Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = redox-dependent binding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3566 KiB  
Article
Electron-Shuttling and Bioenergy-Stimulating Properties of Mulberry Anthocyanins: A Mechanistic Study Linking Redox Activity to MFC Performance and Receptor Affinity
by Gilbert S. Sobremisana, Po-Wei Tsai, Christine Joyce F. Rejano, Lemmuel L. Tayo, Chung-Chuan Hsueh, Cheng-Yang Hsieh and Bor-Yann Chen
Processes 2025, 13(7), 2290; https://doi.org/10.3390/pr13072290 - 18 Jul 2025
Viewed by 221
Abstract
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by [...] Read more.
Oxidative stress overwhelms cellular antioxidant defenses, causing DNA damage and pro-tumorigenic signaling that accelerate cancer initiation and progression. Electron shuttles (ESs) from phytocompounds offer precise redox control but lack quantitative benchmarks. This study aims to give a clearer definition to electron shuttles by characterizing mulberry’s electrochemical capabilities via the three defined ES criteria and deciphering its mechanism against oxidative stress-related cancer. Using double-chambered microbial-fuel-cell power metrics, cyclic voltammetry, and compartmental fermentation modeling, we show that anthocyanin shows a significant difference (p < 0.05) in power density at ≥500 µg/mL (maximum of 2.06-fold power-density increase) and reversible redox cycling (ratio = 1.65), retaining >90% activity over four fermentation cycles. Molecular docking implicates meta-dihydroxyl motifs within the core scaffold in receptor binding, overturning the view that only ortho- and para-substituents participate in bioactivity. In vitro, anthocyanins both inhibit nitric oxide release and reduce DU-145 cell viability dose-dependently. Overall, our findings establish mulberry anthocyanins as robust electron shuttles with potential for integration into large-scale bio-electrochemical platforms and targeted redox-based cancer therapies. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

14 pages, 2208 KiB  
Review
The Relationship Between Non-Transferrin-Bound Iron (NTBI), Labile Plasma Iron (LPI), and Iron Toxicity
by Lorena Duca, Elena Di Pierro, Natalia Scaramellini, Francesca Granata and Giovanna Graziadei
Int. J. Mol. Sci. 2025, 26(13), 6433; https://doi.org/10.3390/ijms26136433 - 3 Jul 2025
Viewed by 319
Abstract
Plasma non-transferrin-bound iron (NTBI) comprises multiple subspecies, classified by their composition, chemical reactivity, and susceptibility to chelation. The redox-active and chelatable fraction of NTBI is referred to as labile plasma iron (LPI). The pathophysiological significance of NTBI and LPI lies in their ability [...] Read more.
Plasma non-transferrin-bound iron (NTBI) comprises multiple subspecies, classified by their composition, chemical reactivity, and susceptibility to chelation. The redox-active and chelatable fraction of NTBI is referred to as labile plasma iron (LPI). The pathophysiological significance of NTBI and LPI lies in their ability to enter cells via alternative transport pathways that are not regulated by the transferrin receptor system or by cellular iron levels. Several mechanisms have been proposed for their cellular entry, including the hijacking of divalent metal transporters and passive diffusion. This unregulated uptake can lead to iron accumulation in vulnerable tissues such as the liver and the heart. NTBI and LPI bypassing normal cellular control mechanisms can rapidly exceed the cell’s capacity to safely store excess iron, leading to toxicity. Both NTBI and LPI contribute to oxidative stress by participating in free-radical-generating reactions. However, LPI concentration in the bloodstream may be differentially affected by the mode and extent of iron overload, the presence of residual serum iron-binding activity, and the antioxidant capacity of individual sera. In summary, both NTBI and LPI contribute to iron-mediated toxicity but differ in terms of reactivity, availability, and pathogenic potential depending on the pathophysiological conditions that influence the degree of toxicity. Full article
(This article belongs to the Special Issue Iron Dyshomeostasis)
Show Figures

Figure 1

18 pages, 3640 KiB  
Article
NsrR Represses σE-Dependent Small RNAs and Interacts with RpoE via a Noncanonical Mechanism in Escherichia coli
by Joseph I. Aubee, Jalisa Nurse, Dale Lewis, Chin-Hsien Tai and Karl M. Thompson
Int. J. Mol. Sci. 2025, 26(13), 6318; https://doi.org/10.3390/ijms26136318 - 30 Jun 2025
Viewed by 241
Abstract
The envelope stress response in Escherichia coli is primarily governed by the sigma factor RpoE (σE), which activates protective genes upon membrane perturbation. Under non-stress conditions, σE is sequestered by its anti-sigma factor RseA. In this study, we identify an [...] Read more.
The envelope stress response in Escherichia coli is primarily governed by the sigma factor RpoE (σE), which activates protective genes upon membrane perturbation. Under non-stress conditions, σE is sequestered by its anti-sigma factor RseA. In this study, we identify an unexpected role for the nitric-oxide-sensing repressor NsrR in dampening σE activity and repressing σE-dependent small RNAs, including rybB, micA, and micL. Overexpression of nsrR represses transcription from σE-dependent promoters and phenocopies σE inactivation, resulting in filamentous morphology and growth defects. Conversely, ΔnsrR de-represses σE targets, with additive effects in rseA mutants—supporting an RseA-independent regulatory role. Time-course analysis shows NsrR represses σE activity, with kinetics comparable to those of RseA. While in vitro assays failed to detect robust NsrR binding to σE target promoters, NsrR directly interacts with σE in bacterial two-hybrid assays. Structural modeling using AlphaFold3 supports a plausible NsrR–RpoE interaction interface. These findings suggest that NsrR functions as a noncanonical anti-sigma-like modulator of σE, integrating redox and envelope stress signals to maintain membrane homeostasis. Full article
Show Figures

Figure 1

17 pages, 1690 KiB  
Review
Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship
by Anna Rita Daniela Coda, Arcangelo Liso and Francesco Bellanti
Biology 2025, 14(7), 747; https://doi.org/10.3390/biology14070747 - 23 Jun 2025
Viewed by 374
Abstract
Insulin-like growth factor-binding protein 6 (IGFBP-6) is primarily recognized for its inhibitory effects on insulin-like growth factor 2 (IGF-2), regulating processes such as cell proliferation, differentiation, and survival. However, recent studies have revealed that IGFBP-6 also participates in a range of IGF-independent activities, [...] Read more.
Insulin-like growth factor-binding protein 6 (IGFBP-6) is primarily recognized for its inhibitory effects on insulin-like growth factor 2 (IGF-2), regulating processes such as cell proliferation, differentiation, and survival. However, recent studies have revealed that IGFBP-6 also participates in a range of IGF-independent activities, notably in redox biology, immune regulation, and fibrosis. These IGF-independent actions involve interactions with redox-sensitive signaling pathways that influence mitochondrial metabolism, neutrophil function, and fibroblast activity, all of which are central to redox-dependent processes in inflammation and fibrosis. Despite these insights, the precise mechanisms by which IGFBP-6 modulates redox signaling remain largely unexplored. This review examines the growing understanding of IGFBP-6 beyond its classical role as an IGF-binding protein, with a focus on its involvement in redox homeostasis. By exploring these emerging roles, we aim to elucidate how IGFBP-6 contributes to redox homeostasis and to assess its potential as a therapeutic target in oxidative stress-related diseases, including fibrosis, cancer, and immune dysfunction. Full article
Show Figures

Figure 1

12 pages, 1221 KiB  
Review
Azurin: A Model to Study a Metal Coordination Sphere or Electron Transfer in Metalloproteins
by Roman Tuzhilkin, Vladimír Ondruška and Miroslav Šulc
Int. J. Mol. Sci. 2025, 26(9), 4125; https://doi.org/10.3390/ijms26094125 - 26 Apr 2025
Viewed by 680
Abstract
Azurin is a small blue copper protein that participates in redox reactions during anaerobic respiration in Pseudomonas aeruginosa, and there are a significant number of studies employing this model to investigate the electron transfer (ET) processes or coordination sphere of metal ion [...] Read more.
Azurin is a small blue copper protein that participates in redox reactions during anaerobic respiration in Pseudomonas aeruginosa, and there are a significant number of studies employing this model to investigate the electron transfer (ET) processes or coordination sphere of metal ion in metalloproteins. Azurin naturally contains Cu(II/I) as a central ion and is redox-active for a single electron ET. Moreover, azurin with no central ion (apo-azurin) is capable of binding other metal cofactors—e.g., Zn(II)—forming redox-inactive Zn-form and many others impacting the redox potential and structural variation in the active site’s arrangement. Also, mutations of amino acid residues in the immediate vicinity of the metal ion can influence the structure and functionality of a particular metalloprotein. Therefore, this review aims to summarize the abundant information about selected topics related to redox reactions and blue copper proteins, particularly azurin, and is structured as follows: (i) introduction to the structure, properties, and physiological role of this group of metalloproteins, (ii) the role of the equatorial and axial ligands of the central metal ions, or metal species, in the active site on the metal coordination sphere’s structure and related determination of the particular azurin form’s redox potentials, and (iii) the effects of the particular amino acid’s moiety (Phe, Tyr and Trp residues together with acceleration employing Trp-Trp π-π stacking interactions contrary to ET distance dependence) on the preferable type of long-range ET mechanism in an azurin-mediated model biomolecule. We assume that azurin is a suitable model to study the structural functionality of a particular central metal ion or individual amino acid residues in the central ion coordination sphere for studying the redox potential and ET reactions in metalloproteins. Full article
(This article belongs to the Special Issue Metalloproteins: How Metals Shape Protein Structure and Function)
Show Figures

Figure 1

14 pages, 4481 KiB  
Article
A Hydrogen Peroxide Responsive Biotin-Guided Near-Infrared Hemicyanine-Based Fluorescent Probe for Early Cancer Diagnosis
by Lingyu Zhong, Yingfei Wang, Qing Hao and Hong Liu
Chemosensors 2025, 13(3), 104; https://doi.org/10.3390/chemosensors13030104 - 13 Mar 2025
Cited by 1 | Viewed by 817
Abstract
H2O2 plays an important role in oxidative damage and redox signaling. Studies have shown that abnormal levels of H2O2 are closely related to the development of cancer. The levels of H2O2 in tumor cells [...] Read more.
H2O2 plays an important role in oxidative damage and redox signaling. Studies have shown that abnormal levels of H2O2 are closely related to the development of cancer. The levels of H2O2 in tumor cells are higher than in normal cells. Thus, it is of great importance to develop a fluorescent probe to monitor the level of H2O2 in vivo. This work reports a new biotin-guided NIR fluorescent probe, Bio-B-Cy, consisting of boronic acid ester as a H2O2-recognition site and biotin as a tumor binding site, which accelerates the fluorescence response to H2O2 in vivo. Bio-B-Cy exhibits good sensitivity and selectivity toward H2O2. In addition, Bio-B-Cy shows a dose-dependent response to H2O2 and the detection limit is 0.14 μM. We further demonstrate that Bio-B-Cy could successfully detect the H2O2 in biotin receptor-positive cancer cells and tumor tissues. Based on the results, Bio-B-Cy has the potential to serve as an efficient tool for early diagnosis of cancer. Full article
Show Figures

Figure 1

16 pages, 3113 KiB  
Article
Reactions of Plasmodium falciparum Type II NADH: Ubiquinone Oxidoreductase with Nonphysiological Quinoidal and Nitroaromatic Oxidants
by Lina Misevičienė, Marie-Pierre Golinelli-Cohen, Visvaldas Kairys, Audronė Marozienė, Mindaugas Lesanavičius and Narimantas Čėnas
Int. J. Mol. Sci. 2025, 26(6), 2509; https://doi.org/10.3390/ijms26062509 - 11 Mar 2025
Viewed by 560
Abstract
In order to detail the antiplasmodial effects of quinones (Q) and nitroaromatic compounds (ArNO2), we investigated their reduction mechanism by Plasmodium falciparum flavoenzyme type II NADH:ubiquinone oxidoreductase (PfNDH2). The reactivity of Q and ArNO2 (n = 29) [...] Read more.
In order to detail the antiplasmodial effects of quinones (Q) and nitroaromatic compounds (ArNO2), we investigated their reduction mechanism by Plasmodium falciparum flavoenzyme type II NADH:ubiquinone oxidoreductase (PfNDH2). The reactivity of Q and ArNO2 (n = 29) follows a common trend and exhibits a parabolic dependence on their single-electron reduction potential (E71), albeit with significantly scattered data. The reactivity of quinones with similar E71 values increases with their lipophilicity. Quinones are reduced by PfNDH2 in a two-electron way, but ArNO2 are reduced in a single-electron way. The inhibition studies using NAD+ and ADP-ribose showed that quinones oxidize the complexes of reduced enzyme with NADH and NAD+. This suggests that, as in the case of other NDH2s, quinones and the nicotinamide ring of NAD(H) bind at separate sites. A scheme of PfNDH2 catalysis is proposed, consistent with both the observed ‘ping-pong’ mechanism and the presence of two substrate binding sites. Molecular docking showed that Q and ArNO2 bind in a similar manner and that lipophilic quinones have a higher affinity for the binding site. One may expect that PfNDH2 can be partially responsible for the previously observed enhanced antiplasmodial activity of aziridinylbenzoquinones caused by their two-electron reduction, as well as for the redox cycling and oxidative stress-type action of ArNO2. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

11 pages, 1807 KiB  
Communication
Rapid and Ultrasensitive Sensor for Point-of-Use Detection of Perfluorooctanoic Acid Based on Molecular Imprinted Polymer and AC Electrothermal Effect
by Niloufar Amin, Jiangang Chen, Ngoc Susie Nguyen, Qiang He, John Schwartz and Jie Jayne Wu
Micromachines 2025, 16(3), 283; https://doi.org/10.3390/mi16030283 - 28 Feb 2025
Viewed by 1212
Abstract
Perfluorooctanoic acid (PFOA) is one of the most persistent and bioaccumulative water contaminants. Sensitive, rapid, and in-field analysis is needed to ensure safe water supplies. Here, we present a single step (one shot) and rapid sensor capable of measuring PFOA at the sub-quadrillion [...] Read more.
Perfluorooctanoic acid (PFOA) is one of the most persistent and bioaccumulative water contaminants. Sensitive, rapid, and in-field analysis is needed to ensure safe water supplies. Here, we present a single step (one shot) and rapid sensor capable of measuring PFOA at the sub-quadrillion (ppq) level, 4.5 × 10−4 ppq, within 10 s. This innovative sensor employs a synergistic combination of a molecularly imprinted polymer (MIP)-modified gold interdigitated microelectrode chip and AC electrothermal effects (ACETs), which enhance detection sensitivity by facilitating the accelerated movement of PFOA molecules towards specific recognition sites on the sensing surface. The application of a predetermined AC signal induces microfluidic enrichment and results in concentration-dependent changes in interfacial capacitance during the binding process. This enables real-time, rapid quantification with exceptional sensitivity. We achieved a linear dynamic range spanning from 0.4 to 40 fg/L (4 × 10−7–4 × 10−5 ppt) and demonstrated good selectivity (~1:100) against other PFAS compounds, including perfluorooctanoic acid (PFOS), in PBS buffer. The sensor’s straightforward operation, cost-effectiveness, elimination of the need for external redox probes, compact design, and functionality in relatively resistant environmental matrices position it as an outstanding candidate for deployment in practical applications. Full article
(This article belongs to the Special Issue Innovations in Biosensors, Gas Sensors and Supercapacitors)
Show Figures

Figure 1

15 pages, 3219 KiB  
Article
High-Glucose-Induced Metabolic and Redox Alterations Are Distinctly Modulated by Various Antidiabetic Agents and Interventions Against FABP5/7, MITF and ANGPTL4 in Melanoma A375 Cells
by Nami Nishikiori, Hiroshi Ohguro, Megumi Watanabe, Megumi Higashide, Toshifumi Ogawa, Masato Furuhashi and Tatsuya Sato
Int. J. Mol. Sci. 2025, 26(3), 1014; https://doi.org/10.3390/ijms26031014 - 24 Jan 2025
Viewed by 1600
Abstract
Hyperglycemia-induced effects on cellular metabolic properties and reactive oxygen species (ROS) generation play pivotal roles in the pathogenesis of malignant melanoma (MM). This study assessed how metabolic states, ROS production, and related gene expression are modulated by antidiabetic agents. The anti-diabetic agents metformin [...] Read more.
Hyperglycemia-induced effects on cellular metabolic properties and reactive oxygen species (ROS) generation play pivotal roles in the pathogenesis of malignant melanoma (MM). This study assessed how metabolic states, ROS production, and related gene expression are modulated by antidiabetic agents. The anti-diabetic agents metformin (Met) and imeglimin (Ime), inhibitors of fatty acid-binding proteins 5/7 (MF6) and microphthalmia-associated transcription factor (MITF) (ML329), and siRNA-mediated knockdown of angiopoietin-like protein 4 (ANGPTL4), which affect mitochondrial respiration, ROS production, and related gene expression, were tested in A375 (MM cell line) cells cultured in low (5.5 mM) and high glucose (50 mM) conditions. Cellular metabolic functions were significantly and differently modulated by Met, Ime, MF6, or ML329 and knockdown of ANGPTL4. High glucose significantly enhanced ROS production, which was alleviated by Ime but not by Met. Both MF6 and ML329 reduced ROS levels under both low and high glucose conditions. Knockdown of ANGPTL4 enhanced the change in glucose-dependent ROS production. Gene expression related to mitochondrial respiration and the pathogenesis of MM was significantly modulated by different glucose conditions, antidiabetic agents, MF6, and ML329. These findings suggest that glucose-dependent changes in cellular metabolism and redox status are differently modulated by antidiabetic agents, inhibition of fatty acid-binding proteins or MITF, and ANGPTL4 knockdown in A375 cells. Full article
(This article belongs to the Special Issue Melanoma: Molecular Mechanisms and Therapy)
Show Figures

Figure 1

13 pages, 2092 KiB  
Article
The Design and Cell-Free Protein Synthesis of a Pembrolizumab Single-Chain Variable Fragment
by Landon E. Ebbert, Tyler J. Free, Mehran Soltani and Bradley C. Bundy
Drugs Drug Candidates 2025, 4(1), 3; https://doi.org/10.3390/ddc4010003 - 20 Jan 2025
Cited by 2 | Viewed by 2236
Abstract
Background/Objectives: Cancer is a leading cause of death. However, recently developed immunotherapies have shown significant promise to improve cancer treatment outcomes and survival rates. Pembrolizumab, a cancer immunotherapy drug, enables a strong T-cell response specifically targeting cancer cells to improve patient outcomes in [...] Read more.
Background/Objectives: Cancer is a leading cause of death. However, recently developed immunotherapies have shown significant promise to improve cancer treatment outcomes and survival rates. Pembrolizumab, a cancer immunotherapy drug, enables a strong T-cell response specifically targeting cancer cells to improve patient outcomes in more than 16 types of cancer. The increasing demand for pembrolizumab, the highest selling drug in 2023, increases global dependence on drug production, which can be vulnerable to supply chain disruptions. Methods: Cell-free protein synthesis (CFPS) is a rapid in vitro protein production method that could provide the production of an immunotherapy drug in an emergency and could facilitate on-demand production of the therapeutic at the point of care if needed. Furthermore, CFPS has potential as a production platform of biosimilars, as the patent for pembrolizumab is set to expire in 2028. Results: This work presents the design, synthesis, and target-binding affinity of a novel single-chain variable fragment of pembrolizumab (Pem-scFv) using CFPS. The CFPS production of Pem-scFv also enables the direct optimization of synthesis reaction composition and expression conditions. The conditions of 30 °C, 35% (v/v) cell extract, and an oxidizing redox environment resulted in the highest Pem-scFv soluble yield of 442 µg/mL. An affinity assay demonstrated significant binding between the CFPS-produced Pem-scFv and the PD-1 target. Computational simulations of Pem-scFv folding and binding corroborate the experimental results. Full article
(This article belongs to the Section Biologics)
Show Figures

Figure 1

21 pages, 10383 KiB  
Article
Synthesis, Physicochemical Properties, and Ion Recognition Ability of Azulene-Based Bis-(Thio)Semicarbazone
by Anamaria Hanganu, Catalin Maxim, Andreea Dogaru, Adrian E. Ion, Coralia Bleotu, Augustin M. Madalan, Daniela Bala and Simona Nica
Molecules 2025, 30(1), 83; https://doi.org/10.3390/molecules30010083 - 29 Dec 2024
Cited by 1 | Viewed by 1224
Abstract
Azulene-1,3-bis(semicarbazone), 1, and azulene-1,3-bis(thiosemicarbazone), 2, were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds 1 and 2 were identified by high-resolution mass spectrometry and characterized by IR, 1H-NMR, 13C-NMR, and [...] Read more.
Azulene-1,3-bis(semicarbazone), 1, and azulene-1,3-bis(thiosemicarbazone), 2, were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds 1 and 2 were identified by high-resolution mass spectrometry and characterized by IR, 1H-NMR, 13C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a syn-closed conformation, with both arms oriented in the same direction and adopting an E configuration with respect to the imine linkages. Both hydrazones are redox active and showed fluorescence emission at 450 nm upon excitation at 350 nm. The bis-semicarbazone showed no affinity for anions nor for mercury(II) metal cation. Instead, the bis-thiosemicarbazone showed a lower affinity for chloride anions, but enhanced affinity for binding/poisoning Hg2+ ions. Both compounds were tested against osteosarcoma MG63 cell lines, exhibiting low antiproliferative activity with comparable IC50 values of 473.08 μM and 472.40 μM for compounds 1 and 2, respectively. Despite this limited antiproliferative effect, further analysis using propidium iodide staining revealed a concentration-dependent decrease in cell viability, with high concentrations inducing a marked reduction in cell number, accompanied by morphological changes characteristic of apoptosis and necrosis. Full article
Show Figures

Figure 1

19 pages, 2112 KiB  
Article
Exploring the Therapeutic Potential of Cannabidiol in U87MG Cells: Effects on Autophagy and NRF2 Pathway
by Laura Giannotti, Benedetta Di Chiara Stanca, Francesco Spedicato, Daniele Vergara, Eleonora Stanca, Fabrizio Damiano and Luisa Siculella
Antioxidants 2025, 14(1), 18; https://doi.org/10.3390/antiox14010018 - 26 Dec 2024
Cited by 1 | Viewed by 1371
Abstract
Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities. CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties [...] Read more.
Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities. CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties allow CBD to influence oxidative stress responses and potentially enhance the efficacy of antitumor therapies. In this study, we treated U87MG glioma cells with low dose (1 μM) CBD and evaluated its molecular effects. Our findings indicate that CBD reduced cell viability by 20% (p < 0.05) through the alteration of mitochondrial membrane potential. The alteration of redox status by CBD caused an attempt to rescue mitochondrial functionality through nuclear localization of the GABP transcription factor involved in mitochondria biogenesis. Moreover, CBD treatment caused an increase in autophagic flux, as supported by the increase in Beclin-1 and the ratio of LC3-II/LC3-I. Due to mitochondria functionality alteration, pro-apoptotic proteins were induced without activating apoptotic effectors Caspase-3 or Caspase-7. The study of the transcription factor NRF2 and the ubiquitin-binding protein p62 expression revealed an increase in their levels in CBD-treated cells. In conclusion, low-dose CBD makes U87MG cells more vulnerable to cytotoxic effects, reducing cell viability and mitochondrial dynamics while increasing autophagic flux and redox systems. This explains the mechanisms by which glioma cells respond to CBD treatment. These findings highlight the therapeutic potential of CBD, suggesting that modulating NRF2 and autophagy pathways could represent a promising strategy for glioblastoma treatment. Full article
Show Figures

Figure 1

17 pages, 5047 KiB  
Article
Evolutionary Adaptations in Biliverdin Reductase B: Insights into Coenzyme Dynamics and Catalytic Efficiency
by Eunjeong Lee, Jasmina S. Redzic and Elan Zohar Eisenmesser
Int. J. Mol. Sci. 2024, 25(24), 13233; https://doi.org/10.3390/ijms252413233 - 10 Dec 2024
Viewed by 977
Abstract
Biliverdin reductase B (BLVRB) is a redox regulator that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of multiple substrates, including flavins and biliverdin-β. BLVRB has emerging roles in redox regulation and post-translational modifications, highlighting its importance in various physiological contexts. In this study, [...] Read more.
Biliverdin reductase B (BLVRB) is a redox regulator that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of multiple substrates, including flavins and biliverdin-β. BLVRB has emerging roles in redox regulation and post-translational modifications, highlighting its importance in various physiological contexts. In this study, we explore the structural and functional differences between human BLVRB and its hyrax homologue, focusing on evolutionary adaptations at the active site and allosteric regions. Using NMR spectroscopy, we compared coenzyme binding, catalytic turnover, and dynamic behavior between the two homologues. Despite lacking the arginine “clamp” present in human BLVRB, hyrax BLVRB still undergoes conformational changes in response to the oxidative state of the coenzyme. Mutations at the allosteric site (position 164) show that threonine at this position enhances coenzyme discrimination and allosteric coupling in human BLVRB, while hyrax BLVRB does not display the same allosteric effects. Relaxation experiments revealed distinct dynamic behaviors in hyrax BLVRB, with increased flexibility in its holo form due to the absence of the clamp. Our findings suggest that the evolutionary loss of the active site clamp and modifications at position 164 in hyrax BLVRB alter the enzyme’s conformational dynamics and coenzyme interactions. Identified similarities and differences underscore how key regions modulate catalytic efficiency and suggest that coenzyme isomerization may represent the rate-limiting step in both homologues. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Biomolecules)
Show Figures

Figure 1

18 pages, 7917 KiB  
Article
Dobinin K Displays Antiplasmodial Activity through Disruption of Plasmodium falciparum Mitochondria and Generation of Reactive Oxygen Species
by He Sun, Bo-Chao Liu, Long-Fei He, Chao-Jiang Xiao, Bei Jiang and Lei Shen
Molecules 2024, 29(19), 4759; https://doi.org/10.3390/molecules29194759 - 8 Oct 2024
Viewed by 1420
Abstract
Dobinin K is a novel eudesmane sesquiterpenoids compound isolated from the root of Dobinea delavayi and displays potential antiplasmodial activity in vivo. Here, we evaluate the antiplasmodial activity of dobinin K in vitro and study its acting mechanism. The antiplasmodial activity of dobinin [...] Read more.
Dobinin K is a novel eudesmane sesquiterpenoids compound isolated from the root of Dobinea delavayi and displays potential antiplasmodial activity in vivo. Here, we evaluate the antiplasmodial activity of dobinin K in vitro and study its acting mechanism. The antiplasmodial activity of dobinin K in vitro was evaluated by concentration-, time-dependent, and stage-specific parasite inhibition assay. The potential target of dobinin K on Plasmodium falciparum was predicted by transcriptome analysis. Apoptosis of P. falciparum was detected by Giemsa, Hoechst 33258, and TUNEL staining assay. The reactive oxygen species (ROS) level, oxygen consumption, and mitochondrial membrane potential of P. falciparum were assessed by DCFH-DA, R01, and JC-1 fluorescent dye, respectively. The effect of dobinin K on the mitochondrial electron transport chain (ETC) was investigated by enzyme activity analysis and the binding abilities of dobinin K with different enzymes were learned by molecular docking. Dobinin K inhibited the growth of P. falciparum in a concentration-, time-dependent, and stage-specific manner. The predicted mechanism of dobinin K was related to the redox system of P. falciparum. Dobinin K increased intracellular ROS levels of P. falciparum and induced their apoptosis. After dobinin K treatment, P. falciparum mitochondria lost their function, which was presented as decreased oxygen consumption and depolarization of the membrane potential. Among five dehydrogenases in P. falciparum ETC, dobinin K displayed the best inhibitory power on NDH2 activity. Our findings indicate that the antiplasmodial effect of dobinin K in vitro is mediated by the enhancement of the ROS level in P. falciparum and the disruption of its mitochondrial function. Full article
Show Figures

Graphical abstract

14 pages, 1669 KiB  
Article
Bidentate Substrate Binding Mode in Oxalate Decarboxylase
by Alvaro Montoya, Megan Wisniewski, Justin L. Goodsell and Alexander Angerhofer
Molecules 2024, 29(18), 4414; https://doi.org/10.3390/molecules29184414 - 17 Sep 2024
Cited by 1 | Viewed by 1168
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH [...] Read more.
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO’) to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

Back to TopTop