Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Fabrication and Testing
2.3. Experimental Data Processing
3. Results
3.1. Determination of the Permittivity of the Metal Surface from the SPP Characteristics on a Set of Samples with a Dielectric Layer of Various Thicknesses
3.2. Determination of the Effective Dielectric Constant of the Metal Surface from SPP Characteristics on One Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, C.A. Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far Infrared. Appl. Opt. 1983, 22, 1099. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Gupta, B.; Chanana, A.; Nahata, A. Non-Drude like Behaviour of Metals in the Terahertz Spectral Range. Adv. Phys. X 2016, 1, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Parshin, V.V.; Myasnikova, S.E. Metals Reflectivity at Frequencies 100–360 GHz. In Proceedings of the 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, 19–23 September 2005; Volume 2, pp. 569–570. [Google Scholar]
- Naftaly, M.; Dudley, R. Terahertz Reflectivities of Metal-Coated Mirrors. Appl. Opt. 2011, 50, 3201. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Gatesman, A.J.; Giles, R.H.; Waldman, J. High-Precision Reflectometer for Submillimeter Wavelengths. J. Opt. Soc. Am. B 1995, 12, 212. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids (V.1); Academic Press: Cambridge, MA, USA, 2016; 824p. [Google Scholar]
- Reuter, G.E.H.; Sondheimer, E.H. Theory of the Anomalous Skin Effect in Metals. Nature 1948, 161, 394–395. [Google Scholar] [CrossRef]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical Properties of Au, Ni, and Pb at Submillimeter Wavelengths. Appl. Opt. 1987, 26, 744. [Google Scholar] [CrossRef]
- Brändli, G.; Sievers, A.J. Absolute Measurement of the Far-Infrared Surface Resistance of Pb. Phys. Rev. B 1972, 5, 3550–3557. [Google Scholar] [CrossRef]
- Agranovich, V.M.; Mills, D.L. (Eds.) Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces; Modern Problems in Condensed Matter Sciences; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1982; ISBN 978-0-444-86165-8. [Google Scholar]
- Maier, S.A. Plasmonics: The Promise of Highly Integrated Optical Devices. IEEE J. Select. Top. Quantum Electron. 2006, 12, 1671–1677. [Google Scholar] [CrossRef]
- Zhu, W.; Agrawal, A.; Nahata, A. Planar Plasmonic Terahertz Guided-Wave Devices. Opt. Express 2008, 16, 6216. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz Surface Plasmonic Waves: A Review. Adv. Photonics 2020, 2, 1. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking Surface Plasmons with Structured Surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.A.; Andrews, S.R. Terahertz Pulse Propagation Using Plasmon-Polariton-like Surface Modes on Structured Conductive Surfaces. Appl. Phys. Lett. 2006, 88, 251120. [Google Scholar] [CrossRef]
- Williams, C.R.; Andrews, S.R.; Maier, S.A.; Fernández-Domínguez, A.I.; Martín-Moreno, L.; García-Vidal, F.J. Highly Confined Guiding of Terahertz Surface Plasmon Polaritons on Structured Metal Surfaces. Nat. Photonics 2008, 2, 175–179. [Google Scholar] [CrossRef]
- Kretschmann, E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen. Z. Physik. 1971, 241, 313–324. [Google Scholar] [CrossRef]
- Kitajima, H.; Hieda, K.; Suematsu, Y. Use of a Total Absorption ATR Method to Measure Complex Refractive Indices of Metal-Foils. J. Opt. Soc. Am. 1980, 70, 1507. [Google Scholar] [CrossRef]
- Regalado, L.E.; Machorro, R.; Siqueiros, J.M. Attenuated-Total-Reflection Technique for the Determination of Optical Constants. Appl. Opt. 1991, 30, 3176. [Google Scholar] [CrossRef] [PubMed]
- Owner-Petersen, M.; Zhu, B.-S.; Dalsgaard, E. Extreme Attenuation of Total Internal Reflection Used for Determination of Optical Properties of Metals. J. Opt. Soc. Am. A 1987, 4, 1741. [Google Scholar] [CrossRef]
- Lafait, J.; Abeles, F.; Theye, M.L.; Vuye, G. Determination of the Infrared Optical Constants of Highly Reflecting Materials by Means of Surface Plasmon Excitation-Application to Pd. J. Phys. F Met. Phys. 1978, 8, 1597–1606. [Google Scholar] [CrossRef]
- Zhizhin, G.N.; Morozov, N.N.; Moskalova, M.A.; Sigarov, A.A.; Shomina, E.V.; Yakovlev, V.A.; Grigos, V.I. Surface Electromagnetic Wave Absorption on Copper Surfaces with Langmuir Films Using Co2 Laser Excitation. Thin Solid Films 1980, 70, 163–168. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Knyazev, B.A.; Nikitin, A.K.; Zhizhin, G.N. A Way to Determine the Permittivity of Metallized Surfaces at Terahertz Frequencies. Appl. Phys. Lett. 2011, 98, 171912. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P. Coherent Time-Domain Far-Infrared Spectroscopy. J. Opt. Soc. Am. B 1985, 2, 606. [Google Scholar] [CrossRef]
- Grischkowsky, D.; Keiding, S.; Van Exter, M.; Fattinger, C. FarInfrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors. J. Opt. Soc. Am. B 1990, 7, 2006. [Google Scholar] [CrossRef]
- Zhou, D.; Parrott, E.P.J.; Paul, D.J.; Zeitler, J.A. Determination of Complex Refractive Index of Thin Metal Films from Terahertz Time-Domain Spectroscopy. J. Appl. Phys. 2008, 104, 053110. [Google Scholar] [CrossRef]
- Yasuda, H.; Hosako, I. Measurement of Terahertz Refractive Index of Metal with Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. 2008, 47, 1632–1634. [Google Scholar] [CrossRef]
- Han, P.Y.; Tani, M.; Usami, M.; Kono, S.; Kersting, R.; Zhang, X.-C. A Direct Comparison between Terahertz Time-Domain Spectroscopy and Far-Infrared Fourier Transform Spectroscopy. J. Appl. Phys. 2001, 89, 2357–2359. [Google Scholar] [CrossRef]
- Isaac, T.H.; Barnes, W.L.; Hendry, E. Determining the Terahertz Optical Properties of Subwavelength Films Using Semiconductor Surface Plasmons. Appl. Phys. Lett. 2008, 93, 241115. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Liu, S.; Gupta, B.; Nahata, A. Self-Referenced Measurements of the Dielectric Properties of Metals Using Terahertz Time-Domain Spectroscopy via the Excitation of Surface Plasmon-Polaritons. Photonics Res. 2013, 1, 148. [Google Scholar] [CrossRef]
- Nazarov, M.M.; Shkurinov, A.P.; Garet, F.; Coutaz, J.-L. Characterization of Highly Doped Si Through the Excitation of THz Surface Plasmons. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 680–686. [Google Scholar] [CrossRef]
- Kapitulnik, A.; Deutscher, G. Percolation Scale Effects in Metal-Insulator Thin Films. J. Stat. Phys. 1984, 36, 815–826. [Google Scholar] [CrossRef]
- Tomilina, O.A.; Berzhansky, V.N.; Tomilin, S.V. The Influence of the Percolation Transition on the Electric Conductive and Optical Properties of Ultrathin Metallic Films. Phys. Solid State 2020, 62, 700–707. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Knyazev, B.A.; Lemzyakov, A.G.; Nikitin, A.K.; Zhizhin, G.N. Growth of Terahertz Surface Plasmon Propagation Length Due to Thin-Layer Dielectric Coating. J. Opt. Soc. Am. B 2016, 33, 2196. [Google Scholar] [CrossRef]
- Kumar, M.; Porsezian, K. A Comparative Study of Surface Plasmon Polariton Propagation Characteristics of Various Metals. AIP Conf. Proc. 2016, 1731, 080080. [Google Scholar] [CrossRef]
- Nikitin, A.K.; Khitrov, O.V.; Gerasimov, V.V.; Khasanov, I.S.; Ryzhova, T.A. In-Plane Interferometry of Terahertz Surface Plasmon Polaritons. J. Phys. Conf. Ser. 2019, 1421, 012013. [Google Scholar] [CrossRef]
- Nikitin, A.K.; Khitrov, O.V.; Gerasimov, V.V. Quality Control of Solid Surfaces by the Method of Surface Plasmon Interferometry in the Terahertz Range. J. Phys. Conf. Ser. 2020, 1636, 012037. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Nikitin, A.K.; Khitrov, O.V.; Lemzyakov, A.G. Experimental Demonstration of Surface Plasmon Michelson Interferometer at the Novosibirsk Terahertz Free-Electron Laser. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Nikitin, A.K.; Lemzyakov, A.G. Planar Michelson interferometer using terahertz surface plasmons. Instrum. Exp. Tech. 2023, 66, 423–434. [Google Scholar] [CrossRef]
- Shevchenko, O.A.; Vinokurov, N.A.; Arbuzov, V.S.; Chernov, K.N.; Davidyuk, I.V.; Deichuly, O.I.; Dementyev, E.N.; Dovzhenko, B.A.; Getmanov, Y.V.; Gorbachev, Y.I.; et al. The Novosibirsk Free-Electron Laser Facility. Bull. Russ. Acad. Sci. Phys. 2019, 83, 228–231. [Google Scholar] [CrossRef]
- Islam, M.S.; Cordeiro, C.M.B.; Nine, M.J.; Sultana, J.; Cruz, A.L.S.; Dinovitser, A.; Ng, B.W.-H.; Ebendorff-Heidepriem, H.; Losic, D.; Abbott, D. Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology. IEEE Access 2020, 8, 97204–97214. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Knyazev, B.A.; Nikitin, A.K. Method for indication of diffraction satellites of surface plasmons in the terahertz range. Tech. Phys. Lett. 2010, 36, 93–101. [Google Scholar] [CrossRef]
- Gerasimov, V.V.; Nikitin, A.K.; Lemzyakov, A.G.; Azarov, I.A.; Milekhin, I.A.; Knyazev, B.A.; Bezus, E.A.; Kadomina, E.A.; Doskolovich, L.L. Splitting a Terahertz Surface Plasmon Polariton Beam Using Kapton Film. J. Opt. Soc. Am. B 2020, 37, 1461. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Available online: http://www.tydexoptics.com/ru/products/thz_devices/golay_cell/ (accessed on 5 June 2023).
- Available online: http://www.nzpp.ru/product/gotovye-izdeli/fotopriemnye-ustroystva/ (accessed on 5 June 2023).
- Paulish, A.G.; Dorozhkin, K.V.; Suslyaev, V.I. Investigation of the spectral characteristics of the sensitivity of a pyroelectric detector based on tetraaminodiphenyl in the terahertz range. In Proceedings of the Actual Problems of Radiophysics International Conference, Tomsk, Russia, 20–22 October 2021; pp. 482–485. [Google Scholar]
- Spesivtsev, E.V.; Rykhlitskii, S.V.; Shvets, V.A. Development of methods and instruments for optical ellipsometry at the institute of semiconductor physics of the Siberian branch of the Russian academy of sciences. Avtometriya 2011, 47, 5–12. [Google Scholar] [CrossRef]
- Kubarev, V.V.; Kulipanov, G.N.; Kolobanov, E.I.; Matveenko, A.N.; Medvedev, L.E.; Ovchar, V.K.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Vinokurov, N.A. Modulation Instability, Three Mode Regimes and Harmonic Generation at the Novosibirsk Terahertz Free Electron Laser. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 603, 25–27. [Google Scholar] [CrossRef]
- Grigor’ev, I.S. (Ed.) Fizičeskie Veličiny: Spravočnik; Ėnergoatomizdat: Moscow, Russia, 1991; ISBN 978-5-283-04013-4. [Google Scholar]
- Mathar, R.J. Refractive Index of Humid Air in the Infrared: Model Fits. J. Opt. A Pure Appl. Opt. 2007, 9, 470–476. [Google Scholar] [CrossRef]
- Wang, K.; Mittleman, D.M. Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range. Phys. Rev. Lett. 2006, 96, 157401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, J.J.; Stegeman, G.I.; Tamir, T. Surface-Polariton-like Waves Guided by Thin, Lossy Metal Films. Phys. Rev. B 1986, 33, 5186–5201. [Google Scholar] [CrossRef] [PubMed]
- Bach, H. On the Downhill Method. Commun. ACM 1969, 12, 675–677. [Google Scholar] [CrossRef]
- Zhi-Xian, J.; Du-Luo, Z.; Liang, M.; Chun-Chao, Q.; Zu-Hai, C. An Efficient Pulsed CH 3 OH Terahertz Laser Pumped by a TEA CO2 Laser. Chin. Phys. Lett. 2010, 27, 024211. [Google Scholar] [CrossRef]
- Kozlov, G.; Volkov, A. Coherent Source Submillimeter Wave Spectroscopy. In Millimeter and Submillimeter Wave Spectroscopy of Solids; Grüner, G., Ed.; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 74, pp. 51–109. ISBN 978-3-540-62860-6. [Google Scholar]
- Idehara, T.; Sabchevski, S.P.; Glyavin, M.; Mitsudo, S. The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging. Appl. Sci. 2020, 10, 980. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Ban, D. High-Temperature Terahertz Quantum Cascade Lasers. Prog. Quantum Electron. 2021, 80, 100363. [Google Scholar] [CrossRef]
- Kubarev, V.V. Optical Systems, Diagnostics, and Experiments on Terahertz and Infrared Free Electron Lasers. Ph.D. Thesis, Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia, 2016; p. 321. [Google Scholar]
- Mamrashev, A.A.; Minakov, F.A.; Maximov, L.V.; Nikolaev, N.A.; Chapovsky, P.L. Terahertz Time-Domain Spectrometer with Precision Delay Line Encoder. EPJ Web. Conf. 2018, 195, 05007. [Google Scholar] [CrossRef] [Green Version]
- Hinderks, L.W.; Maione, A. Copper Conductivity at Millimeter-Wave Frequencies. Bell Syst. Tech. J. 1980, 59, 43–65. [Google Scholar] [CrossRef]
- Li, Y.; Tantiwanichapan, K.; Swan, A.K.; Paiella, R. Graphene Plasmonic Devices for Terahertz Optoelectronics. Nanophotonics 2020, 9, 1901–1920. [Google Scholar] [CrossRef]
- Kotelnikov, I.A.; Gerasimov, V.V.; Knyazev, B.A. Diffraction of a Surface Wave on a Conducting Rectangular Wedge. Phys. Rev. A 2013, 87, 023828. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimov, V.V.; Nikitin, A.K.; Lemzyakov, A.G.; Azarov, I.A.; Kotelnikov, I.A. Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons. Appl. Sci. 2023, 13, 7898. https://doi.org/10.3390/app13137898
Gerasimov VV, Nikitin AK, Lemzyakov AG, Azarov IA, Kotelnikov IA. Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons. Applied Sciences. 2023; 13(13):7898. https://doi.org/10.3390/app13137898
Chicago/Turabian StyleGerasimov, Vasily Valerievich, Alexey Konstantinovich Nikitin, Alexey Georgievich Lemzyakov, Ivan Aleksandrovich Azarov, and Igor Aleksandrovich Kotelnikov. 2023. "Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons" Applied Sciences 13, no. 13: 7898. https://doi.org/10.3390/app13137898
APA StyleGerasimov, V. V., Nikitin, A. K., Lemzyakov, A. G., Azarov, I. A., & Kotelnikov, I. A. (2023). Obtaining the Effective Dielectric Permittivity of a Conducting Surface in the Terahertz Range via the Characteristics of Surface Plasmon Polaritons. Applied Sciences, 13(13), 7898. https://doi.org/10.3390/app13137898