Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = reliable THz communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1602
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

73 pages, 5355 KiB  
Review
Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks
by Wagdy M. Othman, Abdelhamied A. Ateya, Mohamed E. Nasr, Ammar Muthanna, Mohammed ElAffendi, Andrey Koucheryavy and Azhar A. Hamdi
J. Sens. Actuator Netw. 2025, 14(2), 30; https://doi.org/10.3390/jsan14020030 - 17 Mar 2025
Cited by 3 | Viewed by 6959
Abstract
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. [...] Read more.
Sixth-generation (6G) wireless networks have the potential to transform global connectivity by supporting ultra-high data rates, ultra-reliable low latency communication (uRLLC), and intelligent, adaptive networking. To realize this vision, 6G must incorporate groundbreaking technologies that enhance network efficiency, spectral utilization, and dynamic adaptability. Among them, unmanned aerial vehicles (UAVs), terahertz (THz) communication, and intelligent reconfigurable surfaces (IRSs) are three major enablers in redefining the architecture and performance of next-generation wireless systems. This survey provides a comprehensive review of these transformative technologies, exploring their potential, design challenges, and integration into future 6G ecosystems. UAV-based communication provides flexible, on-demand communication in remote, harsh areas and is a vital solution for disasters, self-driving, and industrial automation. THz communication taking place in the 0.1–10 THz band reveals ultra-high bandwidth capable of a data rate of multi-gigabits per second and can avoid spectrum bottlenecks in conventional bands. IRS technology based on programmable metasurface allows real-time wavefront control, maximizing signal propagation and spectral/energy efficiency in complex settings. The work provides architectural evolution, active current research trends, and practical issues in applying these technologies, including their potential contribution to the creation of intelligent, ultra-connected 6G networks. In addition, it presents open research questions, possible answers, and future directions and provides information for academia, industry, and policymakers. Full article
Show Figures

Figure 1

17 pages, 3494 KiB  
Article
Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
by Paolo Vezio, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti and Alessandro Tredicucci
Photonics 2025, 12(3), 273; https://doi.org/10.3390/photonics12030273 - 16 Mar 2025
Viewed by 2726
Abstract
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated [...] Read more.
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated silicon nitride trampoline membrane resonator as both the external QCL laser cavity and the mechanical coupling element of the two-laser hybrid system. We show that the membrane response can be controlled with high precision and stability both in its dynamic (i.e., piezo-electrically actuated) and static state via photothermally induced NIR laser excitation. The responsivity to nanometric external cavity variations and robustness to optical feedback of the QCL LFI apparatus allows a highly sensitive and reliable transfer of the NIR power modulation into the QCL SM voltage, with a bandwidth limited by the thermal response time of the membrane resonator. Interestingly, a dual information conversion is possible thanks to the accurate thermal tuning of the membrane resonance frequency shift and displacement. Overall, the proposed apparatus can be exploited for the precise opto-mechanical control of QCL operation with advanced applications in LFI imaging and spectroscopy and in coherent optical communication. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

22 pages, 626 KiB  
Article
Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G
by Yue Yin, Pan Tang, Jianhua Zhang, Zheng Hu, Tao Jiang, Liang Xia and Guangyi Liu
Photonics 2025, 12(3), 257; https://doi.org/10.3390/photonics12030257 - 13 Mar 2025
Viewed by 680
Abstract
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but [...] Read more.
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but also high-frequency technologies, such as millimeter wave (mmWave), terahertz (THz), and visible light bands. In this paper, we conduct a channel characterization and comparison in the industrial scenario from the sub-6 GHz to visible light bands. The channel characteristics, including the path loss (PL), root mean square (RMS) delay spread (DS), and angle spread (AS), were analyzed with respect to the frequency dependence and the distance dependence. On the one hand, the visible light band exhibited significant differences in channel characteristics compared to the electronic wave band. Due to the line-of-sight transmission of VLC, the visible light band had a higher path loss, and the path loss exponent reached 3.84. Due to the Lambertian radiation pattern, which has a wide range of reflection angles, the AS of the visible light band was much larger than that of the electronic wave band, which were 1.73 and 0.80 for the visible light and THz bands, respectively. On the other hand, the blockage effect of the metal instruments in the industrial scenario will greatly affect the channel characteristics. As the transceiver distance grows large, signals from both sides of the receiver will be blocked by metal instruments, resulting in a decreasing trend in the RMS DS for the electronic wave band. Moreover, the statistical characteristics of the channel properties were modeled and compared with the 3GPP TR 38.901 standard. It was found that the height of the receiver caused the difference between the proposed model and the 3GPP model and needs to be taken into account when modeling. Furthermore, we extended the 3GPP model to the THz and VLC bands and provided the statistical parameters of the channel characteristics for all frequency bands. This study can provide insights for the evaluation and standardization of multi-frequency communication technology in the industrial scenario. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

25 pages, 2878 KiB  
Review
Optimizing Spectral Utilization in Healthcare Internet of Things
by Adeel Iqbal, Ali Nauman, Yazdan Ahmad Qadri and Sung Won Kim
Sensors 2025, 25(3), 615; https://doi.org/10.3390/s25030615 - 21 Jan 2025
Cited by 2 | Viewed by 1902
Abstract
The mainstream adoption of Internet of Things (IoT) devices for health and lifestyle tracking has revolutionized health monitoring systems. Sixth-generation (6G) cellular networks enable IoT healthcare services to reduce the pressures on already resource-constrained facilities, leveraging enhanced ultra-reliable low-latency communication (eURLLC) to make [...] Read more.
The mainstream adoption of Internet of Things (IoT) devices for health and lifestyle tracking has revolutionized health monitoring systems. Sixth-generation (6G) cellular networks enable IoT healthcare services to reduce the pressures on already resource-constrained facilities, leveraging enhanced ultra-reliable low-latency communication (eURLLC) to make sure critical health data are transmitted with minimal delay. Any delay or information loss can result in serious consequences, making spectrum availability a crucial bottleneck. This study systematically identifies challenges in optimizing spectrum utilization in healthcare IoT (H-IoT) networks, focusing on issues such as dynamic spectrum allocation, interference management, and prioritization of critical medical devices. To address these challenges, the paper highlights emerging solutions, including artificial intelligence-based spectrum management, edge computing integration, and advanced network architectures such as massive multiple-input multiple-output (mMIMO) and terahertz (THz) communication. We identify gaps in the existing methodologies and provide potential research directions to enhance the efficiency and reliability of eURLLC in healthcare environments. These findings offer a roadmap for future advancements in H-IoT systems and form the basis of our recommendations, emphasizing the importance of tailored solutions for spectrum management in the 6G era. Full article
(This article belongs to the Special Issue Sensors and Smart City)
Show Figures

Figure 1

18 pages, 757 KiB  
Article
Preamble Design and Noncoherent ToA Estimation for Pulse-Based Wireless Networks-on-Chip Communications in the Terahertz Band
by Pankaj Singh and Sung-Yoon Jung
Micromachines 2025, 16(1), 70; https://doi.org/10.3390/mi16010070 - 8 Jan 2025
Cited by 1 | Viewed by 1029
Abstract
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip [...] Read more.
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip multiprocessors. However, the ultrashort duration of THz pulses, often in the femtosecond range, makes synchronization a critical challenge, as even minor timing errors can cause significant data loss. This study introduces a preamble-aided noncoherent synchronization scheme for time-of-arrival (ToA) estimation in pulse-based WiNoC communication operating in the THz band (0.02–0.8 THz). The scheme transmits the preamble, a known sequence of THz pulses, at the beginning of each symbol, allowing the energy-detection receiver to collect and analyze the energy of the preamble across multiple integrators. The integrator with maximum energy output is then used to estimate the symbol’s ToA. A preamble design based on maximum pulse energy constraints is also presented. Performance evaluations demonstrate a synchronization probability exceeding 0.98 for distances under 10 mm at a signal-to-noise ratio of 20 dB, with a normalized mean squared error below 102. This scheme enhances synchronization reliability, supporting energy-efficient, high-performance WiNoCs for future multicore systems. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Graphical abstract

22 pages, 11909 KiB  
Article
Performance Analysis of UAV-IRS Relay Multi-Hop FSO/THz Link
by Yawei Wang, Rongpeng Liu, Jia Yuan, Jingwei Lu, Ziyang Wang, Ruihuan Wu, Zhongchao Wei and Hongzhan Liu
Electronics 2024, 13(16), 3247; https://doi.org/10.3390/electronics13163247 - 15 Aug 2024
Viewed by 1653
Abstract
As the era of sixth-generation (6G) communications approaches, there will be an unprecedented increase in the number of wireless internet-connected devices and a sharp rise in mobile data traffic. Faced with the scarcity of spectrum resources in traditional communication networks and challenges such [...] Read more.
As the era of sixth-generation (6G) communications approaches, there will be an unprecedented increase in the number of wireless internet-connected devices and a sharp rise in mobile data traffic. Faced with the scarcity of spectrum resources in traditional communication networks and challenges such as rapidly establishing communications after disasters, this study leverages unmanned aerial vehicles (UAVs) to promote an integrated multi-hop communication system combining free-space optical (FSO) communication, terahertz (THz) technology, and intelligent reflecting surface (IRS). This innovative amalgamation capitalizes on the flexibility of UAVs, the deployability of IRS, and the complementary strengths of FSO and THz communications. We have developed a comprehensive channel model that includes the effects of atmospheric turbulence, attenuation, pointing errors, and angle-of-arrival (AOA) fluctuations. Furthermore, we have derived probability density functions (PDFs) and cumulative distribution functions (CDFs) for various switching techniques. Employing advanced methods such as Gaussian–Laguerre quadrature and the central limit theorem (CLT), we have calculated key performance indicators including the average outage probability, bit error rate (BER), and channel capacity. The numerical results demonstrate that IRS significantly enhances the performance of the UAV-based hybrid FSO/THz system. The research indicates that optimizing the number of IRS elements can substantially increase throughput and reliability while minimizing switching costs. Additionally, the multi-hop approach specifically addresses the line-of-sight (LoS) dependency limitations inherent in FSO and THz systems by utilizing UAVs as dynamic relay points. This strategy effectively bridges longer distances, overcoming physical and atmospheric obstacles, and ensures stable communication links even under adverse conditions. This study underscores that the enhanced multi-hop FSO/THz link is highly effective for emergency communications after disasters, addressing the challenge of scarce spectrum resources. By strategically deploying UAVs as relay points in a multi-hop configuration, the system achieves greater flexibility and resilience, making it highly suitable for critical communication scenarios where traditional networks might fail. Full article
(This article belongs to the Special Issue Advanced Optical Wireless Communication Systems)
Show Figures

Figure 1

25 pages, 7776 KiB  
Article
Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment
by Christian Nelson, Xuhong Li, Aleksei Fedorov, Benjamin Deutschmann and Fredrik Tufvesson
Sensors 2024, 24(5), 1385; https://doi.org/10.3390/s24051385 - 21 Feb 2024
Cited by 3 | Viewed by 2200
Abstract
Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths [...] Read more.
Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths available in the higher bands have inspired much work regarding sensing in the millimeter-wave (mmWave) and sub-THz bands; however, the sub-6 GHz cellular bands will still be the main provider of wide cellular coverage due to the more favorable propagation conditions. In this paper, we present a measurement system and results of sub-6 GHz distributed multiple-input-multiple-output (MIMO) measurements performed in an industrial environment. From the measurements, we evaluated the diversity for both large-scale and small-scale fading and characterized the link reliability. We also analyzed the possibility of multistatic sensing and positioning of users in the environment, with the initial results showing a mean-square error below 20 cm on the estimated position. Further, the results clearly showed that new channel models are needed that are spatially consistent and deal with the nonstationary channel properties among the antennas. Full article
(This article belongs to the Special Issue Sensing Technologies and Wireless Communications for Industrial IoT)
Show Figures

Figure 1

14 pages, 718 KiB  
Article
UAV-Assisted Wideband Terahertz Wireless Communications with Time-Delay Phased UPA under Beam Squint
by Hao Huang, Qinghe Zheng and Hikmet Sari
Drones 2023, 7(10), 608; https://doi.org/10.3390/drones7100608 - 27 Sep 2023
Cited by 2 | Viewed by 1820
Abstract
Future Unmanned Aerial Vehicle (UAV)-assisted wireless communication systems are expected to utilize wide bandwidths available at terahertz (THz) frequencies to enhance system throughput. To compensate for the severe path loss in the THz band, it is essential to have a multitude of antennas [...] Read more.
Future Unmanned Aerial Vehicle (UAV)-assisted wireless communication systems are expected to utilize wide bandwidths available at terahertz (THz) frequencies to enhance system throughput. To compensate for the severe path loss in the THz band, it is essential to have a multitude of antennas in the UAV to generate narrow beams for directional transmission. However, narrow beams severely limit its spatial coverage, which greatly affects the efficiency of large-scale access UAV-assisted THz systems. Moreover, the combination of massive antennas and large bandwidth at THz makes the misalignment of the beams caused by beam squint non-negligible and also high energy consumption. UAV-assisted communication technology can effectively increase spatial coverage and provide reliable LoS communication links. In addition, reducing the number of radio frequency (RF) chains while ensuring the number of transmitted data streams and space division multiplexing capability is also an effective way to reduce energy consumption in the UAV communication. In this paper, a single RF chain uniform planar array (UPA) with true-time-delays (TTDs) is equipped on the UAV to achieve two dimensional (2D) beams and split spatial beams to improve transmission efficiency. We analyze the 2D beam squint of the UPA and design a time-delay phased UPA for UAV-assisted THz communication systems. By introducing TTDs between the single RF chain and phase shifters, the beam squint can be controlled flexibly by introducing the delay between each antenna. When TTDs are arranged in both the horizontal and vertical dimensions, the coverage of the beams becomes more complicated compared to uniform linear arrays (ULA). Simulation results show that the proposed time-delay phased UPA can achieve better performance in both single-beam and multi-beam modes for single user and multi-user scenarios compared with conventional phased UPA, respectively. In addition, we propose frequency division beam multiple access (FDBMA) multi access technology, which achieves more efficient multi access by reusing resources from different frequency beam pairs. Finally, the results also show that the enlargement of the beamwidth through the proposed FDBMA strategy can also increase the performance in multi-user scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

18 pages, 6106 KiB  
Article
Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons
by Vasily Valerievich Gerasimov, Alexey Konstantinovich Nikitin, Alexey Georgievich Lemzyakov, Ivan Aleksandrovich Azarov and Igor Aleksandrovich Kotelnikov
Appl. Sci. 2023, 13(13), 7898; https://doi.org/10.3390/app13137898 - 5 Jul 2023
Cited by 8 | Viewed by 2119
Abstract
With the intensive development of data transmitting and processing devices in the terahertz (THz) frequency range, an important part of which are integrated plasmonic components and communication lines, it becomes necessary to measure correctly the optical constants of their conductive surfaces. In this [...] Read more.
With the intensive development of data transmitting and processing devices in the terahertz (THz) frequency range, an important part of which are integrated plasmonic components and communication lines, it becomes necessary to measure correctly the optical constants of their conductive surfaces. In this paper, we describe a reliable method for determining the effective permittivity εm of a metal surface from the measured characteristics (refractive and absorption indices) of THz surface plasmon polaritons (SPPs). The novelty of the method is the conduction of measurements on a metal surface with a dielectric layer of subwavelength thickness, suppressing the radiative losses of SPPs, which are not taken into account by the SPP dispersion equation. The method is tested on a number of flat “gold sputtering–zinc sulfide layer–air” structures with the use of the THz radiation (λ0 = 141 μm) from the Novosibirsk free electron laser (NovoFEL). The SPP characteristics are determined from interferograms measured with a plasmon Michelson interferometer. It is found that the method allows a significant increase in the accuracy of the εm in comparison with measurements on the same metal surface without a dielectric layer. Full article
(This article belongs to the Special Issue Terahertz Technologies and Applications)
Show Figures

Figure 1

30 pages, 2876 KiB  
Article
Fight against Future Pandemics: UAV-Based Data-Centric Social Distancing, Sanitizing, and Monitoring Scheme
by Rajesh Gupta, Pronaya Bhattacharya, Sudeep Tanwar, Ravi Sharma, Fayez Alqahtani, Amr Tolba, Florin-Emilian Țurcanu and Maria Simona Raboaca
Drones 2022, 6(12), 381; https://doi.org/10.3390/drones6120381 - 27 Nov 2022
Cited by 3 | Viewed by 4039
Abstract
The novel coronavirus disease-2019 (COVID-19) has transformed into a global health concern, which resulted in human containment and isolation to flatten the curve of mortality rates of infected patients. To leverage the massive containment strategy, fifth-generation (5G)-envisioned unmanned aerial vehicles (UAVs) are used [...] Read more.
The novel coronavirus disease-2019 (COVID-19) has transformed into a global health concern, which resulted in human containment and isolation to flatten the curve of mortality rates of infected patients. To leverage the massive containment strategy, fifth-generation (5G)-envisioned unmanned aerial vehicles (UAVs) are used to minimize human intervention with the key benefits of ultra-low latency, high bandwidth, and reliability. This allows phased treatment of infected patients via threefold functionalities (3FFs) such as social distancing, proper sanitization, and inspection and monitoring. However, UAVs have to send massive recorded data back to ground stations (GS), which requires a real-time device connection density of 107/km2, which forms huge bottlenecks on 5G ecosystems. A sixth-generation (6G) ecosystem can provide terahertz (THz) frequency bands with massive short beamforming cells, intelligent deep connectivity, and physical- and link-level protocol virtualization. The UAVs form a swarm network to assure 3FFs which requires high-end computations and are data-intensive; thus, these computational tasks can be offloaded to nearby edge servers, which employ local federated learning to train the global models. It synchronizes the UAV task formations and optimizes the network functions. Task optimization of UAV swarms in 6G-assisted channels allows better management and ubiquitous and energy-efficient seamless communication over ground, space, and underwater channels. Thus, a data-centric 3FF approach is essential to fight against future pandemics, with a 6G backdrop channel. The proposed scheme is compared with traditional fourth-generation (4G) and 5G-networks-based schemes to indicate its efficiency in traffic density, processing latency, spectral efficiency, UAV mobility, radio loss, and device connection density. Full article
(This article belongs to the Special Issue Evidence-Based Drone Innovation & Research for Healthcare)
Show Figures

Figure 1

19 pages, 5370 KiB  
Article
SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications
by Haider W. Oleiwi and Hamed Al-Raweshidy
Sensors 2022, 22(16), 6200; https://doi.org/10.3390/s22166200 - 18 Aug 2022
Cited by 23 | Viewed by 2464
Abstract
The constraints of 5G communication systems compel further improvements to be compatible with 6G candidate technologies, especially to cope with the limited wavelengths of blockage-sensitive terahertz (THz) frequencies. In this paper integrating cooperative simultaneous wireless information and power transfer (SWIPT) and hybrid-non-orthogonal multiple [...] Read more.
The constraints of 5G communication systems compel further improvements to be compatible with 6G candidate technologies, especially to cope with the limited wavelengths of blockage-sensitive terahertz (THz) frequencies. In this paper integrating cooperative simultaneous wireless information and power transfer (SWIPT) and hybrid-non-orthogonal multiple access (H-NOMA) using THz frequency bands are suggested. We investigated and developed an optimal SWIPT-pairing mechanism for the multilateral proposed system that represents a considerable enhancement in energy/spectral efficiencies while improving the significant system specifications. Given the system performance investigation and the gains achieved, in this paper, wireless communication systems were optimized and upgraded, making use of promising technologies including H-NOMA and THz communications. This process aimed to alleviate the THz transmission challenges and improve wireless connectivity, resource availability, processing, robustness, capacity, user-fairness, and overall performance of communication networks. It thoroughly optimized the best H-NOMA pairing scheme for cell users. The conducted results showed how the proposed technique managed to improve energy and spectral efficiencies compared to the related work by more than 75%, in addition to the dynamism of the introduced mechanism. This system reduces the transceivers’ hardware and computational complexity while improving reliability and transmission rates, without the need for complex technologies, e.g., multi-input multi-output or reflecting services. Full article
(This article belongs to the Special Issue 6G Wireless Communication Systems)
Show Figures

Figure 1

13 pages, 2540 KiB  
Article
Cooperative SWIPT MIMO-NOMA for Reliable THz 6G Communications
by Haider W. Oleiwi, Nagham Saeed and Hamed Al-Raweshidy
Network 2022, 2(2), 257-269; https://doi.org/10.3390/network2020017 - 24 Apr 2022
Cited by 25 | Viewed by 3589
Abstract
In this paper, cooperative simultaneous wireless information and power transfer (SWIPT) terahertz (THz) multiple-input multiple-output (MIMO) nonorthogonal multiple access (NOMA) are considered. The aim is to improve wireless connectivity, resource management, scalability, and user fairness, as well as to enhance the overall performance [...] Read more.
In this paper, cooperative simultaneous wireless information and power transfer (SWIPT) terahertz (THz) multiple-input multiple-output (MIMO) nonorthogonal multiple access (NOMA) are considered. The aim is to improve wireless connectivity, resource management, scalability, and user fairness, as well as to enhance the overall performance of wireless communications and reliability. We optimized the current wireless communication systems by utilizing MIMO-NOMA technology and THz frequencies, exploring the performance and gains obtained. Hence, we developed a path-selection mechanism for the far user to enhance the system performance. The EH SWIPT approach used to improve THz communications performance was investigated. Moreover, we proposed a reliable transmission mechanism with a non-LoS (NLoS) line of THz communications for open areas or any location where the intelligent reflecting surface (IRS) cannot be deployed, in addition to using the cheap decode-forward (DF) relaying instead of IRS. The performance and scalability of the upgradeable system were examined, using adjustable parameters and the simplest modulation scheme. The system presents a noticeable improvement in energy efficiency (EE) and spectral efficiency (SE), in addition to reliability. Accordingly, the outcome showed an improvement in the overall reliability, SE, EE, and outage probability as compared to the conventional cooperative networks of the recent related work (e.g., cooperative MIMO-NOMA with THz) by multiple times with a simpler design, whereas it outperformed our previous work, i.e., cooperative SWIPT SISO-NOMA with THz, by more than 50%, with a doubled individual user gain. This system reduces the transceiver hardware and improves reliability with increasing transmission rates. Full article
Show Figures

Figure 1

11 pages, 5482 KiB  
Article
The Role of the Directivity of Various THz Detectors in Multiplexing Systems
by Paweł Komorowski, Agnieszka Siemion, Michał Walczakowski and Przemysław Zagrajek
Appl. Sci. 2022, 12(7), 3545; https://doi.org/10.3390/app12073545 - 31 Mar 2022
Cited by 8 | Viewed by 1685
Abstract
Many modern and future systems, based on the wireless communication at the THz frequencies, could benefit from multichannel transmission. One of the possible approaches is to (de)multiplex several separate signals to and from a single transmission channel using dedicated diffractive optical elements. Proper [...] Read more.
Many modern and future systems, based on the wireless communication at the THz frequencies, could benefit from multichannel transmission. One of the possible approaches is to (de)multiplex several separate signals to and from a single transmission channel using dedicated diffractive optical elements. Proper selection of receivers for such systems is crucial and strongly depends not only on the frequencies used but also on the geometry of the setup. In this article, we present a complex analysis of the applicability of various detectors for the characterization of highly convergent and off-axis beams. Three three-focal-spot diffractive lenses have been designed, optimized and manufactured to verify the influence of parameters such as focal length, focal position shift, deflection angle or radiation frequency on the proper detection and separation of focal spots using different receivers. The reliable characterization of multi-focal-point structures can be performed only with high-acceptance-angle detectors, such as, for example, field-effect transistors equipped with a patch antenna. On the other hand, for the detection of a single demultiplexed signal, a much more directive receiver can be applied, as long as it is placed at a proper angle. Full article
(This article belongs to the Special Issue New Challenges in Terahertz Detectors)
Show Figures

Figure 1

15 pages, 3930 KiB  
Article
Cooperative SWIPT THz-NOMA/6G Performance Analysis
by Haider W. Oleiwi and Hamed Al-Raweshidy
Electronics 2022, 11(6), 873; https://doi.org/10.3390/electronics11060873 - 10 Mar 2022
Cited by 32 | Viewed by 3862
Abstract
In this paper, cooperative simultaneous wireless information and power transfer terahertz (THz)-nonorthogonal multiple access (NOMA) is considered to overcome the challenging shortages that THz communications have due to THz characteristics. The proposed system presents a noticeable improvement in energy efficiency (EE) and spectral [...] Read more.
In this paper, cooperative simultaneous wireless information and power transfer terahertz (THz)-nonorthogonal multiple access (NOMA) is considered to overcome the challenging shortages that THz communications have due to THz characteristics. The proposed system presents a noticeable improvement in energy efficiency (EE) and spectral efficiency (SE), in addition to other important metrics. By utilizing NOMA technology and THz frequencies, it aims to improve connectivity, resource management, SE, reliability, scalability, user fairness, and to enhance the overall performance of wireless communications. Accordingly, the outcome shows how the introduced energy harvesting technique manages to improve EE and SE compared with the conventional cooperative networks of the recent related work (e.g., cooperative MIMO-NOMA with THz) by 70%. The author also minimizes the transmission power and maximizes the EE by using a decode-and-forward relay rather than an intelligent reflecting surface, which aims to reduce the dissipation in the transceiver hardware, computational complexity, and improves reliability and transmission rate. Full article
(This article belongs to the Special Issue Smart Applications of 5G Network)
Show Figures

Figure 1

Back to TopTop