The Role of the Directivity of Various THz Detectors in Multiplexing Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Detectors
2.2. Three-Focal-Spot Lenses
2.3. Experimental Setup
3. Results
3.1. Characterisation of the Detectors
3.2. Examination of the Three-Focal-Spot Lenses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOE | Diffractive Optical Element |
DWL | Design Wavelength |
FET | Field-effect transistor |
QOD | Quasi-Optical Detector |
References
- Irizawa, A.; Lupi, S.; Marcelli, A. Terahertz as a Frontier Area for Science and Technology. Condens. Matter 2021, 6, 23. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Huai, B.; Wang, S.; Zhang, Y.; Wang, D.; Rong, L.; Zheng, Y. Continuous-Wave THz Imaging for Biomedical Samples. Appl. Sci. 2021, 11, 71. [Google Scholar] [CrossRef]
- Tao, Y.H.; Fitzgerald, A.J.; Wallace, V.P. Non-contact, non-destructive testing in various industrial sectors with terahertz technology. Sensors 2020, 20, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlosta, P.; Nita, M.; Powala, D.; Świderski, W. Terahertz radiation in non-destructive testing of composite pyrotechnic materials. Compos. Struct. 2022, 279, 114770. [Google Scholar] [CrossRef]
- Leahy-Hoppa, M.R.; Fitch, M.J.; Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 2009, 395, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Tzydynzhapov, G.; Gusikhin, P.; Muravev, V.; Dremin, A.; Nefyodov, Y.; Kukushkin, I. New real-time sub-terahertz security body scanner. J. Infrared Millim. Terahertz Waves 2020, 41, 632–641. [Google Scholar] [CrossRef]
- Saeed, A.; Gurbuz, O.; Akkas, M.A. Terahertz communications at various atmospheric altitudes. Phys. Commun. 2020, 41, 101113. [Google Scholar] [CrossRef]
- Horst, Y.; Blatter, T.; Kulmer, L.; Bitachon, B.I.; Baeuerle, B.; Destraz, M.; Heni, W.; Koepfli, S.; Habegger, P.; Eppenberger, M.; et al. Transparent optical-THz-optical Link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Moon, S.R.; Sung, M.; Lee, J.K.; Cho, S.H. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band. J. Light. Technol. 2021, 39, 357–362. [Google Scholar] [CrossRef]
- Valušis, G.; Lisauskas, A.; Yuan, H.; Knap, W.; Roskos, H.G. Roadmap of terahertz imaging 2021. Sensors 2021, 21, 4092. [Google Scholar] [CrossRef] [PubMed]
- Siemion, A. The magic of optics—An overview of recent advanced terahertz diffractive optical elements. Sensors 2021, 21, 100. [Google Scholar] [CrossRef] [PubMed]
- Stover, J.C. Optical Scattering. Measurement and Analysis; SPIE Optical Engineering Press: Bellingham, WA, USA, 1995. [Google Scholar]
- Minkevičius, L.; Voisiat, B.; Mekys, A.; Venckevičius, R.; Kašalynas, I.; Seliuta, D.; Valušis, G.; Račiukaitis, G.; Tamošiǔnas, V. Terahertz zone plates with integrated laser-ablated bandpass filters. Electron. Lett. 2013, 49, 49–50. [Google Scholar] [CrossRef]
- Tamošiūnaitė, M.; Indrišiūnas, S.; Tamošiūnas, V.; Minkevičius, L.; Urbanowicz, A.; Račiukaitis, G.; Kašalynas, I.; Valušis, G. Focusing of terahertz radiation with laser-ablated antireflective structures. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 541–548. [Google Scholar] [CrossRef]
- O’Shea, D.C.; Suleski, T.J.; Kathman, A.D.; Prather, D.W. Diffractive Optics: Design, Fabrication, and Test; SPIE Press: Bellingham, WA, USA, 2004; Volume 62. [Google Scholar]
- Siemion, A.; Komorowski, P.; Surma, M.; Ducin, I.; Sobotka, P.; Walczakowski, M.; Czerwińska, E. Terahertz diffractive structures for compact in-reflection inspection setup. Opt. Express 2020, 28, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, P.; Czerwińska, P.; Surma, M.; Zagrajek, P.; Piramidowicz, R.; Siemion, A. Three-focal-spot terahertz diffractive optical element-iterative design and neural network approach. Opt. Express 2021, 29, 11243–11253. [Google Scholar] [CrossRef] [PubMed]
- Hesler, J.L.; Liu, L.; Xu, H.; Duan, Y.; Weikle, R.M. The development of quasi-optical THz detectors. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008; pp. 1–2. [Google Scholar]
- Kopyt, P.; Salski, B.; Marczewski, J.; Zagrajek, P.; Lusakowski, J. Parasitic effects affecting responsivity of sub-THz radiation detector built of a MOSFET. J. Infrared Millim. Terahertz Waves 2015, 36, 1059–1075. [Google Scholar] [CrossRef] [Green Version]
- Kopyt, P.; Salski, B.; Zagrajek, P.; Obrębski, D.; Marczewski, J. Modeling of silicon-based substrates of patch antennas operating in the sub-THz range. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 424–432. [Google Scholar] [CrossRef]
- Kushwaha, R.K.; Karuppanan, P.; Malviya, L. Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter 2018, 545, 107–112. [Google Scholar] [CrossRef]
- Surma, M.; Kaluza, M.; Czerwińska, P.; Komorowski, P.; Siemion, A. Neural-network based approach to optimize THz computer generated holograms. Photonics Lett. Pol. 2021, 13, 88–90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowski, P.; Siemion, A.; Walczakowski, M.; Zagrajek, P. The Role of the Directivity of Various THz Detectors in Multiplexing Systems. Appl. Sci. 2022, 12, 3545. https://doi.org/10.3390/app12073545
Komorowski P, Siemion A, Walczakowski M, Zagrajek P. The Role of the Directivity of Various THz Detectors in Multiplexing Systems. Applied Sciences. 2022; 12(7):3545. https://doi.org/10.3390/app12073545
Chicago/Turabian StyleKomorowski, Paweł, Agnieszka Siemion, Michał Walczakowski, and Przemysław Zagrajek. 2022. "The Role of the Directivity of Various THz Detectors in Multiplexing Systems" Applied Sciences 12, no. 7: 3545. https://doi.org/10.3390/app12073545
APA StyleKomorowski, P., Siemion, A., Walczakowski, M., & Zagrajek, P. (2022). The Role of the Directivity of Various THz Detectors in Multiplexing Systems. Applied Sciences, 12(7), 3545. https://doi.org/10.3390/app12073545