced by Lesions of the Ventral Tuberomammillary System. Behav. Brain Res. 2007, 181, 147–152. [Google Scholar] [CrossRef]
- Mahía, J.; Bernal, A.; Puerto, A. Dipsogenic Potentiation by Sodium Chloride but Not by Sucrose or Polyethylene Glycol in Tuberomammillary-Mediated Polydipsia. Exp. Brain Res. 2007, 183, 27–39. [Google Scholar] [CrossRef]
- Mahía, J.; Bernal, A.; Puerto, A. NaCl Preference and Water Intake Effects of Food Availability in Median Eminence Polydipsia. Neurosci. Lett. 2008, 447, 7–11. [Google Scholar] [CrossRef]
- Mahía, J.; Puerto, A. Lesions of Tuberomammillary Nuclei Induce Differential Polydipsic and Hyperphagic Effects. Eur. J. Neurosci. 2006, 23, 1321–1331. [Google Scholar] [CrossRef]
- Blessing, W.W.; Sved, A.F.; Reis, D.J. Destruction of Noradrenergic Neurons in Rabbit Brainstem Elevates Plasma Vasopressin, Causing Hypertension. Science 1982, 217, 661–663. [Google Scholar] [CrossRef]
- Ramos, J.M.; Castillo, M.E.; Puerto, A. Submandibular and Parotid Salivary Secretion after Electrolytic Lesioning of the Brainstem Nucleus Parvocellularis in the Rat. Physiol. Behav. 1988, 44, 173–180. [Google Scholar] [CrossRef]
- von Bismarck, P.; Ankermann, T.; Eggert, P.; Claviez, A.; Fritsch, M.J.; Krause, M.F. Diagnosis and Management of Cerebral Salt Wasting (CSW) in Children: The Role of Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP). Childs Nerv. Syst. 2006, 22, 1275–1281. [Google Scholar] [CrossRef]
- Sclafani, A.; Grossman, S.P. Hyperphagia Produced by Knife Cuts between the Medial and Lateral Hypothalamus in the Rat. Physiol. Behav. 1969, 4, 533–537. [Google Scholar] [CrossRef]
- Fried, L.F.; Palevsky, P.M. Hyponatremia and Hypernatremia. Med. Clin. N. Am. 1997, 81, 585–609. [Google Scholar] [CrossRef] [PubMed]
- Verghese, C.; De Leon, J.; Simpson, G.M. Neuroendocrine Factors Influencing Polydipsia in Psychiatric Patients: An Hypothesis. Neuropsychopharmacology 1993, 9, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, M.B. Brain Circuit Dysfunction in a Distinct Subset of Chronic Psychotic Patients. Schizophr. Res. 2014, 157, 204–213. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Marini, S.; Carano, A.; Lang, A.P.; Cavuto, M.; Piersanti, M.; Fornaro, M.; Perna, G.; Valchera, A.; Mazza, M.; et al. Efficacy and Safety of Long Acting Injectable Atypical Antipsychotics: A Review. Curr. Clin. Pharmacol. 2013, 8, 256–264. [Google Scholar] [CrossRef]
- Briess, D.; Cotter, D.; Doshi, R.; Everall, I. Mamillary Body Abnormalities in Schizophrenia. Lancet 1998, 352, 789–790. [Google Scholar] [CrossRef]
- Loh, J.A.; Verbalis, J.G. Diabetes Insipidus as a Complication after Pituitary Surgery. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 489–494. [Google Scholar] [CrossRef]
- Ericson, H.; Blomqvist, A.; Köhler, C. Origin of Neuronal Inputs to the Region of the Tuberomammillary Nucleus of the Rat Brain. J. Comp. Neurol. 1991, 311, 45–64. [Google Scholar] [CrossRef]
- Inagaki, N.; Toda, K.; Taniuchi, I.; Panula, P.; Yamatodani, A.; Tohyama, M.; Watanabe, T.; Wada, H. An Analysis of Histaminergic Efferents of the Tuberomammillary Nucleus to the Medial Preoptic Area and Inferior Colliculus of the Rat. Exp. Brain Res. 1990, 80, 374–380. [Google Scholar] [CrossRef]
- Köhler, C.; Ericson, H.; Watanabe, T.; Polak, J.; Palay, S.L.; Palay, V.; Chan-Palay, V. Galanin Immunoreactivity in Hypothalamic Neurons: Further Evidence for Multiple Chemical Messengers in the Tuberomammillary Nucleus. J. Comp. Neurol. 1986, 250, 58–64. [Google Scholar] [CrossRef]
- Panula, P.; Karlstedt, K.; Sallmen, T.; Peitsaro, N.; Kaslin, J.; Michelsen, K.A.; Anichtchik, O.; Kukko-Lukjanov, T.; Lintunen, M. The Histaminergic System in the Brain: Structural Characteristics and Changes in Hibernation. J. Chem. Neuroanat. 2000, 18, 65–74. [Google Scholar] [CrossRef]
- Ericson, H.; Watanabe, T.; Köhler, C. Morphological Analysis of the Tuberomammillary Nucleus in the Rat Brain: Delineation of Subgroups with Antibody against L-Histidine Decarboxylase as a Marker. J. Comp. Neurol. 1987, 263, 1–24. [Google Scholar] [CrossRef]
- Reiner, P.B.; Semba, K.; Watanabe, T.; Wada, H. En Bloc Immunohistochemistry Reveals Extensive Distribution of Histidine Decarboxylase-Immunoreactive Neurons on the Ventral Surface of the Rat Hypothalamus. Neurosci. Lett. 1987, 77, 137–142. [Google Scholar] [CrossRef]
- Watanabe, T.; Taguchi, Y.; Shiosaka, S.; Tanaka, J.; Kubota, H.; Terano, Y.; Tohyama, M.; Wada, H. Distribution of the Histaminergic Neuron System in the Central Nervous System of Rats; a Fluorescent Immunohistochemical Analysis with Histidine Decarboxylase as a Marker. Brain Res. 1984, 295, 13–25. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic Transmission in the Mammalian Brain. Physiol. Rev. 1991, 71, 1–51. [Google Scholar] [CrossRef]
- Hatton, G.I.; Li, Z.H. Neurophysiology of Magnocellular Neuroendocrine Cells: Recent Advances. Prog. Brain Res. 1998, 119, 77–99. [Google Scholar] [CrossRef]
- Kjaer, A.; Larsen, P.J.; Knigge, U.; Warberg, J. Dehydration Stimulates Hypothalamic Gene Expression of Histamine Synthesis Enzyme: Importance for Neuroendocrine Regulation of Vasopressin and Oxytocin Secretion. Endocrinology 1995, 136, 2189–2197. [Google Scholar] [CrossRef]
- Kjaer, A.; Knigge, U.; Rouleau, A.; Garbarg, M.; Warberg, J. Dehydration-Induced Release of Vasopressin Involves Activation of Hypothalamic Histaminergic Neurons. Endocrinology 1994, 135, 675–681. [Google Scholar] [CrossRef]
- Pollard, H.; Bischoff, S.; Llorens-Cortes, C.; Schwartz, J.C. Histidine Decarboxylase and Histamine in Discrete Nuclei of Rat Hypothalamus and the Evidence for Mast-Cells in the Median Eminence. Brain Res. 1976, 118, 509–513. [Google Scholar] [CrossRef]
- Weiss, M.L.; Yang, Q.Z.; Hatton, G.I. Magnocellular Tuberomammillary Nucleus Input to the Supraoptic Nucleus in the Rat: Anatomical and in Vitro Electrophysiological Investigations. Neuroscience 1989, 31, 299–311. [Google Scholar] [CrossRef]
- Akins, V.F.; Bealer, S.L. Brain Histamine Regulates Pressor Responses to Peripheral Hyperosmolality. Am. J. Physiol. 1990, 259, R507–R513. [Google Scholar] [CrossRef] [PubMed]
- Knigge, U.; Willems, E.; Kjaer, A.; Jørgensen, H.; Warberg, J. Histaminergic and Catecholaminergic Interactions in the Central Regulation of Vasopressin and Oxytocin Secretion. Endocrinology 1999, 140, 3713–3719. [Google Scholar] [CrossRef] [PubMed]
- Swaab, D.F.; Nijveldt, F.; Pool, C.W. Distribution of Oxytocin and Vasopressin in the Rat Supraoptic and Paraventricular Nucleus. J. Endocrinol. 1975, 67, 461–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bealer, S.L.; Crowley, W.R. Stimulation of Central and Systemic Oxytocin Release by Histamine in the Paraventricular Hypothalamic Nucleus: Evidence for an Interaction with Norepinephrine*. Endocrinology 1999, 140, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.J. The Autonomic Nervous System and Pressure-Natriuresis in Cardiovascular-Renal Interactions in Response to Salt. Clin. Auton. Res. 2002, 12, 256–263. [Google Scholar] [CrossRef]
- van Westing, A.C.; Küpers, L.K.; Geleijnse, J.M. Diet and Kidney Function: A Literature Review. Curr. Hypertens. Rep. 2020, 22, 14. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, D.; Yucha, C. Urinary Concentration and Dilution. Nephrol. Nurs. J. 2004, 31, 297–301; quiz 302–303. [Google Scholar]
- Natochin, Y.V.; Golosova, D.V. Vasopressin Receptor Subtypes and Renal Sodium Transport. Vitam. Horm. 2020, 113, 239–258. [Google Scholar] [CrossRef]
- Rose, B.D.; Post, T.W. Clinical Physiology of Acid-Base and Electrolyte Disorders, 5th ed.; Medical Pub. Division, McGraw-Hill: New York, NY, USA, 2001; ISBN 978-0-07-134682-5. [Google Scholar]
- Tigerstedt, R.; Bergman, P.G. Niere and Kreislauf. Skand. Archly Physiol. 1898, 8, 223–271. [Google Scholar] [CrossRef]
- Dzau, V.J.; Ingelfinger, J.; Pratt, R.E.; Ellison, K.E. Identification of Renin and Angiotensinogen Messenger RNA Sequences in Mouse and Rat Brains. Hypertension 1986, 8, 544–548. [Google Scholar] [CrossRef] [Green Version]
- Healy, D.P.; Printz, M.P. Distribution of Immunoreactive Angiotensin II, Angiotensin I, Angiotensinogen and Renin in the Central Nervous System of Intact and Nephrectomized Rats. Hypertension 1984, 6, I130–I136. [Google Scholar] [CrossRef]
- Lynch, K.R.; Hawelu-Johnson, C.L.; Guyenet, P.G. Localization of Brain Angiotensinogen MRNA by Hybridization Histochemistry. Brain Res. 1987, 388, 149–158. [Google Scholar] [CrossRef]
- DiBartola, S.P. Applied Renal Physiology. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice; Elsevier: Amsterdam, The Netherlands, 2012; pp. 26–43. ISBN 978-1-4377-0654-3. [Google Scholar]
- Hall, J.E.; Guyton, A.C.; Mizelle, H.L. Role of the Renin-Angiotensin System in Control of Sodium Excretion and Arterial Pressure. Acta Physiol. Scand. Suppl. 1990, 591, 48–62. [Google Scholar]
- Harrison-Bernard, L.M. The Renal Renin-Angiotensin System. Adv. Physiol. Educ. 2009, 33, 270–274. [Google Scholar] [CrossRef]
- Nishimura, H. Renin-Angiotensin System in Vertebrates: Phylogenetic View of Structure and Function. Anat. Sci. Int. 2017, 92, 215–247. [Google Scholar] [CrossRef]
- Stroth, U.; Unger, T. The Renin-Angiotensin System and Its Receptors. J. Cardiovasc. Pharmacol. 1999, 33 (Suppl. 1), S21–S28; discussion S41–S43. [Google Scholar] [CrossRef]
- Cusi, D. Renal Hypertension. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2019; pp. 383–389. ISBN 978-0-12-812200-6. [Google Scholar]
- Hanukoglu, I.; Hanukoglu, A. Epithelial Sodium Channel (ENaC) Family: Phylogeny, Structure-Function, Tissue Distribution, and Associated Inherited Diseases. Gene 2016, 579, 95–132. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ma, H.-P.; Eaton, D.C. Epithelial Sodium Channels (ENaC). In Studies of Epithelial Transporters and Ion Channels; Hamilton, K.L., Devor, D.C., Eds.; Physiology in Health and Disease; Springer International Publishing: Cham, Switzerland, 2020; pp. 697–803. ISBN 978-3-030-55453-8. [Google Scholar]
- Beutler, K.T.; Masilamani, S.; Turban, S.; Nielsen, J.; Brooks, H.L.; Ageloff, S.; Fenton, R.A.; Packer, R.K.; Knepper, M.A. Long-Term Regulation of ENaC Expression in Kidney by Angiotensin II. Hypertension 2003, 41, 1143–1150. [Google Scholar] [CrossRef]
- Ferrão, F.M.; Lara, L.S.; Lowe, J. Renin-Angiotensin System in the Kidney: What Is New? World J. Nephrol. 2014, 3, 64–76. [Google Scholar] [CrossRef]
- Baek, E.J.; Kim, S. Current Understanding of Pressure Natriuresis. Electrolyte Blood Press. 2021, 19, 38–45. [Google Scholar] [CrossRef]
- Fitzsimons, J.T. Angiotensin, Thirst, and Sodium Appetite. Physiol. Rev. 1998, 78, 583–686. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.P. Increased Salt Appetite in Adrenalectomized Rats. Am. J. Physiol. 1936, 115, 155–161. [Google Scholar] [CrossRef]
- Fuller, P.J.; Young, M.J. Aldosterone Secretion and Action. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1756–1762.e3. ISBN 978-0-323-18907-1. [Google Scholar]
- MacKenzie, S.M.; van Kralingen, J.C.; Davies, E. Regulation of Aldosterone Secretion. Vitam. Horm. 2019, 109, 241–263. [Google Scholar] [CrossRef] [PubMed]
- Aquitlera, G.; Marusic, E.T. Role of the Renin Angiotensin System on the Biosynthesis of Aldosterone. Endocrinology 1971, 89, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Catt, K.J.; Carson, M.C.; Hausdorff, W.P.; Leach-Harper, C.M.; Baukal, A.J.; Guillemette, G.; Balla, T.; Aguilera, G. Angiotensin II Receptors and Mechanisms of Action in Adrenal Glomerulosa Cells. J. Steroid Biochem. 1987, 27, 915–927. [Google Scholar] [CrossRef]
- Merrill, D.C.; Ebert, T.J.; Skelton, M.M.; Cowley, A.W. Effect of Plasma Sodium on Aldosterone Secretion during Angiotensin II Stimulation in Normal Humans. Hypertension 1989, 14, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Merrill, D.C.; Skelton, M.M.; Cowley, A.W. Angiotensin II Sensitization of Aldosterone Responsiveness to Plasma Sodium in Conscious Dogs. Am. J. Physiol. 1987, 253, R832–R837. [Google Scholar] [CrossRef]
- Blair West, J.R.; Coghlan, J.P.; Denton, D.A.; Goding, J.R.; Wintour, M.; Wright, R.D. The Control of Aldosterone Secretion. Recent Prog. Horm. Res. 1963, 19, 311–383. [Google Scholar]
- Cade, R.; Perenich, T. Secretion of Aldosterone by Rats. Am. J. Physiol. 1965, 208, 1026–1030. [Google Scholar] [CrossRef]
- Eisen, L.P.; Harmon, J.M. Activation of the Rat Kidney Mineralocorticoid Receptor. Endocrinology 1986, 119, 1419–1426. [Google Scholar] [CrossRef]
- Katz, A.I. Corticosteroid Regulation of NaK-ATPase along the Mammalian Nephron. Semin. Nephrol. 1990, 10, 388–399. [Google Scholar]
- Sheppard, K.E.; Funder, J.W. Equivalent Affinity of Aldosterone and Corticosterone for Type I Receptors in Kidney and Hippocampus: Direct Binding Studies. J. Steroid Biochem. 1987, 28, 737–742. [Google Scholar] [CrossRef]
- Soundararajan, R.; Pearce, D.; Ziera, T. The Role of the ENaC-Regulatory Complex in Aldosterone-Mediated Sodium Transport. Mol. Cell Endocrinol. 2012, 350, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Verrey, F. Regulation of Gene Expression by Aldosterone in Tight Epithelia. Semin. Nephrol. 1990, 10, 410–420. [Google Scholar]
- White, P.C. Disorders of Aldosterone Biosynthesis and Action. N. Engl. J. Med. 1994, 331, 250–258. [Google Scholar] [CrossRef]
- Hall, J.E. The Kidney, Hypertension, and Obesity. Hypertension 2003, 41, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.A.; Granger, J.P.; Knox, F.G. Effect of Renal Perfusion Pressure on Sodium Reabsorption from Proximal Tubules of Superficial and Deep Nephrons. Am. J. Physiol. 1986, 250, F425–F429. [Google Scholar] [CrossRef]
- Roman, R.J. Pressure-Diuresis in Volume-Expanded Rats. Tubular Reabsorption in Superficial and Deep Nephrons. Hypertension 1988, 12, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Granger, J.P.; Alexander, B.T.; Llinas, M. Mechanisms of Pressure Natriuresis. Curr. Hypertens. Rep. 2002, 4, 152–159. [Google Scholar] [CrossRef]
- Johns, E.J.; Kopp, U.C.; DiBona, G.F. Neural Control of Renal Function. Compr. Physiol. 2011, 1, 731–767. [Google Scholar] [CrossRef]
- DiBona, G.F. Physiology in Perspective: The Wisdom of the Body. Neural Control of the Kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R633–R641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiBona, G.F.; Kopp, U.C. Neural Control of Renal Function. Physiol. Rev. 1997, 77, 75–197. [Google Scholar] [CrossRef] [PubMed]
- Guild, S.-J.; Eppel, G.A.; Malpas, S.C.; Rajapakse, N.W.; Stewart, A.; Evans, R.G. Regional Responsiveness of Renal Perfusion to Activation of the Renal Nerves. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1177–R1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barajas, L.; Liu, L.; Powers, K. Anatomy of the Renal Innervation: Intrarenal Aspects and Ganglia of Origin. Can. J. Physiol. Pharmacol. 1992, 70, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.J. An Investigation into the Type of Beta-Adrenoceptor Mediating Sympathetically Activated Renin Release in the Cat. Br. J. Pharmacol. 1981, 73, 749–754. [Google Scholar] [CrossRef]
- Handa, R.K.; Johns, E.J. Interaction of the Renin-Angiotensin System and the Renal Nerves in the Regulation of Rat Kidney Function. J. Physiol. 1985, 369, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Aperia, A.; Ibarra, F.; Svensson, L.B.; Klee, C.; Greengard, P. Calcineurin Mediates Alpha-Adrenergic Stimulation of Na+,K(+)-ATPase Activity in Renal Tubule Cells. Proc. Natl. Acad. Sci. USA 1992, 89, 7394–7397. [Google Scholar] [CrossRef]
- Pettinger, W.A.; Umemura, S.; Smyth, D.D.; Jeffries, W.B. Renal Alpha 2-Adrenoceptors and the Adenylate Cyclase-CAMP System: Biochemical and Physiological Interactions. Am. J. Physiol. 1987, 252, F199–F208. [Google Scholar] [CrossRef]
- Luchner, A.; Schunkert, H. Interactions between the Sympathetic Nervous System and the Cardiac Natriuretic Peptide System. Cardiovasc. Res. 2004, 63, 443–449. [Google Scholar] [CrossRef] [Green Version]
- van den Meiracker, A.H.; Boomsma, F. The Angiotensin II-Sympathetic Nervous System Connection. J. Hypertens. 2003, 21, 1453–1454. [Google Scholar] [CrossRef]
- Aileru, A.A.; Logan, E.; Callahan, M.; Ferrario, C.M.; Ganten, D.; Diz, D.I. Alterations in Sympathetic Ganglionic Transmission in Response to Angiotensin II in (MRen2)27 Transgenic Rats. Hypertension 2004, 43, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Veelken, R.; Hilgers, K.F.; Stetter, A.; Siebert, H.G.; Schmieder, R.E.; Mann, J.F. Nerve-Mediated Antidiuresis and Antinatriuresis after Air-Jet Stress Is Modulated by Angiotensin II. Hypertension 1996, 28, 825–832. [Google Scholar] [CrossRef]
- Cao, L.-H.; Yang, X.-L. Natriuretic Peptides and Their Receptors in the Central Nervous System. Prog. Neurobiol. 2008, 84, 234–248. [Google Scholar] [CrossRef]
- de Bold, A.J.; Borenstein, H.B.; Veress, A.T.; Sonnenberg, H. A Rapid and Potent Natriuretic Response to Intravenous Injection of Atrial Myocardial Extract in Rats. Life Sci. 1981, 28, 89–94. [Google Scholar] [CrossRef]
- Flynn, T.G.; de Bold, M.L.; de Bold, A.J. The Amino Acid Sequence of an Atrial Peptide with Potent Diuretic and Natriuretic Properties. Biochem. Biophys. Res. Commun. 1983, 117, 859–865. [Google Scholar] [CrossRef]
- Kangawa, K.; Matsuo, H. Purification and Complete Amino Acid Sequence of Alpha-Human Atrial Natriuretic Polypeptide (Alpha-HANP). Biochem. Biophys. Res. Commun. 1984, 118, 131–139. [Google Scholar] [CrossRef]
- Goetze, J.P.; Hansen, L.H.; Terzic, D.; Zois, N.E.; Albrethsen, J.; Timm, A.; Smith, J.; Soltysinska, E.; Lippert, S.K.; Hunter, I. Atrial Natriuretic Peptides in Plasma. Clin. Chim. Acta 2015, 443, 25–28. [Google Scholar] [CrossRef]
- Rao, S.; Pena, C.; Shurmur, S.; Nugent, K. Atrial Natriuretic Peptide: Structure, Function, and Physiological Effects: A Narrative Review. Curr. Cardiol. Rev. 2021, 17, e051121191003. [Google Scholar] [CrossRef]
- Saito, Y.; Nakao, K.; Itoh, H.; Yamada, T.; Mukoyama, M.; Arai, H.; Hosoda, K.; Shirakami, G.; Suga, S.; Minamino, N. Brain Natriuretic Peptide Is a Novel Cardiac Hormone. Biochem. Biophys. Res. Commun. 1989, 158, 360–368. [Google Scholar] [CrossRef]
- Nishikimi, T.; Maeda, N.; Matsuoka, H. The Role of Natriuretic Peptides in Cardioprotection. Cardiovasc. Res. 2006, 69, 318–328. [Google Scholar] [CrossRef]
- Edwards, B.S.; Zimmerman, R.S.; Schwab, T.R.; Heublein, D.M.; Burnett, J.C. Atrial Stretch, Not Pressure, Is the Principal Determinant Controlling the Acute Release of Atrial Natriuretic Factor. Circ. Res. 1988, 62, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichai, C.; Bichet, D.G. Water and Sodium Balance. In Metabolic Disorders and Critically Ill Patients; Ichai, C., Quintard, H., Orban, J.-C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–31. ISBN 978-3-319-64008-2. [Google Scholar]
- Patel, S. Sodium Balance-an Integrated Physiological Model and Novel Approach. Saudi J. Kidney Dis. Transpl. 2009, 20, 560–569. [Google Scholar] [PubMed]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac Natriuretic Peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef] [PubMed]
- Misono, K.S.; Philo, J.S.; Arakawa, T.; Ogata, C.M.; Qiu, Y.; Ogawa, H.; Young, H.S. Structure, Signaling Mechanism and Regulation of the Natriuretic Peptide Receptor Guanylate Cyclase. FEBS J. 2011, 278, 1818–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, Y.; Mukoyama, M.; Yokoi, H.; Kasahara, M.; Mori, K.; Kato, Y.; Kuwabara, T.; Imamaki, H.; Kawanishi, T.; Koga, K.; et al. Natriuretic Peptide Receptor Guanylyl Cyclase-A Protects Podocytes from Aldosterone-Induced Glomerular Injury. J. Am. Soc. Nephrol. 2012, 23, 1198–1209. [Google Scholar] [CrossRef] [Green Version]
- Staffel, J.; Valletta, D.; Federlein, A.; Ehm, K.; Volkmann, R.; Füchsl, A.M.; Witzgall, R.; Kuhn, M.; Schweda, F. Natriuretic Peptide Receptor Guanylyl Cyclase-A in Podocytes Is Renoprotective but Dispensable for Physiologic Renal Function. J. Am. Soc. Nephrol. 2017, 28, 260–277. [Google Scholar] [CrossRef] [Green Version]
- Suga, S.; Nakao, K.; Hosoda, K.; Mukoyama, M.; Ogawa, Y.; Shirakami, G.; Arai, H.; Saito, Y.; Kambayashi, Y.; Inouye, K. Receptor Selectivity of Natriuretic Peptide Family, Atrial Natriuretic Peptide, Brain Natriuretic Peptide, and C-Type Natriuretic Peptide. Endocrinology 1992, 130, 229–239. [Google Scholar] [CrossRef]
- Dunn, B.R.; Ichikawa, I.; Pfeffer, J.M.; Troy, J.L.; Brenner, B.M. Renal and Systemic Hemodynamic Effects of Synthetic Atrial Natriuretic Peptide in the Anesthetized Rat. Circ. Res. 1986, 59, 237–246. [Google Scholar] [CrossRef] [Green Version]
- McCoy, D.E.; Guggino, S.E.; Stanton, B.A. The Renal CGMP-Gated Cation Channel: Its Molecular Structure and Physiological Role. Kidney Int. 1995, 48, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.-J.; Alli, A.A.; Eaton, D.C.; Bao, H.-F. ENaC Is Regulated by Natriuretic Peptide Receptor-Dependent CGMP Signaling. Am. J. Physiol. Renal. Physiol. 2013, 304, F930–F937. [Google Scholar] [CrossRef] [Green Version]
- Klokkers, J.; Langehanenberg, P.; Kemper, B.; Kosmeier, S.; von Bally, G.; Riethmüller, C.; Wunder, F.; Sindic, A.; Pavenstädt, H.; Schlatter, E.; et al. Atrial Natriuretic Peptide and Nitric Oxide Signaling Antagonizes Vasopressin-Mediated Water Permeability in Inner Medullary Collecting Duct Cells. Am. J. Physiol. Renal. Physiol. 2009, 297, F693–F703. [Google Scholar] [CrossRef] [Green Version]
- McGrath, M.F.; de Bold, M.L.K.; de Bold, A.J. The Endocrine Function of the Heart. Trends Endocrinol. Metab. 2005, 16, 469–477. [Google Scholar] [CrossRef]
- Theilig, F.; Wu, Q. ANP-Induced Signaling Cascade and Its Implications in Renal Pathophysiology. Am. J. Physiol. Renal. Physiol. 2015, 308, F1047–F1055. [Google Scholar] [CrossRef]
- Choi, M.R.; Fernández, B.E. Protective Renal Effects of Atrial Natriuretic Peptide: Where Are We Now? Front. Physiol. 2021, 12, 680213. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nishikimi, T.; Kuwahara, K. Atrial and Brain Natriuretic Peptides: Hormones Secreted from the Heart. Peptides 2019, 111, 18–25. [Google Scholar] [CrossRef]
- Kurtz, A.; Della Bruna, R.; Pfeilschifter, J.; Taugner, R.; Bauer, C. Atrial Natriuretic Peptide Inhibits Renin Release from Juxtaglomerular Cells by a CGMP-Mediated Process. Proc. Natl. Acad. Sci. USA 1986, 83, 4769–4773. [Google Scholar] [CrossRef] [Green Version]
- Brenner, B.M.; Ballermann, B.J.; Gunning, M.E.; Zeidel, M.L. Diverse Biological Actions of Atrial Natriuretic Peptide. Physiol. Rev. 1990, 70, 665–699. [Google Scholar] [CrossRef]
- Volpe, M.; Rubattu, S.; Battistoni, A. ARNi: A Novel Approach to Counteract Cardiovascular Diseases. Int. J. Mol. Sci. 2019, 20, 2092. [Google Scholar] [CrossRef] [Green Version]
- Motzfeldt, K. Experimental Studies on the Relation of the Pituitary Body To Renal Function. J. Exp. Med. 1917, 25, 153–188. [Google Scholar] [CrossRef] [Green Version]
- Bernal, A.; Mahía, J.; Puerto, A. Animal Models of Central Diabetes Insipidus: Human Relevance of Acquired beyond Hereditary Syndromes and the Role of Oxytocin. Neurosci. Biobehav. Rev. 2016, 66, 1–14. [Google Scholar] [CrossRef]
- Bankir, L.; Bichet, D.G.; Morgenthaler, N.G. Vasopressin: Physiology, Assessment and Osmosensation. J. Intern. Med. 2017, 282, 284–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockand, J.D. Vasopressin Regulation of Renal Sodium Excretion. Kidney Int. 2010, 78, 849–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, W.; Jiang, T.; Yang, B. Aquaporins in Urinary System. Adv. Exp. Med. Biol. 2017, 969, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Preston, G.M.; Carroll, T.P.; Guggino, W.B.; Agre, P. Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CHIP28 Protein. Science 1992, 256, 385–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, J.; Bichet, D.G.; Bardoux, P.; Bouby, N.; Bankir, L. Sodium Excretion in Response to Vasopressin and Selective Vasopressin Receptor Antagonists. J. Am. Soc. Nephrol. 2008, 19, 1721–1731. [Google Scholar] [CrossRef] [Green Version]
- Kortenoeven, M.L.A.; Pedersen, N.B.; Rosenbaek, L.L.; Fenton, R.A. Vasopressin Regulation of Sodium Transport in the Distal Nephron and Collecting Duct. Am. J. Physiol. Renal. Physiol. 2015, 309, F280–F299. [Google Scholar] [CrossRef] [Green Version]
- Marunaka, Y.; Eaton, D.C. Effects of Vasopressin and CAMP on Single Amiloride-Blockable Na Channels. Am. J. Physiol. 1991, 260, C1071–C1084. [Google Scholar] [CrossRef]
- Snyder, P.M. Minireview: Regulation of Epithelial Na+ Channel Trafficking. Endocrinology 2005, 146, 5079–5085. [Google Scholar] [CrossRef] [Green Version]
- Knepper, M.A.; Kwon, T.-H.; Nielsen, S. Molecular Physiology of Water Balance. N. Engl. J. Med. 2015, 373, 196. [Google Scholar] [CrossRef]
- Mironova, E.; Bugaj, V.; Roos, K.P.; Kohan, D.E.; Stockand, J.D. Aldosterone-Independent Regulation of the Epithelial Na+ Channel (ENaC) by Vasopressin in Adrenalectomized Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 10095–10100. [Google Scholar] [CrossRef] [Green Version]
- Snyder, P.M.; Olson, D.R.; Kabra, R.; Zhou, R.; Steines, J.C. CAMP and Serum and Glucocorticoid-Inducible Kinase (SGK) Regulate the Epithelial Na(+) Channel through Convergent Phosphorylation of Nedd4-2. J. Biol. Chem. 2004, 279, 45753–45758. [Google Scholar] [CrossRef] [Green Version]
- Staruschenko, A. Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct. Compr. Physiol. 2012, 2, 1541–1584. [Google Scholar] [CrossRef] [Green Version]
- Choukroun, G.; Schmitt, F.; Martinez, F.; Drüeke, T.B.; Bankir, L. Low Urine Flow Reduces the Capacity to Excrete a Sodium Load in Humans. Am. J. Physiol. 1997, 273, R1726–R1733. [Google Scholar] [CrossRef] [Green Version]
- Bankir, L.; Fernandes, S.; Bardoux, P.; Bouby, N.; Bichet, D.G. Vasopressin-V2 Receptor Stimulation Reduces Sodium Excretion in Healthy Humans. J. Am. Soc. Nephrol. 2005, 16, 1920–1928. [Google Scholar] [CrossRef] [Green Version]
- Maybauer, M.O.; Maybauer, D.M.; Enkhbaatar, P.; Traber, D.L. Physiology of the Vasopressin Receptors. Best Pract. Res. Clin. Anaesthesiol. 2008, 22, 253–263. [Google Scholar] [CrossRef]
- Giesecke, T.; Himmerkus, N.; Leipziger, J.; Bleich, M.; Koshimizu, T.-A.; Fähling, M.; Smorodchenko, A.; Shpak, J.; Knappe, C.; Isermann, J.; et al. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J. Am. Soc. Nephrol. 2019, 30, 946–961. [Google Scholar] [CrossRef]
- Bernal, A.; Mahía, J.; Puerto, A. Oxytocin, Water Intake, and Food Sodium Availability in Male Rats. Horm. Behav. 2007, 52, 289–296. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Bichet, D.G.; Fenske, W.K.; Goldman, M.B.; Rittig, S.; Verbalis, J.G.; Verkman, A.S. Diabetes Insipidus. Nat. Rev. Dis. Primers 2019, 5, 54. [Google Scholar] [CrossRef]
- Kavanagh, C.; Uy, N.S. Nephrogenic Diabetes Insipidus. Pediatr. Clin. N. Am. 2019, 66, 227–234. [Google Scholar] [CrossRef]
- Qureshi, S.; Galiveeti, S.; Bichet, D.G.; Roth, J. Diabetes Insipidus: Celebrating a Century of Vasopressin Therapy. Endocrinology 2014, 155, 4605–4621. [Google Scholar] [CrossRef] [Green Version]
- Di Iorgi, N.; Napoli, F.; Allegri, A.E.M.; Olivieri, I.; Bertelli, E.; Gallizia, A.; Rossi, A.; Maghnie, M. Diabetes Insipidus—Diagnosis and Management. Horm. Res. Paediatr. 2012, 77, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Rodrigues, J.; de Castro, M.; Elias, L.L.K.; Valença, M.M.; McCann, S.M. Neuroendocrine Control of Body Fluid Metabolism. Physiol. Rev. 2004, 84, 169–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makaryus, A.N.; McFarlane, S.I. Diabetes Insipidus: Diagnosis and Treatment of a Complex Disease. Clevel. Clin. J. Med. 2006, 73, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Aulinas, A.; Plessow, F.; Asanza, E.; Silva, L.; Marengi, D.A.; Fan, W.; Abedi, P.; Verbalis, J.; Tritos, N.A.; Nachtigall, L.; et al. Low Plasma Oxytocin Levels and Increased Psychopathology in Hypopituitary Men With Diabetes Insipidus. J. Clin. Endocrinol. Metab. 2019, 104, 3181–3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, W.E. Hypothalamic Supraoptic and Paraventricular Nuclei. In The Rat Nervous System; Elsevier: Amsterdam, The Netherlands, 2015; pp. 295–314. ISBN 978-0-12-374245-2. [Google Scholar]
- Balment, R.J.; Brimble, M.J.; Forsling, M.L. Release of Oxytocin Induced by Salt Loading and Its Influence on Renal Excretion in the Male Rat. J. Physiol. 1980, 308, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Bernal, A.; Mahía, J.; García Del Rio, C.; Puerto, A. Oxytocin Polyuria and Polydipsia Is Blocked by NaCl Administration in Food-Deprived Male Rats. J. Neuroendocrinol. 2010, 22, 1043–1051. [Google Scholar] [CrossRef]
- Bernal, A.; Mahía, J.; Puerto, A. Potentiated Effect of Systemic Administration of Oxytocin on Hypertonic NaCl Intake in Food-Deprived Male Rats. Horm. Behav. 2010, 57, 284–290. [Google Scholar] [CrossRef]
- Bernal, A.; Mahía, J.; Mediavilla, C.; Puerto, A. Opposite Effects of Oxytocin on Water Intake Induced by Hypertonic NaCl or Polyethylene Glycol Administration. Physiol. Behav. 2015, 141, 135–142. [Google Scholar] [CrossRef]
- Mahía, J.; Bernal, A.; Puerto, A. Effects of Oxytocin Administration on the Hydromineral Balance of Median Eminence-Lesioned Rats. J. Neuroendocrinol. 2019, 31, e12778. [Google Scholar] [CrossRef]
- Verbalis, J.G.; Mangione, M.P.; Stricker, E.M. Oxytocin Produces Natriuresis in Rats at Physiological Plasma Concentrations. Endocrinology 1991, 128, 1317–1322. [Google Scholar] [CrossRef]
- Conrad, K.P.; Gellai, M.; North, W.G.; Valtin, H. Influence of Oxytocin on Renal Hemodynamics and Electrolyte and Water Excretion. Am. J. Physiol. 1986, 251, F290–F296. [Google Scholar] [CrossRef]
- Lippert, T.H.; Mueck, A.O.; Seeger, H.; Pfaff, A. Effects of Oxytocin Outside Pregnancy. Horm. Res. 2003, 60, 262–271. [Google Scholar] [CrossRef]
- Haanwinckel, M.A.; Elias, L.K.; Favaretto, A.L.; Gutkowska, J.; McCann, S.M.; Antunes-Rodrigues, J. Oxytocin Mediates Atrial Natriuretic Peptide Release and Natriuresis after Volume Expansion in the Rat. Proc. Natl. Acad. Sci. USA 1995, 92, 7902–7906. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.E.; Engstrøm, T.; Bie, P. Effects on Renal Sodium and Potassium Excretion of Vasopressin and Oxytocin in Conscious Dogs. Acta Physiol. Scand. 1992, 145, 267–274. [Google Scholar] [CrossRef]
- Windle, R.J.; Judah, J.M.; Forsling, M.L. Do Vasopressin and Oxytocin Have Synergistic Renal Effects in the Conscious Rat? J. Endocrinol. 1995, 144, 441–448. [Google Scholar] [CrossRef]
- Balment, R.J.; Brimble, M.J.; Forsling, M.L.; Kelly, L.P.; Musabayane, C.T. A Synergistic Effect of Oxytocin and Vasopressin on Sodium Excretion in the Neurohypophysectomized Rat. J. Physiol. 1986, 381, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Balment, R.J.; Brimble, M.J.; Forsling, M.L.; Musabayane, C.T. The Influence of Neurohypophysial Hormones on Renal Function in the Acutely Hypophysectomized Rat. J. Physiol. 1986, 381, 439–452. [Google Scholar] [CrossRef]
- Bernal, A.; Mahía, J.; Puerto, A. Differential Lasting Inhibitory Effects of Oxytocin and Food-Deprivation on Mediobasal Hypothalamic Polydipsia. Brain Res. Bull. 2013, 94, 40–48. [Google Scholar] [CrossRef]
- Holcomb, S.S. Diabetes Insipidus. Dimens. Crit. Care Nurs. 2002, 21, 94–97. [Google Scholar] [CrossRef]
- Joo, K.W.; Jeon, U.S.; Kim, G.-H.; Park, J.; Oh, Y.K.; Kim, Y.S.; Ahn, C.; Kim, S.; Kim, S.Y.; Lee, J.S.; et al. Antidiuretic Action of Oxytocin Is Associated with Increased Urinary Excretion of Aquaporin-2. Nephrol. Dial. Transplant. 2004, 19, 2480–2486. [Google Scholar] [CrossRef] [Green Version]
- Rivkees, S.A.; Dunbar, N.; Wilson, T.A. The Management of Central Diabetes Insipidus in Infancy: Desmopressin, Low Renal Solute Load Formula, Thiazide Diuretics. J. Pediatr. Endocrinol. Metab. 2007, 20, 459–469. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S. Is Oxytocin a Player in Antidiuresis? J. Am. Soc. Nephrol. 2008, 19, 189–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbay, M.; Chen, Y.; Solak, Y.; Sanders, P.W. Mechanisms and Consequences of Salt Sensitivity and Dietary Salt Intake. Curr. Opin. Nephrol. Hypertens. 2011, 20, 37–43. [Google Scholar] [CrossRef]
- Balafa, O.; Kalaitzidis, R.G. Salt Sensitivity and Hypertension. J. Hum. Hypertens. 2021, 35, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.K.; Heine, M. Primary Role of Renal Homografts in Setting Chronic Blood Pressure Levels in Rats. Circ. Res. 1975, 36, 692–696. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Ingole, S.; Jain, R. Salt Sensitivity and Its Implication in Clinical Practice. Indian Hear. J. 2018, 70, 556–564. [Google Scholar] [CrossRef]
- Bier, A.; Braun, T.; Khasbab, R.; Di Segni, A.; Grossman, E.; Haberman, Y.; Leibowitz, A. A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients 2018, 10, 1154. [Google Scholar] [CrossRef] [Green Version]
- Elijovich, F.; Laffer, C.L.; Sahinoz, M.; Pitzer, A.; Ferguson, J.F.; Kirabo, A. The Gut Microbiome, Inflammation, and Salt-Sensitive Hypertension. Curr. Hypertens. Rep. 2020, 22, 79. [Google Scholar] [CrossRef]
- Long-Smith, C.; O’Riordan, K.J.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 477–502. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Unno, T.; Kim, B.-Y.; Park, M.-S. Sex Differences in Gut Microbiota. World J. Men’s Health 2020, 38, 48. [Google Scholar] [CrossRef]
- Mishima, E.; Abe, T. Role of the Microbiota in Hypertension and Antihypertensive Drug Metabolism. Hypertens. Res. 2022, 45, 246–253. [Google Scholar] [CrossRef]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal, A.; Zafra, M.A.; Simón, M.J.; Mahía, J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023, 15, 395. https://doi.org/10.3390/nu15020395
Bernal A, Zafra MA, Simón MJ, Mahía J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients. 2023; 15(2):395. https://doi.org/10.3390/nu15020395
Chicago/Turabian StyleBernal, Antonio, María A. Zafra, María J. Simón, and Javier Mahía. 2023. "Sodium Homeostasis, a Balance Necessary for Life" Nutrients 15, no. 2: 395. https://doi.org/10.3390/nu15020395
APA StyleBernal, A., Zafra, M. A., Simón, M. J., & Mahía, J. (2023). Sodium Homeostasis, a Balance Necessary for Life. Nutrients, 15(2), 395. https://doi.org/10.3390/nu15020395