Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship
Simple Summary
Abstract
1. Introduction
2. Overview on Redox Biology and Signaling
2.1. Redox Homeostasis and Its Importance in Cellular Functions
2.2. Antioxidant Mechanisms and Redox Signaling
2.3. Redox Dysregulation, Reductive Stress, and Disease Implications
3. Redox Modulation of Immunity, Tissue Repair, and Fibrosis
3.1. Redox Regulation in Innate and Adaptive Immunity
3.2. Redox Signaling in Tissue Repair and Fibrosis
3.3. Redox Modulation in Fibrosis Development and Progression
4. Biology of Insulin-like Growth Factors (IGFs) and IGF-Binding Proteins (IGFBPs)
4.1. Overview of the IGF System
- IGF-1 receptor (IGF-1R);
- Insulin receptor isoform A (IR-A) and insulin receptor isoform B (IR-B);
- IGF-2 receptor (IGF-2R).
- N-terminal domain, with high cysteine content, crucial for IGF binding;
- C-terminal domain, with similar structure, also involved in IGF binding;
- Middle linker domain, less conserved, subject to post-translational modifications like glycosylation and phosphorylation [63].
4.2. Biological Functions and Signaling Pathways
- Proliferation: IGFs stimulate cell division mainly through the Ras/MAPK pathway.
- Survival: IGFs prevent apoptosis via the PI3K/Akt pathway.
- Differentiation and migration: IGFs enhance differentiation in myoblasts and promote migration in normal and cancer cells.
- Tumor growth and survival;
- Cell migration and invasion;
- Tumor angiogenesis, particularly under hypoxic conditions, via stimulating vascular endothelial growth factor (VEGF) production.
Isoform | Expression and Localization | Actions | Refs. |
---|---|---|---|
IGFBP-1 | Many organs, with high expression in liver and pancreas | - Inhibits or enhances IGFs actions; - Increases cell migration; - Stimulates osteoclast differentiation and bone degradation; - Regulates placental and fetal growth; - Acts on insulin metabolism. | [70] |
IGFBP-2 | Liver, adipocytes, and the reproductive and central nervous systems | - Preferentially binds IGF-2 and inhibits IGFs actions; - Increases cancer cell proliferation, survival and migration/invasion; - Regulates glucose homeostasis. | [71] |
IGFBP-3 | Many organs, with high expression in liver and kidney | - Inhibits IGFs actions; - Promotes senescence; - Tumor suppression and pro-tumorigenic actions; - Modulates angiogenesis; - Regulates stem cell biology; - Influences pre- and postnatal growth. | [73,74] |
IGFBP-4 | Liver, kidney, and uterus | - Inhibits IGF actions; - Regulates bone growth; - Regulates adult skeletal growth; - Induces cardiomyocyte differentiation; - Inhibits angiogenesis. | [75] |
IGFBP-5 | Bone, lung, kidney, mammary glands, testis, ovary, uterus, and placenta | - Preferentially binds IGF-2; - Increases fibrosis; - Inhibited prenatal growth; - Regulates muscle development; - Decreases female fertility. | [77,78] |
IGFBP-6 | Many organs, with high expression in prostate, cervix, mammary tissue, and adipose tissue | - Preferentially binds IGF-2; - Inhibits cell proliferation, differentiation, migration and survival; - Inhibits apoptosis; - Inhibits basal and VEGF-induced angiogenesis; - Promotes immune system activation. | [3,80] |
IGFBP-7 | Many organs, with high expression in brain, liver, pancreas, and skeletal muscle | - Regulates angiogenesis, apoptosis; - Regulates cell growth and progression in cancer. | [79] |
4.3. IGFBPs in Tissue Repair and Regeneration
- Liver fibrosis: In chronic hepatitis C, increased production of IGFBPs has been linked to fibrosis severity [81].
- Primary myelofibrosis (PMF): Elevated IGFBP-2 levels have been observed in PMF patients compared to healthy individuals, suggesting a potential role in disease progression [82].
- IGFBP-6 and microenvironmental alterations: IGFBP-6 regulates fibroblast proliferation and senescence and is involved in the Sonic Hedgehog (SHH)/Toll-like receptor 4 axis in PMF. Studies have shown that IGFBP-6 and SHH activators promote mesenchymal stromal cell differentiation while upregulating cancer-associated fibroblast markers. Inhibition of the SHH pathway reverses these effects, confirming its involvement in TLR4 activation and microenvironmental alterations [83].
5. IGFBP-6 and Redox Biology: A Potential Connection
5.1. Biology and Functions of IGFBP-6
- IGF-dependent actions: IGFBP-6 preferentially binds IGF-2, inhibiting its ability to promote cell proliferation, differentiation, migration, and survival. It also facilitates IGF-2 binding to the IGF type 2 receptor (IGF-IIR/CI-MPR), leading to IGF-2 internalization and degradation [63].
- IGF-independent actions: IGFBP-6 modulates cell migration through its interaction with prohibitin-2 (PHB2), independently of IGF-2 binding. Additionally, it influences angiogenesis, fibroblast proliferation, and apoptosis, though the receptors mediating these immune-related effects remain unidentified [84,85].
5.2. Redox Homeostasis and IGFBP-6: A Dynamic Interplay
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IGFBP-6 | Insulin-like growth factor-binding protein 6 |
IGF-2 | Insulin-like growth factor 2 |
RS | Reactive species |
IGFs | Insulin-like growth factors |
IGFBPs | Growth factor-binding proteins |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
O2− | Superoxide anion |
NOXs | NADPH oxidases |
UV | Ultraviolet |
SOD | Superoxide dismutase |
H2O2 | Hydrogen peroxide |
NF-κB | Nuclear factor-kappa B |
AP-1 | Activator protein-1 |
MAPK | Mitogen-activated protein kinase |
TGF-β | Tumor growth factor-β |
ECM | Extracellular matrix |
TNF | Tumor necrosis factor |
NLRP3 | NLR pyrin domain-containing 3 |
IL | Interleukin |
TLRs | Toll-like receptors |
NET | Neutrophil extracellular trap |
HSCs | Hepatic stellate cells |
IGF-1R | Insulin-like growth factor receptor 1 |
IGF-2R | Insulin-like growth factor receptor 2 |
IR-A | Insulin receptor isoform A |
IR-B | Insulin receptor isoform B |
GH | Growth hormone |
VEGF | Vascular endothelial growth factor |
SHH | Sonic hedgehog |
PHB2 | Prohibitin-2 |
VDR | Vitamin D receptor |
RXR | Retinoid X receptor |
TRα1 | Thyroid hormone receptor-α1 |
EGR-1 | Early growth response-1 |
NHEJR | Non-homologous end joining repair |
DCs | Dendritic cells |
GPR81 | G protein-coupled receptor 81 |
hMSC-CM | Human mesenchymal stem cell-conditioned medium |
References
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like Growth Factors: Ligands, Binding Proteins, and Receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef] [PubMed]
- Bach, L.A. Current Ideas on the Biology of IGFBP-6: More than an IGF-II Inhibitor? Growth Horm IGF Res. 2016, 30–31, 81–86. [Google Scholar] [CrossRef]
- Bach, L.A. Recent Insights into the Actions of IGFBP-6. J. Cell Commun. Signal 2015, 9, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free Radicals and Their Impact on Health and Antioxidant Defenses: A Review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox Regulation: Mechanisms, Biology and Therapeutic Targets in Diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
- Liso, A.; Venuto, S.; Coda, A.R.D.; Giallongo, C.; Alberto Palumbo, G.; Tibullo, D. IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022, 23, 4358. [Google Scholar] [CrossRef]
- Remigante, A.; Cordaro, M.; Morabito, R. Redox Homeostasis and Antioxidant Strategies in the Pathophysiology. Antioxidants 2024, 13, 281. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Cho, K.J.; Seo, J.M.; Kim, J.H. Bioactive Lipoxygenase Metabolites Stimulation of NADPH Oxidases and Reactive Oxygen Species. Mol. Cells 2011, 32, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, A.; Viviano, M.; Feoli, A.; Milite, C.; Sarno, G.; Castellano, S.; Sbardella, G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J. Med. Chem. 2023, 66, 11632–11655. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; et al. Cancer Metabolism: The Role of ROS in DNA Damage and Induction of Apoptosis in Cancer Cells. Metabolites 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of Oxidative Stress, Cellular Communication and Signaling Pathways in Cancer. Cell Commun. Signal 2024, 22, 7. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
- López-Grueso, M.J.; González-Ojeda, R.; Requejo-Aguilar, R.; McDonagh, B.; Fuentes-Almagro, C.A.; Muntané, J.; Bárcena, J.A.; Padilla, C.A. Thioredoxin and Glutaredoxin Regulate Metabolism through Different Multiplex Thiol Switches. Redox Biol. 2019, 21, 101049. [Google Scholar] [CrossRef]
- Berndt, C.; Lillig, C.H.; Holmgren, A. Thiol-Based Mechanisms of the Thioredoxin and Glutaredoxin Systems: Implications for Diseases in the Cardiovascular System. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1227–H1236. [Google Scholar] [CrossRef] [PubMed]
- Seitz, R.; Tümen, D.; Kunst, C.; Heumann, P.; Schmid, S.; Kandulski, A.; Müller, M.; Gülow, K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants 2024, 13, 1078. [Google Scholar] [CrossRef] [PubMed]
- Priya Dharshini, L.C.; Vishnupriya, S.; Sakthivel, K.M.; Rasmi, R.R. Oxidative Stress Responsive Transcription Factors in Cellular Signalling Transduction Mechanisms. Cell Signal 2020, 72, 109670. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. The Role of Reactive Species on Innate Immunity. Vaccines 2022, 10, 1735. [Google Scholar] [CrossRef]
- Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK-RAS-RAF Signaling Pathway in Cancer Therapy. Expert. Opin. Ther. Targets 2012, 16, 103–119. [Google Scholar] [CrossRef]
- Li, K.; Deng, Z.; Lei, C.; Ding, X.; Li, J.; Wang, C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [PubMed]
- Xiao, W.; Loscalzo, J. Metabolic Responses to Reductive Stress. Antioxid. Redox Signal. 2020, 32, 1330–1347. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, N.; Gao, Z.; Gao, J.; Wang, X.; Xie, H.; Wang, C.-Y.; Zhang, S. Reductive Stress: The Key Pathway in Metabolic Disorders Induced by Overnutrition. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Ge, M.; Papagiannakopoulos, T.; Bar-Peled, L. Reductive Stress in Cancer: Coming out of the Shadows. Trends Cancer 2024, 10, 103–112. [Google Scholar] [CrossRef]
- Yan, L.J. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. J. Diabetes Res. 2014, 2014, 137919. [Google Scholar] [CrossRef]
- Antar, S.A.; Ashour, N.A.; Marawan, M.E.; Al-Karmalawy, A.A. Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int. J. Mol. Sci. 2023, 24, 4004. [Google Scholar] [CrossRef] [PubMed]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef]
- Akkız, H.; Gieseler, R.K.; Canbay, A. Liver Fibrosis: From Basic Science towards Clinical Progress, Focusing on the Central Role of Hepatic Stellate Cells. Int. J. Mol. Sci. 2024, 25, 7873. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.G. Reactive Oxygen Species in TNFα-Induced Signaling and Cell Death. Mol. Cells 2010, 30, 1–12. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed]
- Klinge, C.M. Estrogenic Control of Mitochondrial Function. Redox Biol. 2020, 31, 101435. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K.; et al. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018, 340, 209–344. [Google Scholar]
- Finkel, T. Signal Transduction by Mitochondrial Oxidants. J. Biol. Chem. 2012, 287, 4434–4440. [Google Scholar] [CrossRef]
- Pinegin, B.; Vorobjeva, N.; Pashenkov, M.; Chernyak, B. The Role of Mitochondrial ROS in Antibacterial Immunity. J. Cell Physiol. 2018, 233, 3745–3754. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Varatnitskaya, M.; Maghnouj, A.; Bader, V.; Winklhofer, K.F.; Hahn, S.; Leichert, L.I. Activation Leads to a Significant Shift in the Intracellular Redox Homeostasis of Neutrophil-like Cells. Redox Biol. 2020, 28, 101344. [Google Scholar] [CrossRef] [PubMed]
- Manoj, H.; Gomes, S.M.; Thimmappa, P.Y.; Nagareddy, P.R.; Jamora, C.; Joshi, M.B. Cytokine Signalling in Formation of Neutrophil Extracellular Traps: Implications for Health and Diseases. Cytokine Growth Factor. Rev. 2025, 81, 27–39. [Google Scholar] [CrossRef]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil Migration in Infection and Wound Repair: Going Forward in Reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Torres, M.; Bachar-Wikstrom, E.; Wikstrom, J.D. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024, 7, 1534. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Q.; Lu, S.; Niu, Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med. Princ. Pract. 2017, 26, 301–308. [Google Scholar] [CrossRef]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef]
- Burtenshaw, D.; Hakimjavadi, R.; Redmond, E.M.; Cahill, P.A. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants 2017, 6, 90. [Google Scholar] [CrossRef]
- Lambeth, J.D. Nox Enzymes, ROS, and Chronic Disease: An Example of Antagonistic Pleiotropy. Free Radic. Biol. Med. 2007, 43, 332–347. [Google Scholar] [CrossRef]
- Kato, K.; Hecker, L. NADPH Oxidases: Pathophysiology and Therapeutic Potential in Age-Associated Pulmonary Fibrosis. Redox Biol. 2020, 33, 101541. [Google Scholar] [CrossRef]
- Liang, S.; Kisseleva, T.; Brenner, D.A. The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Front. Physiol. 2016, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Sureshbabu, A.; Muhsin, S.A.; Choi, M.E. TGF-β Signaling in the Kidney: Profibrotic and Protective Effects. Am. J. Physiol. Renal Physiol. 2016, 310, F596–F606. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, Z.Y.; Lin, L.C.; Song, K.; Tu, B.; Zhang, Y.; Yang, J.J.; Zhao, J.Y.; Tao, H. Redox Homeostasis in Cardiac Fibrosis: Focus on Metal Ion Metabolism. Redox Biol. 2024, 71, 103109. [Google Scholar] [CrossRef]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The Interplay of Fibroblasts, the Extracellular Matrix, and Inflammation in Scar Formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef] [PubMed]
- Hyytiäinen, M.; Penttinen, C.; Keski-Oja, J. Latent TGF-β Binding Proteins: Extracellular Matrix Association and Roles in TGF-β Activation. Crit. Rev. Clin. Lab. Sci. 2004, 41, 233–264. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Transforming Growth Factor–ß in Tissue Fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef]
- Pohlers, D.; Brenmoehl, J.; Löffler, I.; Müller, C.K.; Leipner, C.; Schultze-Mosgau, S.; Stallmach, A.; Kinne, R.W.; Wolf, G. TGF-β and Fibrosis in Different Organs—Molecular Pathway Imprints. Biochim. Biophys. Acta Mol. Basis Dis. 2009, 1792, 746–756. [Google Scholar] [CrossRef]
- Richter, K.; Kietzmann, T. Reactive Oxygen Species and Fibrosis: Further Evidence of a Significant Liaison. Cell Tissue Res. 2016, 365, 591–605. [Google Scholar] [CrossRef]
- Manford, A.G.; Rodríguez-Pérez, F.; Shih, K.Y.; Shi, Z.; Berdan, C.A.; Choe, M.; Titov, D.V.; Nomura, D.K.; Rape, M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020, 183, 46–61. [Google Scholar] [CrossRef]
- Denley, A.; Cosgrove, L.J.; Booker, G.W.; Wallace, J.C.; Forbes, B.E. Molecular Interactions of the IGF System. Cytokine Growth Factor Rev. 2005, 16, 421–439. [Google Scholar] [CrossRef]
- Bach, L.A.; Rechler, M.M. Insulin-like Growth Factor Binding Proteins. Diabetes Rev. 1995, 3, 99–163. [Google Scholar] [CrossRef] [PubMed]
- Hwa, V.; Oh, Y.; Rosenfeld, R.G. The Insulin-like Growth Factor-Binding Protein (IGFBP) Superfamily. Endocr. Rev. 1999, 20, 761–787. [Google Scholar]
- Bach, L.A.; Fu, P.; Yang, Z. Insulin-like Growth Factor-Binding Protein-6 and Cancer. Clin. Sci. 2013, 124, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Bach, L.A. IGF-Binding Proteins. J. Mol. Endocrinol. 2018, 61, T11–T28. [Google Scholar] [CrossRef]
- Annunziata, M.; Granata, R.; Ghigo, E. The IGF System. Acta Diabetol. 2011, 48, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Blyth, A.J.; Kirk, N.S.; Forbes, B.E. Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells 2020, 9, 2276. [Google Scholar] [CrossRef]
- Pollak, M. Insulin and Insulin-like Growth Factor Signalling in Neoplasia. Nat. Rev. Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Wu, Y.; Yakar, S.; Zhao, L.; Hennighausen, L.; LeRoith, D. Circulating Insulin-like Growth Factor-I Levels Regulate Colon Cancer Growth and Metastasis. Cancer Res 2002, 62, 1030–1035. [Google Scholar]
- Monzavi, R.; Cohen, P. IGFs and IGFBPs: Role in Health and Disease. Best. Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 433–447. [Google Scholar] [CrossRef]
- Shehab, M.A.; Iosef, C.; Wildgruber, R.; Sardana, G.; Gupta, M.B. Phosphorylation of IGFBP-1 at Discrete Sites Elicits Variable Effects on IGF-I Receptor Autophosphorylation. Endocrinology 2013, 154, 1130–1143. [Google Scholar] [CrossRef]
- Qiu, Q.; Yan, X.; Bell, M.; Di, J.; Tsang, B.K.; Gruslin, A. Mature IGF-II Prevents the Formation of “Big” IGF-II/IGFBP-2 Complex in the Human Circulation. Growth Horm. IGF Res. 2010, 20, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ricort, J.M.; Binoux, M. Insulin-like Growth Factor (IGF) Binding Protein-3 Inhibits Type 1 IGF Receptor Activation Independently of Its IGF Binding Affinity. Endocrinology 2001, 142, 108–113. [Google Scholar] [CrossRef]
- Cai, Q.; Dozmorov, M.; Oh, Y. Igfbp-3/Igfbp-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer. Cells 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Conover, C.A. Glycosylation of Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) Is Not Required for Potentiation of IGF-I Action: Evidence for Processing of Cell-Bound IGFBP-3. Endocrinology 1991, 129, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Schuller, A.G.P.; Conover, C.A.; Pintar, J.E. Insulin-like Growth Factor (IGF) Binding Protein-4 Is Both a Positive and Negative Regulator of IGF Activity in Vivo. Mol. Endocrinol. 2008, 22, 1213–1225. [Google Scholar] [CrossRef]
- Miyagawa, I.; Nakayamada, S.; Nakano, K.; Yamagata, K.; Sakata, K.; Yamaoka, K.; Tanaka, Y. Induction of Regulatory T Cells and Its Regulation with Insulin-like Growth Factor/Insulin-like Growth Factor Binding Protein-4 by Human Mesenchymal Stem Cells. J. Immunol. 2017, 199, 1616–1625. [Google Scholar] [CrossRef]
- Twigg, S.M.; Baxter, R.C. Insulin-like Growth Factor (IGF)-Binding Protein 5 Forms an Alternative Ternary Complex with IGFs and the Acid-Labile Subunit. J. Biol. Chem. 1998, 273, 6074–6079. [Google Scholar] [CrossRef]
- Graham, M.E.; Kilby, D.M.; Firth, S.M.; Robinson, P.J.; Baxter, R.C. The in Vivo Phosphorylation and Glycosylation of Human Insulin-like Growth Factor-Binding Protein-5. Mol. Cell Proteom. 2007, 6, 1392–1405. [Google Scholar] [CrossRef]
- Marinaro, J.A.; Neumann, G.M.; Russo, V.C.; Leeding, K.S.; Bach, L.A. O-Glycosylation of Insulin-like Growth Factor (IGF) Binding Protein-6 Maintains High IGF-II Binding Affinity by Decreasing Binding to Glycosaminoglycans, and Susceptibility to Proteolysis. Eur. J. Biochem. 2000, 267, 5378–5386. [Google Scholar] [CrossRef]
- Liso, A.; Capitanio, N.; Gerli, R.; Conese, M. From Fever to Immunity: A New Role for IGFBP-6? J. Cell Mol. Med. 2018, 22, 4588–4596. [Google Scholar] [CrossRef]
- Rosique-Oramas, D.; Martínez-Castillo, M.; Raya, A.; Medina-Ávila, Z.; Aragón, F.; Limón-Castillo, J.; Hernández-Barragán, A.; Santoyo, A.; Montalvo-Javé, E.; Pérez-Hernández, J.L.; et al. Production of Insulin-like Growth Factor-Binding Proteins during the Development of Hepatic Fibrosis Due to Chronic Hepatitis C. Rev. Gastroenterol. México 2020, 85, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.L.; Lasho, T.L.; Butterfield, J.H.; Tefferi, A. Global Cytokine Analysis in Myeloproliferative Disorders. Leuk. Res. 2007, 31, 1389–1392. [Google Scholar] [CrossRef] [PubMed]
- Longhitano, L.; Tibullo, D.; Vicario, N.; Giallongo, C.; Spina, E.L.; Romano, A.; Lombardo, S.; Moretti, M.; Masia, F.; Coda, A.R.D.; et al. IGFBP-6/Sonic Hedgehog/TLR4 Signalling Axis Drives Bone Marrow Fibrotic Transformation in Primary Myelofibrosis. Aging 2021, 13, 25055–25071. [Google Scholar] [CrossRef]
- Wei, Y.; Chiang, W.C.; Sumpter, R.; Mishra, P.; Levine, B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2017, 168, 224–238. [Google Scholar] [CrossRef]
- Fu, P.; Yang, Z.; Bach, L.A. Prohibitin-2 Binding Modulates Insulin-like Growth Factor-Binding Protein-6 (IGFBP-6)-Induced Rhabdomyosarcoma Cell Migration. J. Biol. Chem. 2013, 288, 29890–29900. [Google Scholar] [CrossRef] [PubMed]
- Liso, A.; Castellani, S.; Massenzio, F.; Trotta, R.; Pucciarini, A.; Bigerna, B.; De Luca, P.; Zoppoli, P.; Castiglione, F.; Palumbo, M.C.; et al. Human Monocyte-Derived Dendritic Cells Exposed to Hyperthermia Show a Distinct Gene Expression Profile and Selective Upregulation of IGFBP6. Oncotarget 2017, 8, 60826–60840. [Google Scholar] [CrossRef]
- Conese, M.; Pace, L.; Pignataro, N.; Catucci, L.; Ambrosi, A.; Di Gioia, S.; Tartaglia, N.; Liso, A. Insulin-like Growth Factor Binding Protein 6 Is Secreted in Extracellular Vesicles upon Hyperthermia and Oxidative Stress in Dendritic Cells but Not in Monocytes. Int. J. Mol. Sci. 2020, 21, 4428. [Google Scholar] [CrossRef]
- Conese, M.; D’Oria, S.; Castellani, S.; Trotta, R.; Montemurro, P.; Liso, A. Insulin-like Growth Factor-6 (IGFBP-6) Stimulates Neutrophil Oxidative Burst, Degranulation and Chemotaxis. Inflamm. Res. 2018, 67, 107–109. [Google Scholar] [CrossRef]
- Longhitano, L.; Forte, S.; Orlando, L.; Grasso, S.; Barbato, A.; Vicario, N.; Parenti, R.; Fontana, P.; Amorini, A.M.; Lazzarino, G.; et al. The Crosstalk between GPR81/IGFBP6 Promotes Breast Cancer Progression by Modulating Lactate Metabolism and Oxidative Stress. Antioxidants 2022, 11, 275. [Google Scholar] [CrossRef]
- Jeon, H.J.; Park, J.; Shin, J.H.; Chang, M.S. Insulin-like Growth Factor Binding Protein-6 Released from Human Mesenchymal Stem Cells Confers Neuronal Protection through IGF-1R-Mediated Signaling. Int. J. Mol. Med. 2017, 40, 1860–1868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coda, A.R.D.; Liso, A.; Bellanti, F. Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship. Biology 2025, 14, 747. https://doi.org/10.3390/biology14070747
Coda ARD, Liso A, Bellanti F. Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship. Biology. 2025; 14(7):747. https://doi.org/10.3390/biology14070747
Chicago/Turabian StyleCoda, Anna Rita Daniela, Arcangelo Liso, and Francesco Bellanti. 2025. "Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship" Biology 14, no. 7: 747. https://doi.org/10.3390/biology14070747
APA StyleCoda, A. R. D., Liso, A., & Bellanti, F. (2025). Redox Biology and Insulin-like Growth Factor-Binding Protein-6: A Potential Relationship. Biology, 14(7), 747. https://doi.org/10.3390/biology14070747