Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = reduced phage susceptibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5273 KB  
Article
Novel Lytic Bacteriophage PAT-A: Isolation, Characterization, Genome Analysis, and Biocontrol Potential Against Agrobacterium tumefaciens
by Chenglin Liang, Wei Tian, Jianlong Liu, Zan Zhang and Dingli Li
Microorganisms 2026, 14(1), 223; https://doi.org/10.3390/microorganisms14010223 - 18 Jan 2026
Viewed by 201
Abstract
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host [...] Read more.
Agrobacterium tumefaciens, a destructive pathogen causing crown gall disease, results in substantial agricultural losses. Traditional chemical and existing biocontrol methods are limited by environmental pollution, pesticide resistance, and low efficacy, while bacteriophages emerge as a promising alternative due to their high host specificity, environmental compatibility, and low resistance risk. In this study, we isolated and characterized a lytic phage (PAT-A) targeting A. tumefaciens, evaluating its biological traits, genomic features, and biocontrol potential. The host strain A. tumefaciens CL-1 was isolated from cherry crown gall tissue and identified by 16S rDNA sequencing. Phage PAT-A was recovered from orchard soil via the double-layer agar method, showing a tadpole-shaped morphology (60 nm head diameter, 30 nm tail length) under transmission electron microscopy (TEM). Nucleic acid analysis confirmed a double-stranded DNA genome, susceptible to DNase I but resistant to RNase A and Mung Bean Nuclease. PAT-A exhibited an optimal MOI of 0.01, tolerated wide pH and temperature ranges, but was sensitive to UV (titer declined after 15 min of irradiation) and chloroform (8% survival at a 5% concentration). Whole-genome sequencing revealed a 44,828 bp genome with a compact structure, and phylogenetic/collinearity analyses placed it in the Atuphduvirus genus (Autographiviridae). Biocontrol experiments on tobacco plants demonstrated that PAT-A significantly reduced crown gall incidence. Specifically, simultaneous inoculation of PAT-A and A. tumefaciens CL-1 resulted in the lowest tumor incidence (12.0%), while pre-inoculation of PAT-A 2 days before pathogen exposure achieved an incidence rate of 33.3%. In conclusion, PAT-A is a novel strictly lytic phage with favorable biological properties and potent biocontrol efficacy against A. tumefaciens, enriching phage resources for crown gall management and supporting phage-based agricultural biocontrol strategies. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

12 pages, 1715 KB  
Review
Phage Therapy as a Novel Alternative to Antibiotics Through Adaptive Evolution and Fitness Trade-Offs
by Song Zhang and Juhee Ahn
Antibiotics 2025, 14(10), 1040; https://doi.org/10.3390/antibiotics14101040 - 17 Oct 2025
Cited by 1 | Viewed by 3264
Abstract
The rapid emergence of antibiotic-resistant bacteria requires solutions that extend beyond conventional antibiotics. Bacteriophages (phages) provide targeted antibacterial action but face two key limitations: (1) their narrow natural host ranges and (2) the rapid emergence of evolved bacterial resistance. This review focuses specifically [...] Read more.
The rapid emergence of antibiotic-resistant bacteria requires solutions that extend beyond conventional antibiotics. Bacteriophages (phages) provide targeted antibacterial action but face two key limitations: (1) their narrow natural host ranges and (2) the rapid emergence of evolved bacterial resistance. This review focuses specifically on evolved resistance and highlights two complementary strategies to overcome it by using phage-adaptive evolution and manipulating bacterial fitness trade-offs. Adaptive evolution accelerates phage/bacteria coevolution under host-mediated and environmental selective pressures such as receptor variability, bacterial resistance mutations, and nutrient limitations, resulting in phages with broader host targeting within resistant populations and enhanced lytic activity. Simultaneously, bacterial resistance to phages often leads to fitness costs, including restored antibiotic susceptibility or reduced virulence. These strategies support the rational design of phage/antibiotic combinations that suppress resistance and enhance therapeutic efficacy. In this review, we clarify the distinction between intrinsic host range limitations and evolved resistance, focusing on how adaptive strategies can specifically counter the latter. We discuss the underlying mechanisms, practical applications, and significance of this approach in clinical, agricultural, and environmental areas. Full article
Show Figures

Figure 1

11 pages, 2151 KB  
Case Report
Multidrug-Resistant Escherichia coli Associated with Respiratory and Systemic Infection in a Domestic Rabbit in Romania: First Confirmed Case
by Vlad Iorgoni, Livia Stanga, Ionica Iancu, Janos Degi, Ionela Popa, Alexandru Gligor, Gabriel Orghici, Bogdan Sicoe, Ioan Cristian Dreghiciu, David Purec, Paula Nistor, Bogdan Florea, Corina Kracunović and Viorel Herman
Antibiotics 2025, 14(9), 929; https://doi.org/10.3390/antibiotics14090929 - 14 Sep 2025
Cited by 1 | Viewed by 1117
Abstract
Background/Objectives: This report documents the first confirmed case in Romania of fatal pneumonia and septicemia in a domestic rabbit caused by multidrug-resistant Escherichia coli, highlighting both its pathogenic potential and One Health implications. Case Study: An 8-month-old male German Giant Spotted rabbit [...] Read more.
Background/Objectives: This report documents the first confirmed case in Romania of fatal pneumonia and septicemia in a domestic rabbit caused by multidrug-resistant Escherichia coli, highlighting both its pathogenic potential and One Health implications. Case Study: An 8-month-old male German Giant Spotted rabbit raised on a rural farm under poor husbandry conditions developed acute respiratory distress and died within 48 h. Post-mortem examination revealed severe pulmonary congestion, tracheal inflammation, serofibrinous pericarditis, and systemic vascular lesions. Bacteriological analysis confirmed E. coli from lung, trachea, and bone marrow samples. The isolate demonstrated strong Congo red binding, was confirmed by MALDI-TOF mass spectrometry, and showed resistance to beta-lactams, fluoroquinolones, tetracyclines, sulfonamides, macrolides, and phenicols, remaining susceptible only to aminoglycosides. PCR screening identified virulence genes (fimH, papC, iutA, ompA) linked to adhesion, immune evasion, and iron acquisition, with potential for horizontal gene transfer. Conclusions: This first documented case in Romania emphasizes the clinical threat posed by multidrug-resistant E. coli in rabbits and the importance of early diagnosis, improved biosecurity, and responsible antimicrobial use. The zoonotic and environmental risks in backyard farming underscore the urgent need for integrated surveillance. Alternative control strategies, including phage therapy and probiotics, should be explored to reduce reliance on conventional antibiotics. Full article
Show Figures

Graphical abstract

20 pages, 2497 KB  
Article
Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
by Yanjun Lu, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang and Ying Li
Microorganisms 2025, 13(7), 1544; https://doi.org/10.3390/microorganisms13071544 - 30 Jun 2025
Cited by 2 | Viewed by 1861
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our [...] Read more.
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our knowledge, depolymerases targeting K. pneumoniae K54-type strains have rarely been identified. Here, we identified and characterized three novel capsule depolymerases, Dep_C, Dep_Y, and Dep_Z, derived from three different K. pneumoniae phages, which retained robust activity across a broad pH range (pH 3.0–12.0) and demonstrated thermal stability up to 50 °C. These depolymerases could efficiently digest the CPS of K. pneumoniae K54-serotype strains, significantly inhibit biofilm formation, and remove their mature biofilms. Although no bactericidal activity was detected, these depolymerases rendered host bacteria susceptible to serum complement-mediated killing. We further demonstrate that Dep_C, Dep_Y, and Dep_Z can effectively and significantly prolong the survival time of mice in a pneumonia model infected with K54-type K. pneumoniae and reduce the colonization and virulence of the bacteria in the mice. These findings indicate that depolymerases Dep_C, Dep_Y, and Dep_Z could increase bacterial susceptibility to host immune responses of hvKp to the host through their degradation effect on the CPS. In conclusion, our study demonstrates that the three capsule depolymerases are promising antivirulent agents to combat CR-hvKp infections. Full article
Show Figures

Figure 1

32 pages, 1181 KB  
Review
Skin Microbiota: Mediator of Interactions Between Metabolic Disorders and Cutaneous Health and Disease
by Magdalini Kreouzi, Nikolaos Theodorakis, Maria Nikolaou, Georgios Feretzakis, Athanasios Anastasiou, Konstantinos Kalodanis and Aikaterini Sakagianni
Microorganisms 2025, 13(1), 161; https://doi.org/10.3390/microorganisms13010161 - 14 Jan 2025
Cited by 20 | Viewed by 6691
Abstract
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier [...] Read more.
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis. Similarly, obesity-induced dysregulation of sebaceous lipid composition increases saturated fatty acids, favoring pathogenic strains of Cutibacterium acnes, which produce inflammatory metabolites that exacerbate acne. Advances in metabolomics and microbiome sequencing have unveiled critical biomarkers, such as short-chain fatty acids and microbial signatures, predictive of therapeutic outcomes. For example, elevated butyrate levels in psoriasis have been associated with reduced Th17-mediated inflammation, while the presence of specific Lactobacillus strains has shown potential to modulate immune tolerance in atopic dermatitis. Furthermore, machine learning models are increasingly used to integrate multi-omics data, enabling personalized interventions. Emerging therapies, such as probiotics and postbiotics, aim to restore microbial diversity, while phage therapy selectively targets pathogenic bacteria like Staphylococcus aureus without disrupting beneficial flora. Clinical trials have demonstrated significant reductions in inflammatory lesions and improved quality-of-life metrics in patients receiving these microbiota-targeted treatments. This review synthesizes current evidence on the bidirectional interplay between metabolic disorders and skin microbiota, highlighting therapeutic implications and future directions. By addressing systemic metabolic dysfunction and microbiota-mediated pathways, precision strategies are paving the way for improved patient outcomes in dermatologic care. Full article
(This article belongs to the Special Issue Human Skin Microbiota, 2nd Edition)
Show Figures

Figure 1

19 pages, 4063 KB  
Article
Characterization of Broad Spectrum Bacteriophage vB ESM-pEJ01 and Its Antimicrobial Efficacy Against Shiga Toxin-Producing Escherichia coli in Green Juice
by Eun Jeong Park, Seungki Lee, Jong Beom Na, Ye Bin Kim, Kee Man Lee, Seon Young Park and Ji Hyung Kim
Microorganisms 2025, 13(1), 103; https://doi.org/10.3390/microorganisms13010103 - 7 Jan 2025
Cited by 4 | Viewed by 2842
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) infections have increased in humans, animals, and the food industry, with ready-to-eat (RTE) food products being particularly susceptible to contamination. The prevalence of multidrug-resistant strains has rendered the current control strategies insufficient to effectively control STEC infections. Herein, we characterized the newly isolated STEC phage vB_ESM-pEJ01, a polyvalent phage capable of infecting Escherichia and Salmonella species, and assessed its efficacy in reducing STEC in vitro and food matrices. The phage, belonging to the Tevenvirinae, exhibits effective bacteriolytic activity, a short latent period, large burst size, and stability under a broad pH range and moderate temperatures. Moreover, the phage demonstrated strong anti-biofilm efficacy even at low concentrations. Genomic analysis revealed that the phage was similar to the well-characterized RB49 phage (T4-like phage) but possesses distinct host-specificity-related genes that potentially contribute to its extensive host range. The efficacy of phage vB_ESM-pEJ01 was evaluated in artificially STEC-inoculated green juice samples, where it significantly reduced STEC and the abundance of Shiga toxin-producing genes at 4 and 25 °C. Therefore, these results suggest that the polyvalent phage vB_ESM-pEJ01 is a promising biocontrol agent for foodborne pathogens in RTE foods such as fresh juices. Full article
Show Figures

Figure 1

18 pages, 3661 KB  
Article
Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions
by Luis Amarillas, Fedra Padilla-Lafarga, Rubén Gerardo León Chan, Jorge Padilla, Yadira Lugo-Melchor, Jesús Enrique López Avendaño, Luis Lightbourn-Rojas and Mitzi Estrada-Acosta
Viruses 2024, 16(11), 1711; https://doi.org/10.3390/v16111711 - 31 Oct 2024
Cited by 4 | Viewed by 3532
Abstract
Background: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. Aim: This study aimed to identify Salmonella strains encoding genes linked [...] Read more.
Background: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. Aim: This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. Methodology: An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. Results: Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions’ induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. Conclusion: This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

12 pages, 956 KB  
Article
Limited Emergence of Salmonella enterica Serovar Infantis Variants with Reduced Phage Susceptibility in PhagoVet-Treated Broilers
by Sandra Sevilla-Navarro, Jennifer Otero, Júlia López-Pérez, Jan Torres-Boncompte, Tiago Prucha, Maarten De Gussem, Daniela Silva, Julia Burgan, Pablo Catalá-Gregori, Pilar Cortés and Montserrat Llagostera
Animals 2024, 14(16), 2352; https://doi.org/10.3390/ani14162352 - 14 Aug 2024
Cited by 3 | Viewed by 1833
Abstract
Salmonella enterica serovar Infantis (S. Infantis) poses a growing issue in the poultry sector, with phage-based products emerging as a safe and effective control measure. This study investigated the emergence of reduced-phage-susceptibility variants (RPSV) of S. Infantis in PhagoVet-treated broilers, [...] Read more.
Salmonella enterica serovar Infantis (S. Infantis) poses a growing issue in the poultry sector, with phage-based products emerging as a safe and effective control measure. This study investigated the emergence of reduced-phage-susceptibility variants (RPSV) of S. Infantis in PhagoVet-treated broilers, given that RPSV could undermine phage treatment efficacy. The bacteriophages in the PhagoVet product were characterized using transmission electron microscopy (TEM), genome sequencing, and infection profiling. Furthermore, two broiler trials were conducted: a challenge group (T1) and a challenge-and-treated group (T2). The S. Infantis infective dose was set at 104 and 106 colony-forming units (CFUs) per animal, with PhagoVet administration at 106 and 108 plaque-forming units (PFUs) per animal, in Trials 1 and 2, respectively. The results revealed that the four PhagoVet bacteriophages belonged to different genera. PhagoVet evidenced broad-spectrum efficacy against 271 strains representing 18 Salmonella serovars. In Trial 1, PhagoVet reduced bacterial counts in feces to nearly undetectable levels by day 42, with no RPSV detected. However, in Trial 2, three and five RPSVs were detected in feces and ceca, respectively. Consequently, PhagoVet demonstrated efficacy against S. Infantis in broilers, and the potential impact of RPSV is deemed unlikely to compromise its efficacy. Full article
(This article belongs to the Special Issue Salmonella and Salmonellosis: Implications in Public Health)
Show Figures

Figure 1

17 pages, 1177 KB  
Article
Antibiotic Resistance Profile and Bio-Control of Multidrug-Resistant Escherichia coli Isolated from Raw Milk in Vietnam Using Bacteriophages
by Hoang Minh Duc, Tran Thi Khanh Hoa, Cam Thi Thu Ha, Le Van Hung, Nguyen Van Thang, Hoang Minh Son and Gary A. Flory
Pathogens 2024, 13(6), 494; https://doi.org/10.3390/pathogens13060494 - 9 Jun 2024
Cited by 3 | Viewed by 3349
Abstract
E. coli is an important zoonotic pathogen capable of causing foodborne illness and bovine mastitis. Bacteriophages have been increasingly considered a promising tool to control unwanted bacteria. The aim of this study is to determine the antibiotic resistance profile of E. coli isolated [...] Read more.
E. coli is an important zoonotic pathogen capable of causing foodborne illness and bovine mastitis. Bacteriophages have been increasingly considered a promising tool to control unwanted bacteria. The aim of this study is to determine the antibiotic resistance profile of E. coli isolated from raw milk and the efficacy of phage in controlling multidrug-resistant E. coli in raw milk. Antibiotic susceptibility testing showed the highest resistance rates of E. coli isolates to co-trime (27.34%) and ampicillin (27.34%), followed by streptomycin (25.18%), tetracycline (23.02%), and the lowest resistance rates to ciprofloxacin, gentamycin, and ceftazidime, all at a rate of 2.16%. All isolates were susceptible to meropenem. Of the 139 E. coli isolates, 57 (41.01%) were resistant to at least one antibiotic, and 35 (25.18%) were classified as MDR strains. Molecular characterization indicated that 5 (3.6%) out of the 139 isolates were STEC strains carrying stx1 gene. Seven (5.04%) isolates were phenotypically identified as ESBLEC, and four isolates (2.88%) were resistant to colistin. The results of the genotypic test revealed that four out of seven ESBLEC strains carried both blaTEM and blaCTX-M-1, two harbored blaTEM, and one possessed blaCTX-M-1, while mcr-1 was detected in all four colistin-resistant E. coli isolates. In particular, one isolated E. coli strain (EM148) was determined to be a multidrug-resistant strain simultaneously carrying blaTEM, blaCTX-M-1, and mcr-1. A total of eight phages were successfully recovered from raw milk. The application of phage PEM3 significantly reduced viable counts of multidrug-resistant host EM148 in raw milk by at least 2.31 log CFU/mL at both 24 °C and 4 °C. Full article
(This article belongs to the Special Issue New Approaches to Combating Multidrug-Resistant Pathogens)
Show Figures

Figure 1

10 pages, 1191 KB  
Article
Phage–Bacterial Interaction Alters Phenotypes Associated with Virulence in Acinetobacter baumannii
by Greater Kayode Oyejobi, Xiaoxu Zhang, Dongyan Xiong, Heng Xue, Mengjuan Shi, Hang Yang and Hongping Wei
Viruses 2024, 16(5), 743; https://doi.org/10.3390/v16050743 - 8 May 2024
Cited by 2 | Viewed by 5201
Abstract
Bacteriophages exert strong selection on their bacterial hosts to evolve resistance. At the same time, the fitness costs on bacteria following phage resistance may change their virulence, which may affect the therapeutic outcomes of phage therapy. In this study, we set out to [...] Read more.
Bacteriophages exert strong selection on their bacterial hosts to evolve resistance. At the same time, the fitness costs on bacteria following phage resistance may change their virulence, which may affect the therapeutic outcomes of phage therapy. In this study, we set out to assess the costs of phage resistance on the in vitro virulence of priority 1 nosocomial pathogenic bacterium, Acinetobacter baumannii. By subjecting phage-resistant variant Ev5-WHG of A. baumannii WHG40004 to several in vitro virulence profiles, we found that its resistance to phage is associated with reduced fitness in host microenvironments. Also, the mutant exhibited impaired adhesion and invasion to mammalian cells, as well as increased susceptibility to macrophage phagocytosis. Furthermore, the whole-genome sequencing of the mutant revealed that there exist multiple mutations which may play a role in phage resistance and altered virulence. Altogether, this study demonstrates that resistance to phage can significantly alter phenotypes associated with virulence in Acinetobacter baumannii. Full article
(This article belongs to the Special Issue Phage-Bacteria Interplay in Health and Disease, Second Edition)
Show Figures

Figure 1

15 pages, 2794 KB  
Article
Mechanism of Selective Qβ Bacteriophage Inactivation under the Presence of E. Coli Using Ground Rh-Doped SrTiO3 Photocatalyst
by Sho Usuki, Shingo Machida, Ken-ichi Katsumata, Makoto Ogawa, Sanjay S. Latthe, Shanhu Liu, Kenji Yamatoya and Kazuya Nakata
Catalysts 2024, 14(2), 94; https://doi.org/10.3390/catal14020094 - 24 Jan 2024
Cited by 2 | Viewed by 2361
Abstract
Photocatalysts have recently attracted attention for removing infectious-disease-causing bacteria and viruses. Among such photocatalysts, ground Rh-doped SrTiO3 (“g-STO:Rh”) has been found to have biospecificity that reduces the Qβ phage infectivity under conditions that did not decrease the E. coli survival rate. Elucidating [...] Read more.
Photocatalysts have recently attracted attention for removing infectious-disease-causing bacteria and viruses. Among such photocatalysts, ground Rh-doped SrTiO3 (“g-STO:Rh”) has been found to have biospecificity that reduces the Qβ phage infectivity under conditions that did not decrease the E. coli survival rate. Elucidating the mechanism of selective antiphage activation is important for developing photocatalysts that act effectively against specific microorganisms. In this study, SDS-PAGE and quantitative PCR showed that a g-STO:Rh-treated Qβ phage preferentially inactivated the A2 protein involved in attachment to host cells. The analysis of the photocatalyst-treated ovalbumin using g-STO:Rh indicated that the protein’s isoelectric point significantly influenced the initial interaction with g-STO:Rh. However, once the protein is absorbed, it was decomposed without the release of intermediates. Furthermore, an inactivation assay for four different phages by photocatalyst treatment using g-STO:Rh revealed that phages with positively charged proteins are highly susceptible to inactivation, and the accessibility of critical components to g-STO:Rh influences susceptibility. We conclude that the selective antiphage activation of g-STO:Rh depends on the adsorption efficiency of the protein and g-STO:Rh. Full article
(This article belongs to the Special Issue Surface Microstructure Design for Advanced Catalysts)
Show Figures

Graphical abstract

12 pages, 1574 KB  
Article
A Genetic Locus in Elizabethkingia anophelis Associated with Elevated Vancomycin Resistance and Multiple Antibiotic Reduced Susceptibility
by William L. Johnson, Sushim Kumar Gupta, Suman Maharjan, Randy M. Morgenstein, Ainsley C. Nicholson, John R. McQuiston and John E. Gustafson
Antibiotics 2024, 13(1), 61; https://doi.org/10.3390/antibiotics13010061 - 8 Jan 2024
Cited by 4 | Viewed by 3244
Abstract
The Gram-negative Elizabethkingia express multiple antibiotic resistance and cause severe opportunistic infections. Vancomycin is commonly used to treat Gram-positive infections and has also been used to treat Elizabethkingia infections, even though Gram-negative organisms possess a vancomycin permeability barrier. Elizabethkingia anophelis appeared relatively vancomycin-susceptible [...] Read more.
The Gram-negative Elizabethkingia express multiple antibiotic resistance and cause severe opportunistic infections. Vancomycin is commonly used to treat Gram-positive infections and has also been used to treat Elizabethkingia infections, even though Gram-negative organisms possess a vancomycin permeability barrier. Elizabethkingia anophelis appeared relatively vancomycin-susceptible and challenge with this drug led to morphological changes indicating cell lysis. In stark contrast, vancomycin growth challenge revealed that E. anophelis populations refractory to vancomycin emerged. In addition, E. anophelis vancomycin-selected mutants arose at high frequencies and demonstrated elevated vancomycin resistance and reduced susceptibility to other antimicrobials. All mutants possessed a SNP in a gene (vsr1 = vancomycin-susceptibility regulator 1) encoding a PadR family transcriptional regulator located in the putative operon vsr1-ORF551, which is conserved in other Elizabethkingia spp as well. This is the first report linking a padR homologue (vsr1) to antimicrobial resistance in a Gram-negative organism. We provide evidence to support that vsr1 acts as a negative regulator of vsr1-ORF551 and that vsr1-ORF551 upregulation is observed in vancomycin-selected mutants. Vancomycin-selected mutants also demonstrated reduced cell length indicating that cell wall synthesis is affected. ORF551 is a membrane-spanning protein with a small phage shock protein conserved domain. We hypothesize that since vancomycin-resistance is a function of membrane permeability in Gram-negative organisms, it is likely that the antimicrobial resistance mechanism in the vancomycin-selected mutants involves altered drug permeability. Full article
Show Figures

Figure 1

13 pages, 2144 KB  
Article
Anti-Biofilm Effect of Bacteriophages and Antibiotics against Uropathogenic Escherichia coli
by Laima Mukane, Karlis Racenis, Dace Rezevska, Aivars Petersons and Juta Kroica
Antibiotics 2022, 11(12), 1706; https://doi.org/10.3390/antibiotics11121706 - 26 Nov 2022
Cited by 7 | Viewed by 4196
Abstract
Escherichia coli is a common cause of biofilm-associated urinary tract infections. Bacteria inside the biofilm are more resistant to antibiotics. Six E. coli strains isolated from patients with urinary tract infections were screened for biofilm-forming capability and antimicrobial susceptibility. Two of the most [...] Read more.
Escherichia coli is a common cause of biofilm-associated urinary tract infections. Bacteria inside the biofilm are more resistant to antibiotics. Six E. coli strains isolated from patients with urinary tract infections were screened for biofilm-forming capability and antimicrobial susceptibility. Two of the most significant biofilm-producing strains were selected for minimal inhibitory concentration and minimal biofilm eradication concentration in vitro testing using amoxicillin–clavulanic acid, ciprofloxacin, and three commercial bacteriophage cocktails (Pyobacteriophag, Ses, and Intesti). In case of a low phage effect, an adaptation procedure was performed. Although the biofilms formed by strain 021UR were resistant to amoxicillin–clavulanic acid and ciprofloxacin, the three phage cocktails were able to reduce biofilm formation. In contrast, phages did not affect the 01206UR strain against planktonic and biofilm-forming cells. After Pyobacteriophag adaptation, the effect improved, and, regardless of the concentration, the adapted phage cocktail could destroy both planktonic cells and the biofilm of strain 01206UR. Bacteriophages capable of killing bacteria in biofilms can be used as an alternative to antibiotics. However, each case should be considered individually due to the lack of clinical trials for phage therapy. Antimicrobial and phage susceptibility should be determined in biofilm models before treatment to achieve the desired anti-biofilm effect. Full article
(This article belongs to the Section Bacteriophages)
Show Figures

Figure 1

15 pages, 2027 KB  
Article
A New Approach for Controlling Agrobacterium tumefaciens Post Transformation Using Lytic Bacteriophage
by Fiqih Ramadhan, Yuzer Alfiko, Sigit Purwantomo, Andhika Faisal Mubarok, Widyah Budinarta, Antonius Suwanto and Sri Budiarti
Plants 2022, 11(22), 3124; https://doi.org/10.3390/plants11223124 - 16 Nov 2022
Cited by 8 | Viewed by 4605
Abstract
Overgrowth of Agrobacterium tumefaciens has frequently been found in Agrobacterium-mediated plant transformation. This overgrowth can reduce transformation efficiency and even lead to explant death. Therefore, this research investigates an alternative way to mitigate or eliminate Agrobacterium after transformation using a bacteriophage. To [...] Read more.
Overgrowth of Agrobacterium tumefaciens has frequently been found in Agrobacterium-mediated plant transformation. This overgrowth can reduce transformation efficiency and even lead to explant death. Therefore, this research investigates an alternative way to mitigate or eliminate Agrobacterium after transformation using a bacteriophage. To develop this alternative method, we conducted effectiveness studies of two lytic bacteriophages (ΦK2 and ΦK4) and performed an application test to control Agrobacterium growth after transformation. According to plaque morphological characterization and molecular analysis, the two bacteriophages used in this experiment were distinct. Moreover, some stability physicochemical and growth kinetics, such as adsorption time and susceptibility test, also showed that both bacteriophages differed. On the other hand, the optimum temperature and pH of both phages were the same at 28–30 °C and pH 7. Further investigation showed that both ΦK2 and ΦK4 were able to reduce the overgrowth of A. tumefaciens post transformation. Moreover, applying the cocktail (mixture of ΦK2 and ΦK4) with antibiotic application eradicated A. tumefaciens (0% overgrowth percentage). This result indicates that the application of bacteriophage could be used as an alternative way to eradicate the overgrowth of A. tumefaciens subsequent to transformation. Full article
Show Figures

Figure 1

15 pages, 5273 KB  
Article
Phage Resistance Reduced the Pathogenicity of Xanthomonas oryzae pv. oryzae on Rice
by Mengju Liu, Ye Tian, Haitham E. M. Zaki, Temoor Ahmed, Rong Yao, Chengqi Yan, Sebastian Leptihn, Belinda Loh, Muhammad Shafiq Shahid, Fang Wang, Jianping Chen and Bin Li
Viruses 2022, 14(8), 1770; https://doi.org/10.3390/v14081770 - 13 Aug 2022
Cited by 10 | Viewed by 3886
Abstract
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the [...] Read more.
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens. Full article
(This article belongs to the Special Issue Phage-Plant Interactions)
Show Figures

Figure 1

Back to TopTop