Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,394)

Search Parameters:
Keywords = reduced order models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

29 pages, 4456 KiB  
Article
Effect of Design on Human Injury and Fatality Due to Impacts by Small UAS
by Borrdephong Rattanagraikanakorn, Henk A. P. Blom, Derek I. Gransden, Michiel Schuurman, Christophe De Wagter, Alexei Sharpanskykh and Riender Happee
Designs 2025, 9(4), 88; https://doi.org/10.3390/designs9040088 - 28 Jul 2025
Abstract
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations [...] Read more.
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations to heavily restrict UAS operations in populated regions. These operational constraints hinder the ability to gather safety insights through the conventional method of learning from real-world incidents. To address this, a promising alternative is to use dynamic simulations that model UAS collisions with humans, providing critical data to inform safer UAS design. In the automotive industry, the modelling and simulation of car crashes has been well developed. For small UAS, this dynamical modelling and simulation approach has focused on the effect of the varying weight and kinetic energy of the UAS, as well as the geometry and location of the impact on a human body. The objective of this research is to quantify the effects of UAS material and shape on-ground TPR through dynamical modelling and simulation. To accomplish this objective, five camera–drone types are selected that have similar weights, although they differ in terms of airframe structure and materials. For each of these camera–drones, a dynamical model is developed to simulate impact, with a biomechanical human body model validated for impact. The injury levels and probability of fatality (PoF) results, obtained through conducting simulations with these integrated dynamical models, are significantly different for the camera–drone types. For the uncontrolled vertical impact of a 1.2 kg UAS at 18 m/s on a model of a human head, differences in UAS designs even yield an order in magnitude difference in PoF values. Moreover, the highest PoF value is a factor of 2 lower than the parametric PoF models used in standing regulation. In the same scenario for UAS types with a weight of 0.4 kg, differences in UAS designs even considered yield an order when regarding the magnitude difference in PoF values. These findings confirm that the material and shape design of a UAS plays an important role in reducing ground TPR, and that these effects can be addressed by using dynamical modelling and simulation during UAS design. Full article
(This article belongs to the Collection Editorial Board Members’ Collection Series: Drone Design)
Show Figures

Figure 1

20 pages, 4093 KiB  
Article
A Reduced Order Model of the Thermal Profile of the Rolls for the Real-Time Control System
by Dmytro Svyetlichnyy
Energies 2025, 18(15), 4005; https://doi.org/10.3390/en18154005 - 28 Jul 2025
Abstract
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape [...] Read more.
Effective real-time control systems require fast and accurate models. The thermal profile models of the rolls presented in this paper are proposed for a real-time control system for the design of the rolling schedule. The thermal profile of the roll defines the shape of the roll surface, its convexity, and, finally, the shape of the final product of the flat rolling, its convexity, and flatness. This paper presents accurate semi-analytical and finite element (FE) models, which serve to obtain an accurate solution of the joint thermal and mechanical problem, that is, heat transfer and thermal expansion. The results of the FE simulation are used for training the developed thermal model based on the neural network (NN) and for the creation of a dynamic reduced order model (ROM) of the roll surface profile. The pre-trained NN model gives accurate results and is faster than the FE model, but the model is not very useful for fast calculations in a real-time control system, mainly because the temperature distribution inside the rolls is not explicitly used in further calculations. In contrast, the ROM is fast and accurate and provides surface-shaped results that can be immediately used by other models of the real-time control system. The results of the simulation of the real process are also shown. Calculations of the roll campaign (more than 9 h) by the FEM model last several hours, while by the ROM less than 20 s. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

19 pages, 3060 KiB  
Article
Research on Damage Identification in Transmission Tower Structures Based on Cross-Correlation Function Amplitude Vector
by Qing Zhang, Xing Fu, Wenqiang Jiang and Hengdong Jin
Sensors 2025, 25(15), 4659; https://doi.org/10.3390/s25154659 - 27 Jul 2025
Abstract
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The [...] Read more.
Transmission towers constitute critical power infrastructure, yet structural damage may accumulate over their long-term service, underscoring the paramount importance of research on damage identification. This paper presents a cross-correlation function amplitude vector (CorV) method for damage localization based on time-domain response analysis. The approach involves calculating the CorV of structural members before and after damage using dynamic response data, employing the CorV assurance criterion (CVAC) to quantify changes in CorV, and introducing first-order differencing for damage localization. Taking an actual transmission tower in Jiangmen as the engineering backdrop, a finite element model is established. Damage conditions are simulated by reducing the stiffness of specific members, and parameter analyses are conducted to validate the proposed method. Furthermore, experimental validation in a lab is performed to provide additional confirmation. The results indicate that the CVAC value of the damaged structure is significantly lower than that in the healthy state. By analyzing the relative changes in the components of CorV, the damage location can be accurately determined. Notably, this method only requires acquiring the time-domain response signals of the transmission tower under random excitation to detect both the existence and location of damage. Consequently, it is well suited for structural health monitoring of transmission towers under environmental excitation. Full article
(This article belongs to the Special Issue Sensors for Non-Destructive Testing and Structural Health Monitoring)
Show Figures

Figure 1

37 pages, 1679 KiB  
Article
Distributed Robust Predefined-Time Sliding Mode Control for AUV-USV Heterogeneous Multi-Agent Systems Based on Memory Event-Triggered Mechanism Under Input Saturation
by Haitao Liu, Luchuan Li, Xuehong Tian and Qingqun Mai
J. Mar. Sci. Eng. 2025, 13(8), 1428; https://doi.org/10.3390/jmse13081428 - 27 Jul 2025
Abstract
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation [...] Read more.
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation of the state information of the virtual leader within a predefined time, and the observer does not need to count on the global information of the system. Secondly, a predefined-time auxiliary dynamic system (PTADS) is developed to solve the actuator’s input saturation problem. Thirdly, a distributed predefined-time sliding mode controller (PTSMC) is proposed, which ensures that the error converges to a small region near zero within a predefined time and combines H control to deal with the lumped uncertainty disturbances in the system to improve the robustness of the system. In addition, a memory event-triggered mechanism (METM) is designed to reduce the communication frequency of the underactuated AUV-USV multi-agent system and reduce the consumption of communication resources. Finally, Lyapunov theory is employed to prove that the closed-loop system is predefined-time stable, and the simulation results demonstrate that the proposed method is effective. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 103
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

22 pages, 4225 KiB  
Article
One-Dimensional Simulation of Real-World Battery Degradation Using Battery State Estimation and Vehicle System Models
by Yuya Hato, Wei-hsiang Yang, Toshio Hirota, Yushi Kamiya and Kiyotaka Sato
World Electr. Veh. J. 2025, 16(8), 420; https://doi.org/10.3390/wevj16080420 - 25 Jul 2025
Viewed by 143
Abstract
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is [...] Read more.
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is important to ensure a stable output and to counteract degradation and thermal runaway. To design the optimal system, it is most effective to use a 1D (one-dimensional) vehicle system simulation model, which connects each unit model inside the vehicle, due to the system’s complexity. In order to create a long-term degradation simulation in a vehicle system model, it is important to reduce computational load. Therefore, in this paper, we studied a suitable battery degradation calculation for the vehicle system model based on an equivalent circuit model (ECM) and degradation approximation formulas. After implementing these models, we analyzed long-term degradation behavior through the real-world operation of an electric vehicle driver. We first implemented a high-accuracy ECM using transient charge–discharge tests and Bayesian Optimization. Next, we formulated approximation formulas for degradation prediction based on calendar and cycle degradation tests. Finally, we simulated real-world degradation behavior using these models. The simulation results revealed that even for users who frequently use electric vehicles, degradation under storage conditions is the dominant factor in overall degradation. Full article
Show Figures

Figure 1

30 pages, 2623 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 78
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

29 pages, 4727 KiB  
Article
A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction
by Yuhan Lin, Jianhua Chen, Sijuan Chen, Yunfei Nie, Ming Wang, Bing Zhang, Ming Yang and Jipu Wang
Processes 2025, 13(8), 2366; https://doi.org/10.3390/pr13082366 - 25 Jul 2025
Viewed by 184
Abstract
In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry [...] Read more.
In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations. Full article
Show Figures

Figure 1

18 pages, 3675 KiB  
Article
Mechanical Property Prediction of Wood Using a Backpropagation Neural Network Optimized by Adaptive Fractional-Order Particle Swarm Algorithm
by Jiahui Huang and Zhufang Kuang
Forests 2025, 16(8), 1223; https://doi.org/10.3390/f16081223 - 25 Jul 2025
Viewed by 142
Abstract
This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predicts four key mechanical properties—longitudinal tensile [...] Read more.
This study proposes a novel LK-BP-AFPSO model for the nondestructive evaluation of wood mechanical properties, combining a backpropagation neural network (BP) with adaptive fractional-order particle swarm optimization (AFPSO) and Liang–Kleeman (LK) information flow theory. The model accurately predicts four key mechanical properties—longitudinal tensile strength (SPG), modulus of elasticity (MOE), bending strength (MOR), and longitudinal compressive strength (CSP)—using only nondestructive physical features. Tested across diverse wood types (fast-growing YKS, red-heart CSH/XXH, and iron-heart XXT), the framework demonstrates strong generalizability, achieving an average prediction accuracy (R2) of 0.986 and reducing mean absolute error (MAE) by 23.7% compared to conventional methods. A critical innovation is the integration of LK causal analysis, which quantifies feature–target relationships via information flow metrics, effectively eliminating 29.5% of spurious correlations inherent in traditional feature selection (e.g., PCA). Experimental results confirm the model’s robustness, particularly for heartwood variants, while its adaptive fractional-order optimization accelerates convergence by 2.1× relative to standard PSO. This work provides a reliable, interpretable tool for wood quality assessment, with direct implications for grading systems and processing optimization in the forestry industry. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Viewed by 195
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

23 pages, 9603 KiB  
Article
Label-Efficient Fine-Tuning for Remote Sensing Imagery Segmentation with Diffusion Models
by Yiyun Luo, Jinnian Wang, Jean Sequeira, Xiankun Yang, Dakang Wang, Jiabin Liu, Grekou Yao and Sébastien Mavromatis
Remote Sens. 2025, 17(15), 2579; https://doi.org/10.3390/rs17152579 - 24 Jul 2025
Viewed by 113
Abstract
High-resolution remote sensing imagery plays an essential role in urban management and environmental monitoring, providing detailed insights for applications ranging from land cover mapping to disaster response. Semantic segmentation methods are among the most effective techniques for comprehensive land cover mapping, and they [...] Read more.
High-resolution remote sensing imagery plays an essential role in urban management and environmental monitoring, providing detailed insights for applications ranging from land cover mapping to disaster response. Semantic segmentation methods are among the most effective techniques for comprehensive land cover mapping, and they commonly employ ImageNet-based pre-training semantics. However, traditional fine-tuning processes exhibit poor transferability across different downstream tasks and require large amounts of labeled data. To address these challenges, we introduce Denoising Diffusion Probabilistic Models (DDPMs) as a generative pre-training approach for semantic features extraction in remote sensing imagery. We pre-trained a DDPM on extensive unlabeled imagery, obtaining features at multiple noise levels and resolutions. In order to integrate and optimize these features efficiently, we designed a multi-layer perceptron module with residual connections. It performs channel-wise optimization to suppress feature redundancy and refine representations. Additionally, we froze the feature extractor during fine-tuning. This strategy significantly reduces computational consumption and facilitates fast transfer and deployment across various interpretation tasks on homogeneous imagery. Our comprehensive evaluation on the sparsely labeled dataset MiniFrance-S and the fully labeled Gaofen Image Dataset achieved mean intersection over union scores of 42.7% and 66.5%, respectively, outperforming previous works. This demonstrates that our approach effectively reduces reliance on labeled imagery and increases transferability to downstream remote sensing tasks. Full article
(This article belongs to the Special Issue AI-Driven Mapping Using Remote Sensing Data)
Show Figures

Figure 1

20 pages, 506 KiB  
Article
Efficient Numerical Methods for Time-Fractional Diffusion Equations with Caputo-Type Erdélyi–Kober Operators
by Ruilian Du and Jianhua Tang
Fractal Fract. 2025, 9(8), 486; https://doi.org/10.3390/fractalfract9080486 - 24 Jul 2025
Viewed by 96
Abstract
This study proposes an L1 discretization scheme (an accurate second-order finite difference method) for time-fractional diffusion equations involving the Caputo-type Erdélyi–Kober operator, which models anomalous diffusion. Our key contributions include the following: (i) reformulation of the original problem into an equivalent fractional integral [...] Read more.
This study proposes an L1 discretization scheme (an accurate second-order finite difference method) for time-fractional diffusion equations involving the Caputo-type Erdélyi–Kober operator, which models anomalous diffusion. Our key contributions include the following: (i) reformulation of the original problem into an equivalent fractional integral equation to facilitate analysis; (ii) development of a novel L1 scheme for temporal discretization, which is rigorously proven to realize second-order accuracy in time; (iii) derivation of positive definiteness properties for discrete kernel coefficients; (iv) discretization of the spatial derivative using the classical second-order centered difference scheme, for which its second-order spatial convergence is rigorously verified through numerical experiments (this results in a fully discrete scheme, enabling second-order accuracy in both temporal and spatial dimensions); (v) a fast algorithm leveraging sum-of-exponential approximation, reducing the computational complexity from O(N2) to O(NlogN) and memory requirements from O(N) to O(logN), where N is the number of grid points on a time scale. Our numerical experiments demonstrate the stability of the scheme across diverse parameter regimes and quantify significant gains in computational efficiency. Compared to the direct method, the fast algorithm substantially reduces both memory requirements and CPU time for large-scale simulations. Although a rigorous stability analysis is deferred to subsequent research, the proven properties of the coefficients and numerical validation confirm the scheme’s reliability. Full article
Show Figures

Figure 1

23 pages, 34957 KiB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 119
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

Back to TopTop