Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material
Abstract
1. Introduction
2. Computational Methodology
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Qian, G.; Mao, Y.; Shuai, Y.; Zeng, Z.; Peng, S.; Shuai, C. Enhancing bone scaffold interfacial reinforcement through in situ growth of metal–organic frameworks (MOFs) on strontium carbonate: Achieving high strength and osteoimmunomodulation. J. Colloid Interface Sci. 2024, 655, 43–57. [Google Scholar] [CrossRef]
- Khan, A.; Nilam, B.; Rukhsar, C.; Sayali, G.; Mandlekar, B.; Kadam, A. A review article based on composite graphene @tungsten oxide thin films for various applications. Tungsten 2023, 5, 391–418. [Google Scholar] [CrossRef]
- Gao, J.-X.; Tian, W.-J.; Zhang, H.-Y. Progress of Nb-containing catalysts for carbon dioxide reduction: A minireview. Tungsten 2022, 4, 284–295. [Google Scholar] [CrossRef]
- Tao, J.; Xu, L.; Shao, J.; Li, C.; Cao, L.; Xiong, S.; Dong, K.; Wang, L.-L.; Zhang, Y.; Xu, Z. Two-dimensional AlN/TMOs van der Waals heterojunction as promising photocatalyst for water splitting driven by visible light. Phys. Chem. Chem. Phys. 2023, 25, 30924–30933. [Google Scholar] [CrossRef]
- Su, T.; Qin, Z.; Ji, H.; Wu, Z. An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology 2019, 30, 502002. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, J.; Wang, W.; Zeng, Z.; He, Q. Emerging elemental two-dimensional materials for energy applications. J. Mater. Chem. A 2021, 9, 18793–18817. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, Q.; Xiong, S.; Zhang, Y.; Cao, L.; Tao, J.; Li, Z.; Wang, L.-L.; Dong, K. Two-dimensional MoSe2/PtSe2 van der Waals type-II heterostructure: Promising visible light photocatalyst for overall water splitting. Int. J. Hydrogen Energy 2024, 50, 352–364. [Google Scholar] [CrossRef]
- Tang, S.; Xu, L.; Dong, K.; Wang, Q.; Zeng, J.; Huang, X.; Li, H.; Xia, L.; Wang, L. Curvature effect on graphene-based Co/Ni single-atom catalysts. Appl. Surf. Sci. 2023, 615, 156357. [Google Scholar] [CrossRef]
- Novoselov, K.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Mu, X.; Wang, J.; Sun, M. Two-dimensional black phosphorus: Physical properties and applications. Mater. Today Phys. 2019, 8, 92–111. [Google Scholar] [CrossRef]
- Xu, L.; Li, C.; Xiong, S.; Tang, S.; Xu, Z.; Cao, L.; Tao, J.; Zhang, Y.; Dong, K.; Wang, L.-L. The bicomponent synergistic MoxW1-xS2/Aluminum nitride vdW heterojunction for enhanced photocatalytic hydrogen evolution: A first principles study. Phys. Chem. Chem. Phys. 2024, 26, 2973–2985. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Pan, W.; Sun, W.; Yang, D. Two-Dimensional Silicon for (Photo) Catalysis. Sol. RRL 2021, 5, 2000392. [Google Scholar] [CrossRef]
- Qiu, J.; Fu, H.; Xu, Y.; Zhou, Q.; Meng, S.; Li, H.; Chen, L.; Wu, K. From silicene to half-silicane by hydrogenation. ACS Nano 2015, 9, 11192–11199. [Google Scholar] [CrossRef] [PubMed]
- Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas’Ev, V.; Stesmans, A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011, 98, 223107. [Google Scholar] [CrossRef]
- Wei, W.; Dai, Y.; Huang, B.; Jacob, T. Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 2013, 15, 8789–8794. [Google Scholar] [CrossRef]
- Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef]
- Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501. [Google Scholar] [CrossRef]
- Aizawa, T.; Suehara, S.; Otani, S. Silicene on zirconium carbide (111). J. Phys. Chem. C 2014, 118, 23049–23057. [Google Scholar] [CrossRef]
- Hu, W.; Li, Z.; Yang, J. Water on silicene: A hydrogen bond-autocatalyzed physisorption–chemisorption–dissociation transition. Nano Res. 2017, 10, 2223–2233. [Google Scholar] [CrossRef]
- Niu, M.; Cheng, D.; Cao, D. SiH/TiO2 and GeH/TiO2 heterojunctions: Promising TiO2-based photocatalysts under visible light. Sci. Rep. 2014, 4, 4810. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Chai, J.; Wang, Z. Study of the GaAs/SiH van der Waals type-II heterostructure: A high efficiency photocatalyst promoted by a built-in electric field. Phys. Chem. Chem. Phys. 2020, 22, 8565–8571. [Google Scholar] [CrossRef]
- Sheng, W.; Xu, Y.; Liu, M.; Nie, G.; Wang, J.; Gong, S. The InSe/SiH type-II van der Waals heterostructure as a promising water splitting photocatalyst: A first-principles study. Phys. Chem. Chem. Phys. 2020, 22, 21436–21444. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Wang, Z. AlAs/SiH van der Waals heterostructures: A promising photocatalyst for water splitting. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114869. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, L.; Luo, X.; Peng, B.; Ma, Z.; Wang, L.-L.; Yang, Y.; Shuai, C. A novel design of SiH/CeO2 (111) van der Waals type-II heterojunction for water splitting. Phys. Chem. Chem. Phys. 2021, 23, 2812–2818. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Lin, T.-J.; Lin, Y.-R.; Chiu, W.-L.; Nguyen, B.-S.; Hu, C. Influence of P, S, O-Doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study. Carbon 2020, 169, 338–348. [Google Scholar] [CrossRef]
- Ortega, J.; Sankey, O.F. Relative stability of hexagonal and planar structures of hypothetical C3N4 solids. Phys. Rev. B 1995, 51, 2624. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S.C.; Jaroniec, M. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, J.; Ai, Y.; Liu, L.; Qi, L.; Jiang, R.; Bao, H.; Wang, J.; Hu, J.; Sun, H.-B. Two dimensional Rh/Fe3O4/g-C3N4-N enabled hydrazine mediated catalytic transfer hydrogenation of nitroaromatics: A predictable catalyst model with adjoining Rh. J. Catal. 2018, 368, 20–30. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, J.; Zhuang, J.; Sun, H.; Zhang, H.; Yue, Y.; Zhu, H.; Bao, X.; Yuan, P. Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Appl. Catal. A Gen. 2020, 589, 117312. [Google Scholar] [CrossRef]
- Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.Z. Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Sun, M.; Luo, Y.; Wang, S.; Yu, J.; Tang, W. First-principle study of electronic and optical properties of two-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl. Surf. Sci. 2019, 476, 70–75. [Google Scholar] [CrossRef]
- Ralls, A.M.; Kasar, A.K.; Daroonparvar, M.; Siddaiah, A.; Kumar, P.; Kay, C.M.; Misra, M.; Menezes, P.L. Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy. Coatings 2022, 12, 263. [Google Scholar] [CrossRef]
- Yan, Y.-G.; Lu, D.; Wang, K. Overview: Recent studies of machine learning in phase prediction of high entropy alloys. Tungsten 2023, 5, 32–49. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Feng, J.; Xiao, B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 2014, 5, 1278–1282. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, L.; Dong, K.; Chen, T.; Xiong, S.; Peng, B.; Zeng, J.; Tang, S.; Li, H.; Huang, X. GaN/Surface-modified graphitic carbon nitride heterojunction: Promising photocatalytic hydrogen evolution materials. Int. J. Hydrogen Energy 2022, 47, 7202–7213. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl. Catal. B Environ. 2017, 207, 27–34. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Y.; Zhang, Y. A systematic investigation of the catalytic performances of monolayer carbon nitride nanosheets C1−xNx. Phys. Chem. Chem. Phys. 2020, 22, 6772–6782. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Wang, Z. PtSe2/SiH van der Waals type-II heterostructure: A high efficiency photocatalyst for water splitting. Phys. Chem. Chem. Phys. 2020, 22, 17145–17151. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, W.-Q.; Wang, L.-L.; Huang, G.-F.; Peng, P. Mechanism of superior visible-light photocatalytic activity and stability of hybrid Ag3PO4/graphene nanocomposite. J. Phys. Chem. C 2014, 118, 12972–12979. [Google Scholar] [CrossRef]
- Zólyomi, V.; Drummond, N.; Fal’Ko, V. Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations. Phys. Rev. B 2014, 89, 205416. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, G. Lattice-strain control of flexible janus indium chalcogenide monolayers for photocatalytic water splitting. J. Phys. Chem. C 2019, 124, 167–174. [Google Scholar] [CrossRef]
- Wang, X.; Tian, H.; Pi, M.; Zhang, D.; Chen, S. Tuning the electronic structure of NiSe2 nanosheets by Mn dopant for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 12237–12243. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Banu, A.A.; Karazhanov, S.Z.; Kumar, K.V.; Jose, S.P. Platinum doped iron carbide for the hydrogen evolution reaction: The effects of charge transfer and magnetic moment by first-principles approach. Int. J. Hydrogen Energy 2020, 45, 31825–31840. [Google Scholar] [CrossRef]
Structure | SiH | g-C3N4 | SiH/g-C3N4 | |||
---|---|---|---|---|---|---|
Bader charge (e) | Si | −0.5782 | C | −1.5502 | SiH | −0.013 |
H | 0.5766 | N | 1.1637 | g-C3N4 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhu, Q.; Cao, L.; Fan, L.; Gu, F.; Zhang, Y.; Zheng, C.; Xiong, S.; Xu, L. Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material. Coatings 2024, 14, 263. https://doi.org/10.3390/coatings14030263
Wang Q, Zhu Q, Cao L, Fan L, Gu F, Zhang Y, Zheng C, Xiong S, Xu L. Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material. Coatings. 2024; 14(3):263. https://doi.org/10.3390/coatings14030263
Chicago/Turabian StyleWang, Qi, Qian Zhu, Lei Cao, Lanlan Fan, Feng Gu, Ying Zhang, Chenglin Zheng, Shixian Xiong, and Liang Xu. 2024. "Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material" Coatings 14, no. 3: 263. https://doi.org/10.3390/coatings14030263
APA StyleWang, Q., Zhu, Q., Cao, L., Fan, L., Gu, F., Zhang, Y., Zheng, C., Xiong, S., & Xu, L. (2024). Two-Dimensional SiH/g-C3N4 van der Waals Type-II Heterojunction Photocatalyst: A New Effective and Promising Photocatalytic Material. Coatings, 14(3), 263. https://doi.org/10.3390/coatings14030263