Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = reduced graphene oxide coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 385
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 441
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Viewed by 358
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

10 pages, 367 KiB  
Review
Graphenes for Corrosion Protection in Electrochemical Energy Technology
by Dan Liu, Xuan Xie, Xuecheng Chen and Rudolf Holze
Corros. Mater. Degrad. 2025, 6(3), 33; https://doi.org/10.3390/cmd6030033 - 17 Jul 2025
Viewed by 309
Abstract
Graphene, graphene oxide, reduced graphene oxide, and few-layer graphene as functional coating materials for corrosion protection in devices for electrochemical energy conversion and storage are reviewed. Reported applications are briefly described, enabling the reader to make an informed decision about the protective options [...] Read more.
Graphene, graphene oxide, reduced graphene oxide, and few-layer graphene as functional coating materials for corrosion protection in devices for electrochemical energy conversion and storage are reviewed. Reported applications are briefly described, enabling the reader to make an informed decision about the protective options based on the reported achievements. Full article
Show Figures

Figure 1

8 pages, 1978 KiB  
Proceeding Paper
Nanoscopic Characterization of Reduced Graphene Oxide for Anticorrosion Coating of AA2024
by Ahmed Kreta, Ivan Jerman, Marjan Bele, Angelja Kjara Surca, Miran Gaberšček and Igor Muševič
Eng. Proc. 2025, 87(1), 82; https://doi.org/10.3390/engproc2025087082 - 25 Jun 2025
Viewed by 336
Abstract
Graphene, a two-dimensional carbon material, possesses exceptional properties such as high electron mobility, exceptional strength that surpasses that of steel, chemical resistance, environmental friendliness, and a large specific surface area. In this study, we used the modified Hummer process to produce graphene oxide, [...] Read more.
Graphene, a two-dimensional carbon material, possesses exceptional properties such as high electron mobility, exceptional strength that surpasses that of steel, chemical resistance, environmental friendliness, and a large specific surface area. In this study, we used the modified Hummer process to produce graphene oxide, which was applied to an aluminum alloy substrate as a corrosion-resistant coating. The aluminum alloy used in our study is AA2024, which is widely applied in industry and aircraft. The coating layer was characterized by micro-Raman spectroscopy and atomic force microscopy (AFM) before and after the reduction process. Micro-Raman spectroscopy provided information on the degree of reduction and the presence of functional groups in the coating layer. AFM images enabled the study of surface morphology and topography. After the reduction process, achieved by annealing in an argon atmosphere at 140 °C, micro-Raman spectroscopy and AFM were again used to assess structural and morphological changes. The reduction resulted in the formation of reduced graphene oxide (RGO), which exhibited improved conductivity and stability. The combination of micro-Raman spectroscopy and AFM characterization techniques provided detailed information on the properties and effectiveness of the coating layer. This research contributes to developing anti-corrosion methods using advanced materials and surface engineering techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 4662 KiB  
Article
Preliminary Study on Electrochemical Deposition of Graphene on Steel Substrate via In Situ Oxidation Using Cyclic Voltammetry
by Mattia Pelucchi, Brigida Alfano, Giuseppe Cesare Lama, Raphael Palucci Rosa and Marina Cabrini
Materials 2025, 18(11), 2440; https://doi.org/10.3390/ma18112440 - 23 May 2025
Viewed by 452
Abstract
This study explores an innovative method for depositing graphene directly onto metal surfaces, using cyclic voltammetry with a suspension of graphene in water. Most electrochemical deposition techniques up to now have concentrated on graphene oxide (GO) rather than pure graphene, largely because GO [...] Read more.
This study explores an innovative method for depositing graphene directly onto metal surfaces, using cyclic voltammetry with a suspension of graphene in water. Most electrochemical deposition techniques up to now have concentrated on graphene oxide (GO) rather than pure graphene, largely because GO disperses more readily in water. This characteristic makes GO simpler to manipulate and apply in deposition processes, giving it an advantage in terms of usability and practicality. We demonstrated that graphene can indeed be deposited onto metal surfaces using this innovative electrochemical approach. We conducted a thorough characterization of the resulting graphene deposits, employing advanced techniques, including interferometric microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. These analyses provided us with insights into the structural, chemical, and morphological characteristics of the graphene deposits. This comparison allowed us to assess the strengths and potential improvements needed for this direct deposition method, as it offers a more sustainable and streamlined alternative to conventional GO-based processes. One important finding is that, while the quality of these direct graphene deposits has not yet reached the level of GO-based coatings, this new approach has some compelling advantages. Specifically, it is a simpler, more environmentally friendly process that could streamline production and reduce the environmental impact compared to traditional methods using GO. Full article
Show Figures

Figure 1

11 pages, 7943 KiB  
Article
Development of Thin Carbon-Ceramic Based Coatings in Roll-to-Roll Mode: Tribological and Corrosion Results on Stainless Steel
by Mª Fe Menéndez Suárez, Pascal Sanchez, Ana L. Martínez Díez, Beatriz Mingo Roman and Marta Mohedano Sánchez
Materials 2025, 18(9), 2159; https://doi.org/10.3390/ma18092159 - 7 May 2025
Viewed by 490
Abstract
In this work, silicon oxide based coatings with embedded graphene nanoplatelets (content ranging from 1.8 wt.% to 7.2 wt.%) have been developed following the sol-gel route, using AISI430 stainless steel as substrate and dip and roll-to-roll as coating techniques. The tribological and corrosion [...] Read more.
In this work, silicon oxide based coatings with embedded graphene nanoplatelets (content ranging from 1.8 wt.% to 7.2 wt.%) have been developed following the sol-gel route, using AISI430 stainless steel as substrate and dip and roll-to-roll as coating techniques. The tribological and corrosion behaviour of these coatings have been evaluated and compared to bare steel. Concerning tribological behaviour, the coefficient of friction and wear print were significantly reduced with increasing the graphene nanoplatelets content. Regarding corrosion, all coatings showed improved corrosion behaviour compared to bare steel. However, higher concentration of nanoplatelets revealed a negative effect on the corrosion resistance, probably due to aggregation. Taking into account these two counteracting effects, as final part of this work, a bilayer coating with different graphene content has been proposed and fabricated. A top layer, with high graphene nanoplatelets concentration has allowed enhanced tribological properties whereas bottom layer, with no graphene nanoplatelets assures corrosion inhibition under harsh environments. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

12 pages, 5202 KiB  
Article
Reduced Graphene Oxide-Coated Iridium Oxide as a Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis
by Shengyin Luo, Ziqing Zuo and Hongbin Sun
Molecules 2025, 30(9), 2069; https://doi.org/10.3390/molecules30092069 - 7 May 2025
Viewed by 757
Abstract
Producing hydrogen by water electrolysis has attracted significant attention as a potential renewable energy solution. In this work, a catalyst with reduced graphene oxide (rGO) loaded on IrO2/TiO2 (called rGO/IrO2/TiO2) was designed for the catalytic oxygen [...] Read more.
Producing hydrogen by water electrolysis has attracted significant attention as a potential renewable energy solution. In this work, a catalyst with reduced graphene oxide (rGO) loaded on IrO2/TiO2 (called rGO/IrO2/TiO2) was designed for the catalytic oxygen evolution reaction (OER). The catalyst was synthesized by coating graphene oxide onto a pretreated IrO2/TiO2 precursor, followed by thermal treatment at 450 °C to achieve reduction and the adhesion of graphene to the substrate. The graphene support retained its intact sp2 carbon framework with minor oxygen-containing functional groups, which enhanced electrical conductivity and hydrophilicity. Benefiting from the synergistic effect of an rGO, IrO2, and TiO2 matrix, the rGO/IrO2/TiO2 catalyst only needed overpotentials of 240 mV and 320 mV to reach 10 mA cm−2 and 100 mA cm−2 in the OER, along with excellent stability over 50 h. Its morphology and crystalline structure were characterized by SEM and XRD spectroscopy, and its electrochemical performance was tested by LSV analysis, EIS impedance spectrum, and double-layer capacitance (Cdl) measurements. This work introduces an innovative and eco-friendly strategy for constructing a high-performance, functionalized Ir-based catalyst. Full article
(This article belongs to the Special Issue Design and Mechanisms of Photo(electro)catalysts for Water Splitting)
Show Figures

Graphical abstract

18 pages, 2870 KiB  
Article
Preparation and Properties of Environmentally Friendly Carboxyl Graphene Oxide/Silicone Coatings
by Zhenhua Chu, Jiahao Lu, Wan Tang, Yuchen Xu, Quantong Jiang and Jingxiang Xu
Materials 2025, 18(9), 2122; https://doi.org/10.3390/ma18092122 - 5 May 2025
Viewed by 435
Abstract
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix [...] Read more.
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix via mechanical blending, the microstructure, corrosion resistance, and long-term corrosion kinetics of the coatings were systematically investigated. The results demonstrate that the coating with 0.15 wt.% CGO (designated as KCG15) exhibited optimal comprehensive performance: its corrosion current density (Icorr = 4.37 × 10−8 A/cm2) was two orders of magnitude lower than that of the pure resin coating, while its low-frequency impedance modulus (∣Z0.1Hz = 4.99 × 106 Ω⋅cm2) is significantly enhanced, accompanied by improved surface compactness. The coating achieved a 97% inhibition rate against sulfate-reducing bacteria (SRB) through synergistic physical disruption and electrostatic repulsion mechanisms. Long-term corrosion kinetics analysis via 60-day seawater immersion identified three degradation phases—permeation (0–1 day), blockage (1–4 days), and failure (7–60 days)—with structural evolution from microcrack networks to foam-like blistering ultimately reducing by 97.8%. Furthermore, a 180-day atmospheric exposure test confirms the superior weatherability and adhesion of the KCG15 coating, with only minor discoloration observed due to its hydrophobic surface. This work provides theoretical and technical foundations for developing marine anti-corrosion coatings that synergize environmental sustainability with long-term protective performance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 2277 KiB  
Article
Simultaneous Trace Analysis of Lead and Cadmium in Drinking Water, Milk, and Honey Samples Through Modified Screen-Printed Electrode
by Fei Wang, Xiao Peng, Ziqian Xiao, Ying Ge, Bilin Tao, Zhaoyong Shou, Yifei Feng, Jing Yuan and Liang Xiao
Biosensors 2025, 15(5), 267; https://doi.org/10.3390/bios15050267 - 23 Apr 2025
Viewed by 661
Abstract
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby [...] Read more.
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby enhancing N-rGO@ppy’s redox properties. Firstly, a glassy carbon electrode (GCE) modified with N-rGO@ppy (N-rGO@ppy/GCE) was used in combination with a bismuth film and square-wave anodic stripping voltammetry (SWASV) for the simultaneous trace analysis of Pb2+ and Cd2+. N-rGO@ppy/GCE exhibited distinct stripping peaks for Pb2+ and Cd2+, with a linear range of 1 to 500 μg L−1. The limits of detection (LODs) were found to be 0.080 μg L−1 for Pb2+ and 0.029 μg L−1 for Cd2+, both of which are significantly below the standards set by the World Health Organization (WHO). Subsequently, the same electrochemical sensing strategy was adapted to a more portable screen-printed electrode (SPE) to accommodate the demand for in situ detection. The performance of N-rGO@ppy/SPE for analyzing Pb2+ and Cd2+ in actual samples, such as drinking water, milk, and honey, showed results consistent with those obtained from conventional graphite furnace atomic absorption spectrometry (GFAAS). Full article
Show Figures

Figure 1

50 pages, 3490 KiB  
Systematic Review
Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review
by Siting Guo, Iza Radecka, Ahmed M. Eissa, Evgeni Ivanov, Zlatka Stoeva and Fideline Tchuenbou-Magaia
Materials 2025, 18(8), 1862; https://doi.org/10.3390/ma18081862 - 18 Apr 2025
Cited by 1 | Viewed by 891
Abstract
All carbon-based sensors play a critical role in ensuring the sustainability of smart packaging while enabling real-time monitoring of parameters such as humidity, temperature, pressure, and strain during transit. This systematic review covers the literature between 2013 and 16 November 2024 in the [...] Read more.
All carbon-based sensors play a critical role in ensuring the sustainability of smart packaging while enabling real-time monitoring of parameters such as humidity, temperature, pressure, and strain during transit. This systematic review covers the literature between 2013 and 16 November 2024 in the Scopus, Web of Science, IEEE Xplore, and Wiley databases, focusing on carbon-based sensor materials, structural design, and fabrication technologies that contribute to maximizing the sensor performance and scalability with particular emphasis on food and pharmaceutical product packaging applications. After being subjected to the inclusion and exclusion criteria, 164 studies were included in this review. The results show that most humidity sensors are made using graphene oxide (GO), though there is some progress toward cellulose and cellulose-based materials. Graphene and carbon nanotubes (CNTs) are predominant in temperature and mechanical sensors. The application of composites with structural design (e.g., porous and 3D structures) significantly improves sensitivity, long-term stability, and multifunctionality, whereas manufacturing methods such as spray coating and 3D printing further drive production scalability. The transition from metal to carbon-based electrodes could also reduce the cost. However, the scalability, long-term stability, and real-world validation remain challenges to be addressed. Future research should further enhance the performance and scalability of carbon-based sensors through low-energy fabrication techniques and the development of sustainable advanced materials to provide solutions for practical applications in dynamic transportation environments. Full article
Show Figures

Figure 1

20 pages, 8368 KiB  
Article
Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film
by Chung-Long Pan, Tien-Tsan Hung, Chi-Yen Shen, Pin-Hong Chen and Chi-Ming Tai
Polymers 2025, 17(8), 1024; https://doi.org/10.3390/polym17081024 - 10 Apr 2025
Viewed by 631
Abstract
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and [...] Read more.
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and XRD, revealing a rough, wrinkled morphology beneficial for gas adsorption. The sensor showed significant frequency shifts to NH3, enhanced by AuNPs, Cu2O, rGO, and PPy. It had a 6.4-fold stronger response to NH3 compared to CO2, H2, and CO, confirming excellent selectivity. The linear detection range was 12–1000 ppb, with a limit of detection (LOD) of 8 ppb. Humidity affected performance, causing negative frequency shifts, and sensitivity declined after 30 days due to resistivity changes. Despite this, the sensor demonstrated excellent NH3 selectivity and stability across multiple cycles. In simulated breath tests, it distinguished between healthy and patient-like samples, highlighting its potential as a reliable, non-invasive diagnostic tool. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 1738 KiB  
Review
Challenges in Ultra-Trace Beryllium Analysis: Utilizing Recent Extraction Techniques in Combination with Spectrometric Detection
by Lucia Nemček and Ingrid Hagarová
Toxics 2025, 13(4), 289; https://doi.org/10.3390/toxics13040289 - 9 Apr 2025
Viewed by 732
Abstract
Beryllium (Be) is one of the most toxic non-radioactive elements on the periodic table, and its presence or intake can negatively impact both the environment and human health. Classified as a carcinogen, Be is dangerous even at trace concentrations, stressing the necessity of [...] Read more.
Beryllium (Be) is one of the most toxic non-radioactive elements on the periodic table, and its presence or intake can negatively impact both the environment and human health. Classified as a carcinogen, Be is dangerous even at trace concentrations, stressing the necessity of developing reliable methods for quantifying it at very low levels. Spectrometric techniques for quantifying Be vary in sensitivity and applicability, with inductively coupled plasma mass spectrometry (ICP-MS) being the most sensitive for ultra-trace analysis. Flame atomic absorption spectrometry (FAAS) is suitable for higher Be concentrations, but preconcentration techniques can significantly lower detection limits. Electrothermal atomic absorption spectrometry (ETAAS) provides enhanced sensitivity for low-level Be quantification, further optimized using pyrolytically coated graphite tubes and chemical modifiers such as Mg(NO3)2 or Pd(NO3)2. Effective separation and preconcentration techniques are essential for reliable Be quantification in complex matrices. Liquid-liquid extraction (LLE), including single-drop microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME), have evolved to reduce the use of hazardous solvents. When combined with ETAAS, surfactant-assisted DLLME using agents like cetylpyridinium ammonium bromide (CPAB) and dioctyl sodium sulfosuccinate (AOT) achieves preconcentration factors of approximately 25, reducing LOD to 1 ng/L. Vesicle-mediated DLLME coupled with ETAAS further enhances sensitivity, allowing detection limits as low as 0.01 ng/L in seawater. Cloud-point extraction (CPE), often employing Triton X-114, facilitates Be extraction using complexing agents or nanomaterials like graphene oxide. These advancements are critical for accurately quantifying Be at ultra-trace levels in diverse environmental and biological samples, overcoming challenges posed by low analyte concentrations and matrix interferences. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health)
Show Figures

Graphical abstract

24 pages, 8741 KiB  
Review
Graphene-Based Impregnation into Polymeric Coating for Corrosion Resistance
by Arti Yadav, Santosh Panjikar and R. K. Singh Raman
Nanomaterials 2025, 15(7), 486; https://doi.org/10.3390/nano15070486 - 24 Mar 2025
Cited by 2 | Viewed by 1172
Abstract
This review explores the development and application of the impregnation of graphene-based materials into polymeric coatings to enhance corrosion resistance. Derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide (rGO), have been increasingly integrated into polymer matrices to enhance polymers’ [...] Read more.
This review explores the development and application of the impregnation of graphene-based materials into polymeric coatings to enhance corrosion resistance. Derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide (rGO), have been increasingly integrated into polymer matrices to enhance polymers’ mechanical, thermal, and barrier properties. Various synthesis approaches, viz., electrochemical deposition, chemical reduction, and the incorporation of functionalised graphene derivatives, have been explored for improving the dispersion and stability of graphene within polymers. These graphene-impregnated coatings have shown promising results in improving corrosion resistance by enhancing impermeability to corrosive agents and reinforcing mechanical strength under corrosive conditions. While the addition of graphene notably enhances coating performance, challenges remain in achieving uniform graphene dispersion and addressing the trade-offs between thickness and flexibility. This review highlights current advancements, limitations, and future directions, with a particular emphasis on optimising the synthesis techniques to maximise corrosion resistance while maintaining coating durability and economic feasibility. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

22 pages, 713 KiB  
Review
Functional Graphene Coatings in Electrochemical Energy Technology—Beyond Corrosion Protection
by Qunting Qu, Lijun Fu, Lili Liu, Veniamin Kondratiev and Rudolf Holze
Molecules 2025, 30(7), 1436; https://doi.org/10.3390/molecules30071436 - 24 Mar 2025
Cited by 1 | Viewed by 767
Abstract
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need [...] Read more.
Coating the surfaces of active masses and auxiliary components in devices of electrochemical energy technology with graphene and closely related materials has been suggested and experimentally verified in numerous examples. The results in terms of improved performance are promising and suggest the need for further research and technological development. This report provides a complete overview, providing details that are relevant for understanding the way in which these coatings work. Suggestions and directions for further development are indicated. Full article
Show Figures

Figure 1

Back to TopTop