Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,068)

Search Parameters:
Keywords = regional matching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

23 pages, 735 KiB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
25 pages, 2486 KiB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

35 pages, 4256 KiB  
Article
Automated Segmentation and Morphometric Analysis of Thioflavin-S-Stained Amyloid Deposits in Alzheimer’s Disease Brains and Age-Matched Controls Using Weakly Supervised Deep Learning
by Gábor Barczánfalvi, Tibor Nyári, József Tolnai, László Tiszlavicz, Balázs Gulyás and Karoly Gulya
Int. J. Mol. Sci. 2025, 26(15), 7134; https://doi.org/10.3390/ijms26157134 - 24 Jul 2025
Abstract
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly [...] Read more.
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly supervised learning offers a promising alternative by leveraging coarse or indirect labels to reduce the annotation burden. We evaluated a weakly supervised approach to segment and analyze thioflavin-S-positive parenchymal amyloid pathology in AD and age-matched brains. Our pipeline integrates three key components, each designed to operate under weak supervision. First, robust preprocessing (including retrospective multi-image illumination correction and gradient-based background estimation) was applied to enhance image fidelity and support training, as models rely more on image features. Second, class activation maps (CAMs), generated by a compact deep classifier SqueezeNet, were used to identify, and coarsely localize amyloid-rich parenchymal regions from patch-wise image labels, serving as spatial priors for subsequent refinement without requiring dense pixel-level annotations. Third, a patch-based convolutional neural network, U-Net, was trained on synthetic data generated from micrographs based on CAM-derived pseudo-labels via an extensive object-level augmentation strategy, enabling refined whole-image semantic segmentation and generalization across diverse spatial configurations. To ensure robustness and unbiased evaluation, we assessed the segmentation performance of the entire framework using patient-wise group k-fold cross-validation, explicitly modeling generalization across unseen individuals, critical in clinical scenarios. Despite relying on weak labels, the integrated pipeline achieved strong segmentation performance with an average Dice similarity coefficient (≈0.763) and Jaccard index (≈0.639), widely accepted metrics for assessing segmentation quality in medical image analysis. The resulting segmentations were also visually coherent, demonstrating that weakly supervised segmentation is a viable alternative in histopathology, where acquiring dense annotations is prohibitively labor-intensive and time-consuming. Subsequent morphometric analyses on automatically segmented Aβ deposits revealed size-, structural complexity-, and global geometry-related differences across brain regions and cognitive status. These findings confirm that deposit architecture exhibits region-specific patterns and reflects underlying neurodegenerative processes, thereby highlighting the biological relevance and practical applicability of the proposed image-processing pipeline for morphometric analysis. Full article
Show Figures

Figure 1

21 pages, 6045 KiB  
Article
Frequency-Bounded Matching Strategy for Wideband LNA Design Utilising a Relaxed SSNM Approach
by Vanya Sharma, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino, Swati Sharma and Ernesto Limiti
Appl. Sci. 2025, 15(15), 8148; https://doi.org/10.3390/app15158148 - 22 Jul 2025
Abstract
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load [...] Read more.
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load termination selection based on desired IM-OM (input mismatch-output mismatch) characteristics across the operating band. Building on these concepts, a systematic, easy-to-follow strategy is presented for implementing wideband multistage low-noise amplifiers (LNAs), significantly reducing reliance on blind CAD-based optimisation. This approach is validated through a three-stage MMIC LNA prototype, fabricated using a 0.15 μm GaAs process and operating from 28 to 34 GHz. The measured results closely match the simulation, demonstrating a stable gain of 23 ± 1 dB and a noise figure of 2–2.5 dB, confirming the practical effectiveness of the proposed design approach for wideband amplifiers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 24301 KiB  
Article
Robust Optical and SAR Image Registration Using Weighted Feature Fusion
by Ao Luo, Anxi Yu, Yongsheng Zhang, Wenhao Tong and Huatao Yu
Remote Sens. 2025, 17(15), 2544; https://doi.org/10.3390/rs17152544 - 22 Jul 2025
Abstract
Image registration constitutes the fundamental basis for the joint interpretation of synthetic aperture radar (SAR) and optical images. However, robust image registration remains challenging due to significant regional heterogeneity in remote sensing scenes (e.g., co-existing urban and marine areas within a single image). [...] Read more.
Image registration constitutes the fundamental basis for the joint interpretation of synthetic aperture radar (SAR) and optical images. However, robust image registration remains challenging due to significant regional heterogeneity in remote sensing scenes (e.g., co-existing urban and marine areas within a single image). To overcome this challenge, this article proposes a novel optical–SAR image registration method named Gradient and Standard Deviation Feature Weighted Fusion (GDWF). First, a Block-local standard deviation (Block-LSD) operator is proposed to extract block-based feature points with regional adaptability. Subsequently, a dual-modal feature description is developed, constructing both gradient-based descriptors and local standard deviation (LSD) descriptors for the neighborhoods surrounding the detected feature points. To further enhance matching robustness, a confidence-weighted feature fusion strategy is proposed. By establishing a reliability evaluation model for similarity measurement maps, the contribution weights of gradient features and LSD features are dynamically optimized, ensuring adaptive performance under varying conditions. To verify the effectiveness of the method, different optical and SAR datasets are used to compare it with the currently advanced algorithms MOGF, CFOG, and FED-HOPC. The experimental results demonstrate that the proposed GDWF algorithm achieves the best performance in terms of registration accuracy and robustness among all compared methods, effectively handling optical–SAR image pairs with significant regional heterogeneity. Full article
Show Figures

Figure 1

25 pages, 8560 KiB  
Article
Visual Point Cloud Map Construction and Matching Localization for Autonomous Vehicle
by Shuchen Xu, Kedong Zhao, Yongrong Sun, Xiyu Fu and Kang Luo
Drones 2025, 9(7), 511; https://doi.org/10.3390/drones9070511 - 21 Jul 2025
Viewed by 146
Abstract
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. [...] Read more.
Collaboration between autonomous vehicles and drones can enhance the efficiency and connectivity of three-dimensional transportation systems. When satellite signals are unavailable, vehicles can achieve accurate localization by matching rich ground environmental data to digital maps, simultaneously providing the auxiliary localization information for drones. However, conventional digital maps suffer from high construction costs, easy misalignment, and low localization accuracy. Thus, this paper proposes a visual point cloud map (VPCM) construction and matching localization for autonomous vehicles. We fuse multi-source information from vehicle-mounted sensors and the regional road network to establish the geographically high-precision VPCM. In the absence of satellite signals, we segment the prior VPCM on the road network based on real-time localization results, which accelerates matching speed and reduces mismatch probability. Simultaneously, by continuously introducing matching constraints of real-time point cloud and prior VPCM through improved iterative closest point matching method, the proposed solution can effectively suppress the drift error of the odometry and output accurate fusion localization results based on pose graph optimization theory. The experiments carried out on the KITTI datasets demonstrate the effectiveness of the proposed method, which can autonomously construct the high-precision prior VPCM. The localization strategy achieves sub-meter accuracy and reduces the average error per frame by 25.84% compared to similar methods. Subsequently, this method’s reusability and localization robustness under light condition changes and environment changes are verified using the campus dataset. Compared to the similar camera-based method, the matching success rate increased by 21.15%, and the average localization error decreased by 62.39%. Full article
Show Figures

Figure 1

12 pages, 2353 KiB  
Article
Intergrader Agreement on Qualitative and Quantitative Assessment of Diabetic Retinopathy Severity Using Ultra-Widefield Imaging: INSPIRED Study Report 1
by Eleonora Riotto, Wei-Shan Tsai, Hagar Khalid, Francesca Lamanna, Louise Roch, Medha Manoj and Sobha Sivaprasad
Diagnostics 2025, 15(14), 1831; https://doi.org/10.3390/diagnostics15141831 - 21 Jul 2025
Viewed by 160
Abstract
Background/Objectives: Discrepancies in diabetic retinopathy (DR) grading are well-documented, with retinal non-perfusion (RNP) quantification posing greater challenges. This study assessed intergrader agreement in DR evaluation, focusing on qualitative severity grading and quantitative RNP measurement. We aimed to improve agreement through structured consensus [...] Read more.
Background/Objectives: Discrepancies in diabetic retinopathy (DR) grading are well-documented, with retinal non-perfusion (RNP) quantification posing greater challenges. This study assessed intergrader agreement in DR evaluation, focusing on qualitative severity grading and quantitative RNP measurement. We aimed to improve agreement through structured consensus meetings. Methods: A retrospective analysis of 100 comparisons from 50 eyes (36 patients) was conducted. Two paired medical retina fellows graded ultra-widefield color fundus photographs (CFP) and fundus fluorescein angiography (FFA) images. CFP assessments included DR severity using the International Clinical Diabetic Retinopathy (ICDR) grading system, DR Severity Scale (DRSS), and predominantly peripheral lesions (PPL). FFA-based RNP was defined as capillary loss with grayscale matching the foveal avascular zone. Weekly adjudication by a senior specialist resolved discrepancies. Intergrader agreement was evaluated using Cohen’s kappa (qualitative DRSS) and intraclass correlation coefficients (ICC) (quantitative RNP). Bland–Altman analysis assessed bias and variability. Results: After eight consensus meetings, CFP grading agreement improved to excellent: kappa = 91% (ICDR DR severity), 89% (DRSS), and 89% (PPL). FFA-based PPL agreement reached 100%. For RNP, the non-perfusion index (NPI) showed moderate overall ICC (0.49), with regional ICCs ranging from 0.40 to 0.57 (highest in the nasal region, ICC = 0.57). Bland–Altman analysis revealed a mean NPI difference of 0.12 (limits: −0.11 to 0.35), indicating acceptable variability despite outliers. Conclusions: Structured consensus training achieved excellent intergrader agreement for DR severity and PPL grading, supporting the clinical reliability of ultra-widefield imaging. However, RNP measurement variability underscores the need for standardized protocols and automated tools to enhance reproducibility. This process is critical for developing robust AI-based screening systems. Full article
(This article belongs to the Special Issue New Advances in Retinal Imaging)
Show Figures

Figure 1

13 pages, 1056 KiB  
Article
Diagnostic Accuracy and Interrater Agreement of FDG-PET/CT Lymph Node Staging in High-Risk Endometrial Cancer: The SENTIREC-Endo Study
by Jorun Holm, André Henrique Dias, Oke Gerke, Annika Loft, Kirsten Bouchelouche, Mie Holm Vilstrup, Sarah Marie Bjørnholt, Sara Elisabeth Sponholtz, Kirsten Marie Jochumsen, Malene Grubbe Hildebrandt and Pernille Tine Jensen
Cancers 2025, 17(14), 2396; https://doi.org/10.3390/cancers17142396 - 19 Jul 2025
Viewed by 240
Abstract
Background/Objectives: The SENTIREC-endo study identified a safe sentinel lymph node mapping algorithm combined with PET-positive node dissection, matching radical pelvic and paraaortic lymphadenectomy in high-risk endometrial cancer. The present study evaluated the diagnostic accuracy of FDG-PET/CT for lymph node metastases in the same [...] Read more.
Background/Objectives: The SENTIREC-endo study identified a safe sentinel lymph node mapping algorithm combined with PET-positive node dissection, matching radical pelvic and paraaortic lymphadenectomy in high-risk endometrial cancer. The present study evaluated the diagnostic accuracy of FDG-PET/CT for lymph node metastases in the same population based on location, size, and Standardised Uptake Value (SUV), in addition to assessing interrater agreement across three Danish centres. Methods: This prospective multicentre study included women with high-risk endometrial cancer from the Danish SENTIREC study database (2017–2023). All patients underwent preoperative FDG-PET/CT. Diagnostic accuracy was evaluated against a pathology-confirmed reference standard. Interrater agreement was evaluated between trained specialists in Nuclear Medicine. Results: Among 227 patients, 52 patients (23%) had lymph node metastases. FDG-PET/CT identified lymph node metastases with 56% sensitivity (95% CI: 42–68) and 91% specificity (95% CI: 86–94). Positive and negative predictive values were 64% and 87%, respectively. Specificity for paraaortic nodes was high (97%), though sensitivity remained limited (56%). Lymph node size and SUVmax had moderate diagnostic value (AUC-ROC ~0.7). Interrater proportion of agreement was 95% and Cohen’s Kappa κ = 0.84 (95% CI: 0.73–0.94), the latter of which was ‘almost perfect’. Conclusions: FDG-PET/CT had limited sensitivity in lymph node staging in high-risk EC, and the diagnostic accuracy of FDG-PET/CT remains complementary to the sentinel node procedure. Due to its high specificity and strong interrater reliability, FDG-PET/CT is recommended for clinical implementation in combination with the sensitive sentinel node biopsy for the targeted dissection of PET-positive lymph nodes, particularly in paraaortic regions. Full article
(This article belongs to the Special Issue Lymph Node Dissection for Gynecologic Cancers)
Show Figures

Graphical abstract

22 pages, 1954 KiB  
Article
Pre-Evaluation of Wave Energy Converter Deployment in the Baltic Sea Through Site Limitations Using CMEMS Hindcast, Sentinel-1, and Wave Buoy Data
by Nikon Vidjajev, Sander Rikka and Victor Alari
Energies 2025, 18(14), 3843; https://doi.org/10.3390/en18143843 - 19 Jul 2025
Viewed by 477
Abstract
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a [...] Read more.
This study assesses the wave energy potential and spectral variability in the Väinameri—a semi-sheltered, island-filtered basin on Estonia’s west coast—by combining six months of high-resolution in situ wave spectra with deep learning-enhanced satellite retrievals. Directional spectra were recorded at Rohuküla Harbor using a wave-following LainePoiss buoy from June to December 2024. In parallel, one-dimensional wave spectra were reconstructed from Sentinel-1 SAR imagery using a long short-term memory (LSTM) neural network trained on more than 71,000 collocations with NORA3 WAM hindcasts. Spectral pairs matched within a ±1 h window exhibited strong agreement in the dominant 0.2–0.4 Hz frequency band, while systematic underestimation at higher frequencies reflected both the radar resolution limits and the short-period, wind–sea-dominated nature of the Baltic Sea. Our results confirm that LSTM-enhanced SAR retrievals enable robust bulk and spectral wave characterizations in data-sparse nearshore regions, and offer a practical basis for the site evaluation, device tuning, and survivability testing of pilot-scale wave energy converters under both typical and storm-driven forcing conditions. Full article
(This article belongs to the Special Issue New Advances in Wave Energy Conversion)
Show Figures

Figure 1

22 pages, 3599 KiB  
Article
A Framework for Synergy Measurement Between Transportation and Production–Living–Ecological Space Using Volume-to-Capacity Ratio, Accessibility, and Coordination
by Xiaoyi Ma, Mingmin Liu, Jingru Huang, Ruihua Hu and Hongjie He
Land 2025, 14(7), 1495; https://doi.org/10.3390/land14071495 - 18 Jul 2025
Viewed by 202
Abstract
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing [...] Read more.
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing an improved accessibility evaluation model and developing a coordination measurement algorithm, a three-dimensional evaluation mechanism covering development potential assessment, service efficiency diagnosis, and resource allocation optimization is established. Empirical research indicates that the improved accessibility indicators can precisely identify the transportation location value of regional functional cores, while the composite coordination indicators can deconstruct the spatiotemporal matching characteristics of “transportation facilities—spatial functions,” providing a dual decision-making basis for the redevelopment of existing space. This measurement system innovatively realizes the integration of planning transmission mechanisms with multi-scale application scenarios, guiding both overall spatial planning and urban renewal area re-optimization. The methodology, applied to the urban villages of Guangzhou, can significantly increase land utilization intensity and value. The research results offer a technical tool for cross-scale collaboration in land space planning reforms and provide theoretical innovations and practical guidance for the value reconstruction of existing spaces under the context of new urbanization. Full article
Show Figures

Figure 1

19 pages, 836 KiB  
Article
The Multimodal Rehabilitation of Complex Regional Pain Syndrome and Its Contribution to the Improvement of Visual–Spatial Memory, Visual Information-Processing Speed, Mood, and Coping with Pain—A Nonrandomized Controlled Trial
by Justyna Wiśniowska, Iana Andreieva, Dominika Robak, Natalia Salata and Beata Tarnacka
Brain Sci. 2025, 15(7), 763; https://doi.org/10.3390/brainsci15070763 - 18 Jul 2025
Viewed by 165
Abstract
Objectives: To investigate whether a Multimodal Rehabilitation Program (MRP) affects the change in visual–spatial abilities, especially attention, information-processing speed, visual–spatial learning, the severity of depression, and strategies for coping with pain in Complex Regional Pain Syndrome (CRPS) participants. Methods: The study [...] Read more.
Objectives: To investigate whether a Multimodal Rehabilitation Program (MRP) affects the change in visual–spatial abilities, especially attention, information-processing speed, visual–spatial learning, the severity of depression, and strategies for coping with pain in Complex Regional Pain Syndrome (CRPS) participants. Methods: The study was conducted between October 2021 and February 2023, with a 4-week rehabilitation program that included individual physiotherapy, manual and physical therapy, and psychological intervention such as psychoeducation, relaxation, and Graded Motor Imagery therapy. Twenty participants with CRPS and twenty healthy participants, forming a control group, were enlisted. The study was a 2-arm parallel: a CRPS group with MRP intervention and a healthy control group matched to the CRPS group according to demographic variables. Before and after, the MRP participants in the CRPS group were assessed for visual–spatial learning, attention abilities, severity of depression, and pain-coping strategy. The healthy control group underwent the same assessment without intervention before two measurements. The primary outcome measure was Reproduction on Rey–Osterrieth’s Complex Figure Test assessing visual–spatial learning. Results: In the post-test compared to the pre-test, the participants with CRPS obtained a significantly high score in visual–spatial learning (p < 0.01) and visual information-processing speed (p = 0.01). They made significantly fewer omission mistakes in visual working memory (p = 0.01). After the MRP compared to the pre-test, the CRPS participants indicated a decrease in the severity of depression (p = 0.04) and used a task-oriented strategy for coping with pain more often than before the rehabilitation program (p = 0.02). Conclusions: After a 4-week MRP, the following outcomes were obtained: an increase in visual–spatial learning, visual information-processing speed, a decrease in severity of depression, and a change in the pain-coping strategies—which became more adaptive. Full article
(This article belongs to the Section Neurorehabilitation)
Show Figures

Figure 1

25 pages, 4626 KiB  
Article
Study on Evolution Mechanism of Agricultural Trade Network of RCEP Countries—Complex System Analysis Based on the TERGM Model
by Shasha Ding, Li Wang and Qianchen Zhou
Systems 2025, 13(7), 593; https://doi.org/10.3390/systems13070593 - 16 Jul 2025
Viewed by 246
Abstract
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data [...] Read more.
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data of RCEP agricultural products export trade from 2000 to 2023, combining social network analysis (SNA) and the temporal exponential random graph model (TERGM). The results show the following: (1) The RCEP agricultural products trade network presents a “core-edge” hierarchical structure, with China as the core hub to drive regional resource integration and ASEAN countries developing into secondary core nodes to deepen collaborative dependence. (2) The “China-ASEAN-Japan-Korea “riangle trade structure is formed under the RCEP framework, and the network has the characteristics of a “small world”. The leading mode of South–South trade promotes the regional economic order to shift from the traditional vertical division of labor to multiple coordination. (3) The evolution of trade network system is driven by multiple factors: endogenous reciprocity and network expansion are the core structural driving forces; synergistic optimization of supply and demand matching between economic and financial development to promote system upgrading; geographical proximity and cultural convergence effectively reduce transaction costs and enhance system connectivity, but geographical distance is still the key system constraint that restricts the integration of marginal countries. This study provides a systematic and scientific analytical framework for understanding the resilience mechanism and structural evolution of regional agricultural trade networks under global shocks. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

29 pages, 6561 KiB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 326
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

19 pages, 6796 KiB  
Article
Performance Assessment of Advanced Daily Surface Soil Moisture Products in China for Sustainable Land and Water Management
by Dai Chen, Zhounan Dong and Jingnan Chen
Sustainability 2025, 17(14), 6482; https://doi.org/10.3390/su17146482 - 15 Jul 2025
Viewed by 170
Abstract
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic [...] Read more.
This study evaluates the performance of nine satellite and model-based daily surface soil moisture products, encompassing sixteen algorithm versions across mainland China to support sustainable land and water management. The assessment utilizes 2018 in situ measurements from over 2400 stations in China’s Automatic Soil Moisture Monitoring Network. All products were standardized to a 0.25° × 0.25° grid in the WGS-84 coordinate system through reprojection and resampling for consistent comparison. Daily averaged station observations were matched to product pixels using a 10 km radius buffer, with the mean station value as the reference for each time series after rigorous quality control. Results reveal distinct performance rankings, with SMAP-based products, particularly the SMAP_IB descending orbit variant, achieving the lowest unbiased root mean square deviation (ubRMSD) and highest correlation with in situ data. Blended products like ESA CCI and NOAA SMOPS, alongside reanalysis datasets such as ERA5 and MERRA2, outperformed SMOS and China’s FY3 products. The SoMo.ml product showed the broadest spatial coverage and strong temporal consistency, while FY3-based products showed limitations in spatial reliability and seasonal dynamics capture. These findings provide critical insights for selecting appropriate soil moisture datasets to enhance sustainable agricultural practices, optimize water resource allocation, monitor ecosystem resilience, and support climate adaptation strategies, therefore advancing sustainable development across diverse geographical regions in China. Full article
Show Figures

Figure 1

Back to TopTop