Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = redox orbitals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4057 KiB  
Article
Enhanced Anionic Redox Reaction of Na-Layered Li-Containing Mn-Based Cathodes by Cu-Mediated Reductive Coupling Mechanism
by Danyang Li, Can Liu, Shu Zhao, Fujie Li, Hao Li, Chao Wang and Xiu Song Zhao
Nanomaterials 2025, 15(12), 893; https://doi.org/10.3390/nano15120893 - 10 Jun 2025
Viewed by 431
Abstract
Na-layered Li-containing Mn-based cathodes (NaxLiyMn1-yO2, NLMOs) with additional Na+ storage ability resulting from the anionic redox reaction (ARR) hold great promise for sodium-ion batteries (NIBs). However, practical applications of NLMOs encounter challenges, such as [...] Read more.
Na-layered Li-containing Mn-based cathodes (NaxLiyMn1-yO2, NLMOs) with additional Na+ storage ability resulting from the anionic redox reaction (ARR) hold great promise for sodium-ion batteries (NIBs). However, practical applications of NLMOs encounter challenges, such as migration of transition metal Mn, loss of lattice oxygen, and voltage decay during cycling. Here, we show that Cu plays an important role in enhancing the ARR via the reductive coupling mechanism (RCM). Results shows that a Cu2+/Fe3+ modified NLMO sample delivers a Na+ storage capacity as high as 174 mA h g−1 at 0.2C, higher than that of a Zn2+/Fe3+ modified NLMO sample (130 mA h g−1) and NLMO (154 mA h g−1). Both in situ and ex situ characterization results indicate that the obvious improvement in the electrochemical performance of the Cu2+/Fe3+ modified NLMO is due to the additional overlaps between the Cu 3d and O 2p orbitals, which is beneficial for the RCM. As a result, the ARR is enhanced so as to increase the Na+ storage capacity. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

16 pages, 20803 KiB  
Article
Identification of Milankovitch Cycles and Their Sedimentary Responses in Fine-Grained Depositional Strata on the Southwestern Margin of the Songliao Basin
by Xuntao Yu, Xiuli Fu, Yunfeng Zhang, Yunlong Fu, Botao Huang, Jiapeng Yuan and Siyu Du
Appl. Sci. 2025, 15(10), 5747; https://doi.org/10.3390/app15105747 - 21 May 2025
Viewed by 545
Abstract
A series of fault depressions developed in the Kailu area on the southwestern margin of the Songliao Basin, where thick lacustrine fine-grained sedimentary rocks were widely deposited during the initial faulting stage in the Early Cretaceous. These formations serve as the primary source [...] Read more.
A series of fault depressions developed in the Kailu area on the southwestern margin of the Songliao Basin, where thick lacustrine fine-grained sedimentary rocks were widely deposited during the initial faulting stage in the Early Cretaceous. These formations serve as the primary source rocks within the depressions. To investigate the depositional cyclicity framework, paleoenvironmental conditions, and source rock development patterns of fine-grained sedimentary strata, this study focuses on the Naiman Sag, selecting Well Nai-10 for wavelet transform and spectral analysis based on natural gamma ray logs. Combining core, well logging, and geochemical element analyses, Milankovitch cycles within the Yixian Formation were identified. The relationship between theoretical orbital periods and sedimentary cycles in a single well was established, enabling the high-precision identification and classification of fine-grained sedimentary cycles. Furthermore, the study explores the sedimentary response to orbital forcing and the development patterns of source rocks. The results indicate that fine-grained sedimentary strata exhibit distinct Milankovitch cyclicity, with a strong correlation between astronomical periods and sedimentary cycles. Using the 100 kyr short eccentricity cycle as the tuning curve, an astronomical timescale and high-frequency cyclic division for the target interval were established. Under the control of long eccentricity cycles, sedimentation exhibits strong response characteristics: near the peak of short eccentricity cycles, the climate was warm and humid, redox conditions were strong, and precipitation was high, facilitating organic matter accumulation. Based on this response relationship, two ideal enrichment models of mudstone and shale under different paleoclimatic conditions are proposed, providing valuable insights for identifying high-quality source rocks and unconventional hydrocarbons in hydrocarbon exploration. Full article
Show Figures

Figure 1

10 pages, 3149 KiB  
Article
Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups
by Shouxi Yu and Zhongliao Wang
Toxics 2024, 12(12), 928; https://doi.org/10.3390/toxics12120928 - 21 Dec 2024
Cited by 1 | Viewed by 880
Abstract
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox [...] Read more.
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP. In this work, density functional theory (DFT) calculations were employed to investigate the impact of various oxygen-containing acid groups (-COOH, -HSO3, -H2PO3) on DDVP photodegradation performance. First, simulations of the structure and optical properties of modified CTFs reveal that oxygen-containing acid groups induce surface distortion and result in a redshift in the absorption edge. Subsequently, analysis of the density of states, frontier molecular orbitals, surface electrostatic potential, work function, and dipole moment demonstrates that oxygen-containing acid groups enhance CTF polarization, facilitate charge separation, and ameliorate their oxidative capability. Additionally, the free-energy diagram of DDVP degradation uncovers that oxygen-containing acid groups lower the energy barrier by elevating the adsorption and activation capability of DDVP. Notably, -H2PO3 presents optimal potential for the photodegradation of DDVP by unique electronic structure and activation capability. This work offers a valuable reference for the development of oxygen-containing acid CTF-based photocatalysts applied in degrading toxic organophosphate pesticides. Full article
Show Figures

Graphical abstract

21 pages, 4985 KiB  
Article
DSSCs Sensitized with Phenothiazine Derivatives Containing 1H-Tetrazole-5-acrylic Acid as an Anchoring Unit
by Muhammad Faisal Amin, Paweł Gnida, Jan Grzegorz Małecki, Sonia Kotowicz and Ewa Schab-Balcerzak
Materials 2024, 17(24), 6116; https://doi.org/10.3390/ma17246116 - 14 Dec 2024
Cited by 1 | Viewed by 960
Abstract
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency [...] Read more.
Phenothiazine-based photosensitizers bear the intrinsic potential to substitute various expensive organometallic dyes owing to the strong electron-donating nature of the former. If coupled with a strong acceptor unit and the length of N-alkyl chain is appropriately chosen, they can easily produce high efficiency levels in dye-sensitized solar cells. Here, three novel D-A dyes containing 1H-tetrazole-5-acrylic acid as an acceptor were synthesized by varying the N-alkyl chain length at its phenothiazine core and were exploited in dye-sensitized solar cells. Differential scanning calorimetry showed that the synthesized phenothiazine derivatives exhibited behavior characteristic of molecular glasses, with glass transition and melting temperatures in the range of 42–91 and 165–198 °C, respectively. Based on cyclic and differential pulse voltammetry measurements, it was evident that their lowest unoccupied molecular orbital (LUMO) (−3.01–−3.14 eV) and highest occupied molecular orbital (HOMO) (−5.28–−5.33 eV) values were fitted to the TiO2 conduction band and the redox energy of I/I3 in electrolyte, respectively. The experimental results were supported by density functional theory, which was also utilized for estimation of the adsorption energy of the dyes on the TiO2 and its size. Finally, the compounds were tested in dye-sensitized solar cells, which were characterized based on current–voltage measurements. Additionally, for the compound giving the best photovoltaic response, the efficiency of the DSSCs was optimized by a photoanode modification involving the use of cosensitization and coadsorption approaches and the introduction of a blocking layer. Subsequently, two types of tandem dye-sensitized solar cells were constructed, which resulted in an increase in photovoltaic efficiency to 6.37%, as compared to DSSCs before modifications, with a power conversion value of 2.50%. Full article
(This article belongs to the Special Issue Advances in Solar Cell Materials and Structures—Second Edition)
Show Figures

Figure 1

14 pages, 1669 KiB  
Article
Bidentate Substrate Binding Mode in Oxalate Decarboxylase
by Alvaro Montoya, Megan Wisniewski, Justin L. Goodsell and Alexander Angerhofer
Molecules 2024, 29(18), 4414; https://doi.org/10.3390/molecules29184414 - 17 Sep 2024
Cited by 1 | Viewed by 1239
Abstract
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH [...] Read more.
Oxalate decarboxylase is an Mn- and O2-dependent enzyme in the bicupin superfamily that catalyzes the redox-neutral disproportionation of the oxalate monoanion to form carbon dioxide and formate. Its best-studied isozyme is from Bacillus subtilis where it is stress-induced under low pH conditions. Current mechanistic schemes assume a monodentate binding mode of the substrate to the N-terminal active site Mn ion to make space for a presumed O2 molecule, despite the fact that oxalate generally prefers to bind bidentate to Mn. We report on X-band 13C-electron nuclear double resonance (ENDOR) experiments on 13C-labeled oxalate bound to the active-site Mn(II) in wild-type oxalate decarboxylase at high pH, the catalytically impaired W96F mutant enzyme at low pH, and Mn(II) in aqueous solution. The ENDOR spectra of these samples are practically identical, which shows that the substrate binds bidentate (κO, κO’) to the active site Mn(II) ion. Domain-based local pair natural orbital coupled cluster singles and doubles (DLPNO-CCSD) calculations of the expected 13C hyperfine coupling constants for bidentate bound oxalate predict ENDOR spectra in good agreement with the experiment, supporting bidentate bound substrate. Geometry optimization of a substrate-bound minimal active site model by density functional theory shows two possible substrate coordination geometries, bidentate and monodentate. The bidentate structure is energetically preferred by ~4.7 kcal/mol. Our results revise a long-standing hypothesis regarding substrate binding in the enzyme and suggest that dioxygen does not bind to the active site Mn ion after substrate binds. The results are in agreement with our recent mechanistic hypothesis of substrate activation via a long-range electron transfer process involving the C-terminal Mn ion. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

20 pages, 4634 KiB  
Article
Comparative Assessment of First-Row 3d Transition Metals (Ti-Zn) Supported on CeO2 Nanorods for CO2 Hydrogenation
by Maria Lykaki, Sofia Stefa, Georgios Varvoutis, Vassilios D. Binas, George E. Marnellos and Michalis Konsolakis
Catalysts 2024, 14(9), 611; https://doi.org/10.3390/catal14090611 - 11 Sep 2024
Cited by 4 | Viewed by 1418
Abstract
Herein, motivated by the excellent redox properties of rod-shaped ceria (CeO2-NR), a series of TM/CeO2 catalysts, employing the first-row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) as active metal phases, were comparatively assessed under [...] Read more.
Herein, motivated by the excellent redox properties of rod-shaped ceria (CeO2-NR), a series of TM/CeO2 catalysts, employing the first-row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) as active metal phases, were comparatively assessed under identical synthesis and reaction conditions to decipher the role of active metal in the CO2 hydrogenation process. Notably, a volcano-type dependence of CO2 hydrogenation activity/selectivity was disclosed as a function of metal entity revealing a maximum for the Ni-based sample. Ni/CeO2 is extremely active and fully selective to methane (YCH4 = 90.8% at 350 °C), followed by Co/CeO2 (YCH4 = 45.2%), whereas the rest of the metals present an inferior performance. No straightforward relationship was disclosed between the CO2 hydrogenation performance and the textural, structural, and redox properties, whereas, on the other hand, a volcano-shaped trend was established with the relative concentration of oxygen vacancies and partially reduced Ce3+ species. The observed trend is also perfectly aligned with the previously reported volcano-type dependence of atomic hydrogen adsorption energy and CO2 activation as a function of 3d-orbital electron number, revealing the key role of intrinsic electronic features of each metal in conjunction to metal–support interactions. Full article
Show Figures

Graphical abstract

14 pages, 2639 KiB  
Article
Theoretical Investigation of the Effects of Aldehyde Substitution with Pyran Groups in D-π-A Dye on Performance of DSSCs
by Suzan K. Alghamdi, Abdulaziz I. Aljameel, Rageh K. Hussein, Khalled Al-heuseen, Mamduh J. Aljaafreh and Dina Ezzat
Molecules 2024, 29(17), 4175; https://doi.org/10.3390/molecules29174175 - 3 Sep 2024
Cited by 2 | Viewed by 1218
Abstract
This work investigated the substitution of the aldehyde with a pyran functional group in D-π-aldehyde dye to improve cell performance. This strategy was suggested by recent work that synthesized D-π-aldehyde dye, which achieved a maximum absorption wavelength that was only slightly off the [...] Read more.
This work investigated the substitution of the aldehyde with a pyran functional group in D-π-aldehyde dye to improve cell performance. This strategy was suggested by recent work that synthesized D-π-aldehyde dye, which achieved a maximum absorption wavelength that was only slightly off the threshold for an ideal sensitizer. Therefore, DFT and TD-DFT were used to investigate the effect of different pyran substituents to replace the aldehyde group. The pyran groups reduced the dye energy gap better than other known anchoring groups. The proposed dyes showed facile intermolecular charge transfer through the localization of HOMO and LUMO orbitals on the donor and acceptor parts, which promoted orbital overlap with the TiO2 surface. The studied dyes have HOMO and LOMO energy levels that could regenerate electrons from redox potential electrodes and inject electrons into the TiO2 conduction band. The lone pairs of oxygen atoms in pyran components act as nucleophile centers, facilitating adsorption on the TiO2 surface through their electrophile atoms. Pyrans increased the efficacy of dye sensitizers by extending their absorbance range and causing the maximum peak to redshift deeper into the visible region. The effects of the pyran groups on photovoltaic properties such as light harvesting efficiency (LHE), free energy change of electron injection, and dye regeneration were investigated and discussed. The adsorption behaviors of the proposed dyes on the TiO2 (1 1 0) surface were investigated by means of Monte Carlo simulations. The calculated adsorption energies indicates that pyran fragments, compared to the aldehyde in the main dye, had a greater ability to induce the adsorption onto the TiO2 substrate. Full article
Show Figures

Figure 1

17 pages, 4945 KiB  
Article
Metal–Organic Framework-Derived Rare Earth Metal (Ce-N-C)-Based Catalyst for Oxygen Reduction Reactions in Dual-Chamber Microbial Fuel Cells
by Shaik Ashmath, Hao Wu, Shaik Gouse Peera and Tae-Gwan Lee
Catalysts 2024, 14(8), 506; https://doi.org/10.3390/catal14080506 - 5 Aug 2024
Cited by 5 | Viewed by 1688
Abstract
Pt supported on carbon (Pt/C) is deemed as the state-of-the-art catalyst towards oxygen reduction reactions (ORRs) in chemical and biological fuel cells. However, due to the high cost and scarcity of Pt, researchers have focused on the development of Earth-abundant non-precious metal catalysts, [...] Read more.
Pt supported on carbon (Pt/C) is deemed as the state-of-the-art catalyst towards oxygen reduction reactions (ORRs) in chemical and biological fuel cells. However, due to the high cost and scarcity of Pt, researchers have focused on the development of Earth-abundant non-precious metal catalysts, hoping to replace the traditional Pt/C catalyst and successfully commercialize the chemical and biological fuel cells. In this regard, electrocatalysts made of transition metals emerged as excellent candidates for ORRs, especially the electrocatalysts made of Fe and Co in combination with N-doped carbons, which produce potentially active M-N4-C (M=Co, Fe) ORR sites. At present, however, the transition metal-based catalysts are popular; recently, electrocatalysts made of rare earth metals are emerging as efficient catalysts, due to the fact that rare earth metals also have the potential to form rare earth metal-N4-C active sites, just like transition metal Fe-N4-C/Co-N4-C. In addition, mixed valance states and uniqueness of f-orbitals of the rare earth metals are believed to improve the redox properties of the catalyst that helps in enhancing ORR activity. Among the rare earth metals, Ce is the most interesting element that can be explored as an ORR electrocatalyst in combination with the N-doped carbon. Unique f-orbitals of Ce can induce distinctive electronic behavior to the catalyst that helps to form stable coordination structures with N-doped carbons, in addition to its excellent ability to scavenge the OH produced during ORRs, therefore helping in catalyst stability. In this study, we have synthesized Ce/N-C catalysts by a metal–organic framework and pyrolysis strategy. The ORR activity of Ce/N-C catalysts has been optimized by systematically increasing the Ce content and performing RDE studies in 0.1 M HClO4 electrolyte. The Ce/N-C catalyst has been characterized systematically by both physicochemical and electrochemical characterizations. The optimized Ce/N-C-3 catalyst exhibited a half-wave potential of 0.68 V vs. RHE. In addition, the Ce/N-C-3 catalyst also delivered acceptable stability with a loss of 70 mV in its half-wave potential when compared to 110 mV loss for Pt/C (10 wt.%) catalyst, after 5000 potential cycles. When Ce/N-C-3 is used as a cathode catalyst in dual-chamber microbial fuel cells, it delivered a volumetric power density of ~300 mW m−3, along with an organic matter degradation of 74% after continuous operation of DCMFCs for 30 days. Full article
(This article belongs to the Special Issue Recent Advances in Energy-Related Materials in Catalysts, 2nd Edition)
Show Figures

Figure 1

11 pages, 3001 KiB  
Article
Enhanced Oxygen Vacancy Formation in CeO2-Based Materials and the Water–Gas Shift Performance
by Sangaroon Kaewtong, Thanathon Sesuk and Pannipa Tepamatr
ChemEngineering 2024, 8(4), 79; https://doi.org/10.3390/chemengineering8040079 - 2 Aug 2024
Viewed by 1679
Abstract
The role of dopants (Sm, Tb and Pr) on the water–gas shift performance of CeO2-based materials was studied. Modification of CeO2 with Sm significantly improved the water–gas shift performance. The catalytic activities of doped CeO2 were increased when compared [...] Read more.
The role of dopants (Sm, Tb and Pr) on the water–gas shift performance of CeO2-based materials was studied. Modification of CeO2 with Sm significantly improved the water–gas shift performance. The catalytic activities of doped CeO2 were increased when compared with the catalytic activities of pure ceria (65% conversion at 600 °C for Ce5%SmO and 50% conversion at 600 °C for CeO2). The key factors driving the water–gas shift performance were reduction behavior and oxygen vacancy concentration. In the redox mechanism of the WGS reaction, CeO2 plays a crucial role in transferring oxygen to CO through changes in the oxidation state. Therefore, Sm is effective in catalyzing the water–gas shift activity because the addition of Sm into CeO2 decreases the surface reduction temperature and alters the oxygen transportation ability through the redox mechanism. XRD results suggested that Mn+ (M = Sm, Tb and Pr) incorporate into ceria lattice to form a solid solution resulting in unit cell enlargement. The defect structure inside the CeO2 lattice generates a strain on the oxide lattice and facilitates the generation of oxygen vacancies. XANES analysis revealed that Sm reduced CeO2 easily by transporting its electron into the d-orbitals of Ce, thus giving rise to more Ce3+ at the CeO2 surface. The presence of Ce3+ is a result of oxygen vacancy. Therefore, the high content of Ce3+ provides more oxygen vacancies. The oxygen vacancy formation results in easy oxygen exchange. Thus, reactive oxygen species can be generated and easily reduced by CO reactant, which enhances the WGS activity. Full article
Show Figures

Figure 1

13 pages, 3605 KiB  
Article
Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material
by Qi Wang, Qian Zhu, Lei Cao, Lanlan Fan, Feng Gu, Ying Zhang, Chenglin Zheng, Shixian Xiong and Liang Xu
Coatings 2024, 14(3), 263; https://doi.org/10.3390/coatings14030263 - 22 Feb 2024
Cited by 7 | Viewed by 1933
Abstract
The two-dimensional layered heterostructure have been demonstrated as an effective method for achieving efficient photocatalytic hydrogen production. In this work, we propose, for the first time, the creation of van der Waals heterostructures from monolayers of SiH and g-C3N4 using [...] Read more.
The two-dimensional layered heterostructure have been demonstrated as an effective method for achieving efficient photocatalytic hydrogen production. In this work, we propose, for the first time, the creation of van der Waals heterostructures from monolayers of SiH and g-C3N4 using first-principle calculations. We also systematically investigated additional properties for the first time, such as the electronic structure and optical behavior of van der Waals heterostructures composed of SiH and g-C3N4 monolayers. The results of this study show that the SiH/g-C3N4 heterostructure is categorized as a type-II heterostructure, which has a bandgap of 2.268 eV. Furthermore, the SiH/g-C3N4 heterostructure interface was observed to efficiently separate and transfer photogenerated charges, resulting in an enhanced photocatalytic redox performance. Moreover, the calculation of HOMO (Highest occupied molecular orbital) and LUMO (Least unoccupied molecular orbital) and charge density difference can further confirm that the SiH/g-C3N4 heterojunction is a type-II heterojunction, which has excellent photocatalytic hydrogen production and water decomposition performance. In addition, the SiH/g-C3N4 heterostructure exhibited excellent HER (Hydrogen evolution reaction) efficiency. This is essential for the process of photocatalytic water splitting. In SiH/g-C3N4 heterojunctions, the redox potential required for water splitting is spanned by the band edge potential. Calculating the absorption spectra, it was discovered that the SiH/g-C3N4 heterostructure possesses outstanding optical properties within the visible-light range, implying its high efficiency in photocatalytic hydrogen production. This research provides a broader research direction for the investigation of novel efficient photocatalysts and offers effective theoretical guidance for future efficient photocatalysts. Full article
(This article belongs to the Special Issue Advances in Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Figure 1

14 pages, 3072 KiB  
Article
Redox-Regulated Magnetic Conversions between Ferro- and Antiferromagnetism in Organic Nitroxide Diradicals
by Fengying Zhang, Zijun Zhang, Yali Zhao, Chao Du, Yong Li, Jiaqi Gao, Xiaobo Ren, Teng Ma, Boqiong Li and Yuxiang Bu
Molecules 2023, 28(17), 6232; https://doi.org/10.3390/molecules28176232 - 24 Aug 2023
Cited by 1 | Viewed by 1338
Abstract
Redox-induced magnetic transformation in organic diradicals is an appealing phenomenon. In this study, we theoretically designed twelve couples of diradicals in which two nitroxide (NO) radical groups are connected to the redox-active couplers including p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, hexacene-6,15-dione, pyrazinyl, quinoxalinyl, phenazinyl, [...] Read more.
Redox-induced magnetic transformation in organic diradicals is an appealing phenomenon. In this study, we theoretically designed twelve couples of diradicals in which two nitroxide (NO) radical groups are connected to the redox-active couplers including p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, hexacene-6,15-dione, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene. As evidenced at both the B3LYP and M06-2X levels of theory, the calculations reveal that the magnetic reversal can take place from ferromagnetism to antiferromagnetism, or vice versa, by means of redox method in these designed organic magnetic molecules. It was observed that p-benzoquinonyl, 1,4-naphthoquinyl, 9,10-anthraquinonyl, naphthacene-5,12-dione, pentacene-6,13-dione, and hexacene-6,15-dione-bridged NO diradicals produce antiferromagnetism while their dihydrogenated counterparts exhibit ferromagnetism. Similarly, pyrazinyl, quinoxalinyl, phenazinyl, 5,12-diazanaphthacene, 6,13-diazapentacene, and 6,15-diazahexacene-bridged NO diradicals present ferromagnetism while their dihydrogenated counterparts show antiferromagnetism. The differences in the magnetic behaviors and magnetic magnitudes of each of the twelve couples of diradicals could be attributed to their distinctly different spin-interacting pathways. It was found that the nature of the coupler and the length of the coupling path are important factors in controlling the magnitude of the magnetic exchange coupling constant J. Specifically, smaller HOMO-LUMO (HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital) gaps of the couplers and shorter coupler lengths, as well as shorter linking bond lengths, can attain stronger magnetic interactions. In addition, a diradical with an extensively π-conjugated structure is beneficial to spin transport and can effectively promote magnetic coupling, yielding a large |J| accordingly. That is, a larger spin polarization can give rise to a stronger magnetic interaction. The sign of J for these studied diradicals can be predicted from the spin alternation rule, the shape of the singly occupied molecular orbitals (SOMOs), and the SOMO-SOMO energy gaps of the triplet state. This study paves the way for the rational design of magnetic molecular switches. Full article
Show Figures

Figure 1

16 pages, 3259 KiB  
Article
Influence of Vacancy Defects on the Interfacial Structural and Optoelectronic Properties of ZnO/ZnS Heterostructures for Photocatalysis
by Sajjad Hussain, Lingju Guo and Tao He
Catalysts 2023, 13(8), 1199; https://doi.org/10.3390/catal13081199 - 10 Aug 2023
Cited by 7 | Viewed by 1835
Abstract
Hybrid density functional theory has been employed to study the influence of interfacial oxygen (O), sulfur (S) and zinc (Zn) vacancies on the optoelectronic properties of ZnO/ZnS heterostructure. The results show that the O, S, and Zn vacancies can decrease cell volume of [...] Read more.
Hybrid density functional theory has been employed to study the influence of interfacial oxygen (O), sulfur (S) and zinc (Zn) vacancies on the optoelectronic properties of ZnO/ZnS heterostructure. The results show that the O, S, and Zn vacancies can decrease cell volume of the ZnO/ZnS heterostructure, leading to slight deformation from the perfect heterostructure. The quasi-band gap of ZnO/ZnS heterostructure is remarkably reduced compared to the ZnO surface. Hence, the visible light response is enhanced in ZnO/ZnS heterostructure, which can be further improved by creating an interfacial S or O vacancy. Moreover, the removal of S or O atoms can generate lone electrons in the system, which can enhance n-type conductivity of the heterostructure. The O and S vacancies improve the contribution of the atomic orbitals of ZnZnO (Zn atom in ZnO), ZnZnS (Zn atom in ZnS), S and O to the valence band maximum (VB) of the heterostructure; while the Zn-vacancy remarkably improves the contribution of S states to the conduction band minimum (CB). The resultant type-II band alignment and large difference between the migration speed of electrons and holes can efficiently separate the photogenerated electron-hole pairs. The CB edge positions are more negative than the redox potentials of CO2/CO and H2O/H2, and the VB edge positions are more positive than the redox potential of O2/H2O. Hence, all the systems under investigation can be potentially used as efficient photocatalysts for various applications like CO2 reduction and water splitting. Full article
Show Figures

Graphical abstract

15 pages, 3387 KiB  
Article
Chemical and Electrochemical Reductions of Monoiminoacenaphthenes
by Vera V. Khrizanforova, Robert R. Fayzullin, Tatiana P. Gerasimova, Mikhail N. Khrizanforov, Almaz A. Zagidullin, Daut R. Islamov, Anton N. Lukoyanov and Yulia H. Budnikova
Int. J. Mol. Sci. 2023, 24(10), 8667; https://doi.org/10.3390/ijms24108667 - 12 May 2023
Cited by 7 | Viewed by 2431
Abstract
Redox properties of monoiminoacenaphthenes (MIANs) were studied using various electrochemical techniques. The potential values obtained were used for calculating the electrochemical gap value and corresponding frontier orbital difference energy. The first-peak-potential reduction of the MIANs was performed. As a result of controlled potential [...] Read more.
Redox properties of monoiminoacenaphthenes (MIANs) were studied using various electrochemical techniques. The potential values obtained were used for calculating the electrochemical gap value and corresponding frontier orbital difference energy. The first-peak-potential reduction of the MIANs was performed. As a result of controlled potential electrolysis, two-electron one-proton addition products were obtained. Additionally, the MIANs were exposed to one-electron chemical reduction by sodium and NaBH4. Structures of three new sodium complexes, three products of electrochemical reduction, and one product of the reduction by NaBH4 were studied using single-crystal X-ray diffraction. The MIANs reduced electrochemically by NaBH4 represent salts, in which the protonated MIAN skeleton acts as an anion and Bu4N+ or Na+ as a cation. In the case of sodium complexes, the anion radicals of MIANs are coordinated with sodium cations into tetranuclear complexes. The photophysical and electrochemical properties of all reduced MIAN products, as well as neutral forms, were studied both experimentally and quantum-chemically. Full article
Show Figures

Figure 1

17 pages, 4202 KiB  
Article
Experimental and Theoretical Study on Crown Ether-Appended-Fe(III) Porphyrin Complexes and Catalytic Oxidation Cyclohexene with O2
by Xiaodong Li, Ailing Feng, Yanqing Zu, Peitao Liu and Fengbo Han
Molecules 2023, 28(8), 3452; https://doi.org/10.3390/molecules28083452 - 13 Apr 2023
Viewed by 2103
Abstract
Modifying non-precious metal porphyrins at the meso-position is sufficient to further improve the ability to activate O2 and the selectivity of the corresponding redox products. In this study, a crown ether-appended Fe(III) porphyrin complex (FeTC4PCl) was formed by replacing [...] Read more.
Modifying non-precious metal porphyrins at the meso-position is sufficient to further improve the ability to activate O2 and the selectivity of the corresponding redox products. In this study, a crown ether-appended Fe(III) porphyrin complex (FeTC4PCl) was formed by replacing Fe(III) porphyrin (FeTPPCl) at the meso-position. The reactions of FeTPPCl and FeTC4PCl catalysed by O2 oxidation of cyclohexene under different conditions were studied, and three main products, 2-cyclohexen-1-ol (1), 2-cyclohexen-1-one (2), and 7-oxabicyclo[4.1.0]heptane (3), were obtained. The effects of reaction temperature, reaction time, and the addition of axial coordination compounds on the reactions were investigated. The conversion of cyclohexene reached 94% at 70 °C after 12 h, and the selectivity toward product 1 was 73%. The geometrical structure optimization, molecular orbital energy level analysis, atomic charge, spin density, and density of orbital states analysis of FeTPPCl, FeTC4PCl, as well as the oxygenated complexes (Fe-O2)TCPPCl and (Fe-O2)TC4PCl formed after adsorption of O2, were carried out using the DFT method. The results of thermodynamic quantity variation with reaction temperature and Gibbs free energy variation were also analysed. Finally, based on experimental and theoretical analysis, the mechanism of the cyclohexene oxidation reaction with FeTC4PCl as a catalyst and O2 as an oxidant was deduced, and the reaction mechanism was obtained as a free radical chain reaction process. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

13 pages, 2549 KiB  
Article
Sulphur vs NH Group: Effects on the CO2 Electroreduction Capability of Phenylenediamine-Cp Cobalt Complexes
by Nicola Melis, Francesca Mocci, Annalisa Vacca and Luca Pilia
Molecules 2023, 28(5), 2364; https://doi.org/10.3390/molecules28052364 - 4 Mar 2023
Cited by 2 | Viewed by 2160
Abstract
The cobalt complex (I) with cyclopentadienyl and 2-aminothiophenolate ligands was investigated as a homogeneous catalyst for electrochemical CO2 reduction. By comparing its behavior with an analogous complex with the phenylenediamine (II), the effect of sulfur atom as a [...] Read more.
The cobalt complex (I) with cyclopentadienyl and 2-aminothiophenolate ligands was investigated as a homogeneous catalyst for electrochemical CO2 reduction. By comparing its behavior with an analogous complex with the phenylenediamine (II), the effect of sulfur atom as a substituent has been evaluated. As a result, a positive shift of the reduction potential and the reversibility of the corresponding redox process have been observed, also suggesting a higher stability of the compound with sulfur. Under anhydrous conditions, complex I showed a higher current enhancement in the presence of CO2 (9.41) in comparison with II (4.12). Moreover, the presence of only one -NH group in I explained the difference in the observed increases on the catalytic activity toward CO2 due to the presence of water, with current enhancements of 22.73 and 24.40 for I and II, respectively. DFT calculations confirmed the effect of sulfur on the lowering of the energy of the frontier orbitals of I, highlighted by electrochemical measurements. Furthermore, the condensed Fukui function f values agreed very well with the current enhancement observed in the absence of water. Full article
(This article belongs to the Special Issue Metal Complexes for Optical and Electronics Applications)
Show Figures

Figure 1

Back to TopTop