Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = redox flow batteries (RFB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3769 KiB  
Article
Hybrid Wind–Redox Flow Battery System for Decarbonizing Off-Grid Mining Operations
by Armel Robert, Baby-Jean Robert Mungyeko Bisulandu, Adrian Ilinca and Daniel R. Rousse
Appl. Sci. 2025, 15(13), 7147; https://doi.org/10.3390/app15137147 - 25 Jun 2025
Viewed by 352
Abstract
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind [...] Read more.
Transitioning to sustainable energy systems is crucial for reducing greenhouse gas (GHG) emissions, especially in remote industrial operations where diesel generators remain the dominant power source. This study examines the feasibility of integrating a redox flow battery (RFB) storage system to optimize wind energy utilization at the Raglan mining site in northern Canada, with the goal of reducing diesel dependency, enhancing grid stability, and improving energy security. To evaluate the effectiveness of this hybrid system, a MATLAB R2024b-based simulation model was developed, incorporating wind energy forecasting, load demand analysis, and economic feasibility assessments across multiple storage and wind penetration scenarios. Results indicate that deploying 12 additional E-115 wind turbines combined with a 20 MW/160 MWh redox flow battery system could lead to diesel savings of up to 63.98%, reducing CO2 emissions by 68,000 tonnes annually. However, the study also highlights a key economic challenge: the high Levelized Cost of Storage (LCOS) of CAD (Canadian dollars) 7831/MWh, which remains a barrier to large-scale implementation. For the scenario with high diesel economy, the LCOS was found to be CAD 6110/MWh, and the corresponding LCOE was CAD 590/MWh. While RFB integration improves system reliability, its economic viability depends on key factors, including reductions in electrolyte costs, advancements in operational efficiency, and supportive policy frameworks. This study presents a comprehensive methodology for evaluating energy storage in off-grid industrial sites and identifies key challenges in scaling up renewable energy adoption for remote mining operations. Full article
Show Figures

Figure 1

20 pages, 4221 KiB  
Article
Exploring the Flow and Mass Transfer Characteristics of an All-Iron Semi-Solid Redox Flow Battery
by Heyao Li, Zhuqian Zhang, Haojie Zhang and Yuchen Zhou
Batteries 2025, 11(4), 166; https://doi.org/10.3390/batteries11040166 - 21 Apr 2025
Viewed by 527
Abstract
To improve the flow mass transfer inside the electrodes and the efficiency of an all-iron redox flow battery, a semi-solid all-iron redox flow battery is presented experimentally. A slurry electrode is designed to replace the traditional porous electrode. Moreover, the effects of an [...] Read more.
To improve the flow mass transfer inside the electrodes and the efficiency of an all-iron redox flow battery, a semi-solid all-iron redox flow battery is presented experimentally. A slurry electrode is designed to replace the traditional porous electrode. Moreover, the effects of an additional external magnetic field are further investigated in the semi-solid battery experiment. The results show that the mass transfer of the slurry in the battery flow channel and the prolonged discharge time are significantly affected by the additional external magnetic fields. In addition, a three-dimensional model of the semi-solid all-iron redox flow battery is presented in detail, and it is verified to be reliable by experimental data. The simulation results show that the ion concentration distributions in the battery become more uniform with the increase in the flow rate and the initial concentration. Furthermore, it is also found that the size of the flow channel influences the mass transfer efficiency of the slurry. After optimizing the flow channel, it is found that when the flow channel length of the slurry inlet and outlet section is 2 cm, the operating efficiency of the semi-solid battery shows an increasing trend. This work provides comprehensive insight into the improvement of the performances of flow batteries, which will be conducive to the practical application of flow batteries. Full article
Show Figures

Figure 1

16 pages, 2090 KiB  
Article
Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition
by Mirko D’Adamo, Wouter Badenhorst, Lasse Murtomäki, Paula Cordoba, Mohamed Derbeli, Jose A. Saez-Zamora and Lluís Trilla
Energies 2025, 18(8), 2084; https://doi.org/10.3390/en18082084 - 17 Apr 2025
Viewed by 445
Abstract
The copper redox flow battery (CuRFB) stands out as a promising hybrid redox flow battery technology, offering significant advantages in electrolyte stability. Within the CuBER H-2020 project framework, this study addresses critical phenomena such as electrodeposition at the negative electrode during charging and [...] Read more.
The copper redox flow battery (CuRFB) stands out as a promising hybrid redox flow battery technology, offering significant advantages in electrolyte stability. Within the CuBER H-2020 project framework, this study addresses critical phenomena such as electrodeposition at the negative electrode during charging and copper crossover through the membrane, which influence capacity fading. A comprehensive two-dimensional physicochemical model of the CuRFB cell was developed using COMSOL Multiphysics, providing insights into the distribution of electroactive materials over time. The model was validated against experimental cycling data, demonstrating a Root Mean Square Error (RMSE) of 0.0212 in voltage estimation. Least-squares parameter estimation, utilizing Bound Optimization by Quadratic Approximation, was conducted to determine active material diffusivities and electron transfer coefficients. The results indicate that higher current densities and lower flow rates lead to increased copper deposition near the inlet, significantly impacting the battery’s State of Health (SoH). These findings highlight the importance of considering fluid dynamics and ion concentration distribution to improve battery performance and longevity. The study’s insights are crucial for optimizing and scaling up CuRFB operations, guiding potential cell-scale-up strategies into stack-level configurations. Full article
(This article belongs to the Special Issue Power Quality and Hosting Capacity in the Microgrids)
Show Figures

Figure 1

44 pages, 13085 KiB  
Review
Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes
by Yuliia Oleksii and Abdelkrim El-Ghayoury
Molecules 2025, 30(6), 1314; https://doi.org/10.3390/molecules30061314 - 14 Mar 2025
Viewed by 1273
Abstract
The 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand family is widely recognized for its versatile coordination abilities and broad functionalization potential. This review examines bpp and its modifications at the pyridine ring’s 4-position, focusing on their influence on magnetic, optical, and electronic properties. Key applications [...] Read more.
The 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand family is widely recognized for its versatile coordination abilities and broad functionalization potential. This review examines bpp and its modifications at the pyridine ring’s 4-position, focusing on their influence on magnetic, optical, and electronic properties. Key applications discussed include spin crossover (SCO), single-ion and single-molecule magnetism (SIM and SMM), luminescence, redox flow batteries (RFBs), and photonic devices. We provide a comprehensive overview of ligand modifications involving carboxylates, extended aromatic systems, radicals, and redox-active units such as tetrathiafulvalene (TTF), alongside supramolecular architectures. The review highlights fundamental design principles, particularly the role of substituents in tuning the SCO behavior, photophysical properties, and self-assembly into functional nanostructures. Notable advancements include SCO-driven conductivity modulation, reversible luminescent switching, and amphiphilic bpp-based vesicles for multicolor emission. By analyzing the interplay between ligand structure and magnetic, optical, and electronic functions, we provide insights into the potential of bpp derivatives for advanced materials design. This review presents recent experimental and theoretical developments, offering a foundation for future exploration of bpp-based compounds in multifunctional devices. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

18 pages, 1993 KiB  
Article
In Search of Optimal Cell Components for Polyoxometalate-Based Redox Flow Batteries: Effect of the Membrane on Cell Performance
by Ángela Barros, Jacobus C. Duburg, Lorenz Gubler, Estibaliz Aranzabe, Beñat Artetxe, Juan Manuel Gutiérrez-Zorrilla and Unai Eletxigerra
Energies 2025, 18(5), 1235; https://doi.org/10.3390/en18051235 - 3 Mar 2025
Viewed by 899
Abstract
Redox Flow Batteries (RFBs) are promising large-scale Energy Storage Systems, which support the integration of renewable energies into the current electric grid. Emerging chemistries for electrolytes, such as Polyoxometalates (POMs), are being studied. POMs have attracted great interest because of their reversible multi-electron [...] Read more.
Redox Flow Batteries (RFBs) are promising large-scale Energy Storage Systems, which support the integration of renewable energies into the current electric grid. Emerging chemistries for electrolytes, such as Polyoxometalates (POMs), are being studied. POMs have attracted great interest because of their reversible multi-electron transfers and the possibility of tuning their electrochemical properties. Recently, the cobalt-containing Keggin-type species [CoW12O40]6− (CoW12) has been successfully implemented in a symmetric RFB, and its further implementation calls for new materials for the membrane to enhance its cell performance. In this work, different types of ion exchange membranes (Nafion™-NR212, FAPQ-330 and Amphion™) were tested. The electrolyte uptake, swelling, conductivity and permeability of the membranes in the CoW12 electrolyte, as well as a detailed cell performance study, are reported herein. Better performance results ascribed to the robustness, efficiency and energy density of the system were found for Nafion™-NR212, with 88.5% energy efficiency, 98.9% capacity retention and 3.1 Wh L−1 over 100 cycles at 20 mA cm−2. FAPQ-330 and Amphion membranes showed large capacity fade (up to 0.2%/cycle). Crossover and the low conductivity of these membranes in the mild pH conditions of the electrolyte were revealed to be responsible for the reduced cell performance. Full article
(This article belongs to the Special Issue The Materials for Energy Storage and Conversion)
Show Figures

Figure 1

43 pages, 5654 KiB  
Review
Advancements and Applications of Redox Flow Batteries in Australia
by Touma B. Issa, Jonovan Van Yken, Pritam Singh and Aleksandar N. Nikoloski
Batteries 2025, 11(2), 78; https://doi.org/10.3390/batteries11020078 - 16 Feb 2025
Viewed by 2057
Abstract
Redox flow batteries (RFBs) are known for their exceptional attributes, including remarkable energy efficiency of up to 80%, an extended lifespan, safe operation, low environmental contamination concerns, sustainable recyclability, and easy scalability. One of their standout characteristics is the separation of electrolytes into [...] Read more.
Redox flow batteries (RFBs) are known for their exceptional attributes, including remarkable energy efficiency of up to 80%, an extended lifespan, safe operation, low environmental contamination concerns, sustainable recyclability, and easy scalability. One of their standout characteristics is the separation of electrolytes into two distinct tanks, isolating them from the electrochemical stack. This unique design allows for the separate design of energy capacity and power, offering a significantly higher level of adaptability and modularity compared to traditional technologies like lithium batteries. RFBs are also an improved technology for storing renewable energy in small or remote communities, benefiting from larger storage capacity, lower maintenance requirements, longer life, and more flexibility in scaling the battery system. However, flow batteries also have disadvantages compared to other energy storage technologies, including a lower energy density and the potential use of expensive or scarce materials. Despite these limitations, the potential benefits of flow batteries in terms of scalability, long cycle life, and cost effectiveness make them a key strategic technology for progressing to net zero. Specifically, in Australia, RFBs are good candidates for storing the increasingly large amount of energy generated from green sources such as photovoltaic panels and wind turbines. Additionally, the geographical distribution of the population around Australia makes large central energy storage economically and logistically difficult, but RFBs can offer a more locally tailored approach to overcome this. This review examines the status of RFBs and the viability of this technology for use in Australia. Full article
Show Figures

Graphical abstract

21 pages, 4012 KiB  
Article
Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization
by Elena Yu. Kozhunova, Vyacheslav V. Sentyurin, Alina I. Inozemtseva, Anatoly D. Nikolenko, Alexei R. Khokhlov and Tatiana V. Magdesieva
Polymers 2025, 17(1), 60; https://doi.org/10.3390/polym17010060 - 29 Dec 2024
Viewed by 1376
Abstract
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type [...] Read more.
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors)
Show Figures

Graphical abstract

13 pages, 6810 KiB  
Article
Open-Source Equipment Design for Cost-Effective Redox Flow Battery Research
by Trinh V. Dung, Nguyen T. T. Huyen, Nguyen L. T. Huynh, Nguyen T. Binh, Nguyen T. Dat, Nguyen T. T. Nga, Nguyen T. Lan, Hoang V. Tran, Nguyen T. T. Mai and Chinh D. Huynh
ChemEngineering 2024, 8(6), 120; https://doi.org/10.3390/chemengineering8060120 - 28 Nov 2024
Viewed by 1504
Abstract
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test [...] Read more.
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test cells. Addressing this bottleneck, we present herein an open-source device tailored for RFB laboratory research. Our proposed device significantly lowers the financial barriers to research and enhances the accessibility of vital equipment for RFB studies. Employing innovative fabrication methods such as laser cutting, 3D printing, and CNC machining, a versatile and efficient flow cell has been designed and fabricated. Furthermore, our open laboratory research equipment comprises the Opensens potentiostat, charge/discharge testing devices, peristaltic pumps, and inexpensive rotating electrodes. Every individual element contributes significantly to the establishment of an all-encompassing experimental configuration that is both economical and efficient, thereby facilitating expedited progress in RFB research and development. Full article
Show Figures

Figure 1

13 pages, 3726 KiB  
Article
Achieving High Performance with Less Energy Consumption: Intermittent Ultrasonic-Mediated Operation Mode for Fe/V Non-Aqueous Redox Flow Battery
by Hui Long, Peizhuo Sun, Haochen Zhu, Qiang Ma, Xiaozhong Shen, Huaneng Su, Cristina Flox and Qian Xu
Processes 2024, 12(11), 2576; https://doi.org/10.3390/pr12112576 - 17 Nov 2024
Cited by 2 | Viewed by 951
Abstract
Deep eutectic solvents (DESs) have attracted much attention as sustainable electrolytes for redox flow batteries. Despite the tremendous advantages of DES-based electrolytes, their high viscosity property has a negative effect on their mass transfer, limiting current density and power density. The ultrasonic effect [...] Read more.
Deep eutectic solvents (DESs) have attracted much attention as sustainable electrolytes for redox flow batteries. Despite the tremendous advantages of DES-based electrolytes, their high viscosity property has a negative effect on their mass transfer, limiting current density and power density. The ultrasonic effect has been demonstrated as an efficient strategy to improve mass transfer characteristics. Incorporating ultrasonic waves into a deep eutectic solvent (DES) electrolyte enhances the mobility of redox-active ions, thereby accelerating the reaction dynamics of the Fe(III)/Fe(II) redox pair. This enhancement makes it suitable for use in non-aqueous electrolyte-based redox flow batteries. However, it is necessary to consider the loss of ultrasonic on the internal structure of the battery, as well as the loss of battery component materials and ultrasonic energy consumption in practical applications. Moreover, the continuous extension of the duration of ultrasonic action not only hardly leads to a more significant improvement of the battery performance, but is also detrimental to the energy and economic savings. Herein, intermittent ultrasound is used to overcome the quality transfer problem and reduce the operating cost. Good electrochemical performance enhancement is maintained with a roughly 50% reduction in energy consumption values. The mechanism as well as the visualization of the pulsed ultrasonic field on each half cell has been envisaged through fundamental characterization. Finally, the feasibility of interrupted ultrasonic activation applied to Fe/V RFB using DES electrolytes has been demonstrated, demonstrating similar behavior with continuous ultrasonic operation. Therefore, the interrupted ultrasonic field has been found to be a more effective operation mode in terms of energy cost, avoiding alternative undesirable effects like overheating or corrosion of materials. Full article
Show Figures

Figure 1

21 pages, 4021 KiB  
Article
System-Level Dynamic Model of Redox Flow Batteries (RFBs) for Energy Losses Analysis
by Ikechukwu S. Anyanwu, Fulvio Buzzi, Pekka Peljo, Aldo Bischi and Antonio Bertei
Energies 2024, 17(21), 5324; https://doi.org/10.3390/en17215324 - 25 Oct 2024
Cited by 1 | Viewed by 1368
Abstract
This paper presents a zero-dimensional dynamic model of redox flow batteries (RFBs) for the system-level analysis of energy loss. The model is used to simulate multi-cell systems considering the effect of design and operational parameters on energy loss and overall performance. The effect [...] Read more.
This paper presents a zero-dimensional dynamic model of redox flow batteries (RFBs) for the system-level analysis of energy loss. The model is used to simulate multi-cell systems considering the effect of design and operational parameters on energy loss and overall performance. The effect and contribution of stack losses (e.g., overpotential and crossover losses) and system losses (e.g., shunt currents and pumps) to total energy loss are examined. The model is tested by using literature data from a vanadium RFB energy storage. The results show that four parameters mainly affect RFB system performance: manifold diameter, stack current, cell standard potential, and internal resistance. A reduction in manifold diameter from 60 mm to 20 mm reduced shunt current loss by a factor of four without significantly increasing pumping loss, thus boosting round-trip efficiency (RTE) by 10%. The increase in stack current at a low flow rate increases power, while the cell standard potential and internal resistance play a crucial role in influencing both power and energy output. In summary, the modeling activities enabled the understanding of critical aspects of RFB systems, thereby serving as tools for system design and operation awareness. Full article
(This article belongs to the Special Issue Advances in Battery Energy Storage Systems)
Show Figures

Figure 1

15 pages, 2737 KiB  
Article
Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries
by Chiari J. Van Cauter, Yun Li, Sander Van Herck and Ivo F. J. Vankelecom
Membranes 2024, 14(8), 177; https://doi.org/10.3390/membranes14080177 - 15 Aug 2024
Cited by 1 | Viewed by 1973
Abstract
Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the [...] Read more.
Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the performance and stability of nine commercial membranes at pH 14 and pH ≤ 0 with temperatures up to 80 °C is conducted in an organic aqueous RFB. Swelling, area resistance, diffusion crossover, battery performance and membrane stability after 40–80 °C temperature treatment are shown, after which a recommendation is made for different user scenarios. The Aquivion E98-05 membrane performed best for both the Tiron/2,7-AQDS battery and the DHPS/Fe(CN)6 battery at 40 mA/cm2, with stable results after 1 week of storage at 80 °C. At 80 mA/cm2, E-620-PE performed best in the DHPS/Fe(CN)6 battery, while Sx-050DK performed best in the Tiron/2,7-AQDS battery. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

18 pages, 13405 KiB  
Article
Development and Performance Analysis of a Low-Cost Redox Flow Battery
by Nayeem Md. Lutful Huq, Islam Mohammed Mahbubul, Gazi Lotif, Md. Rabbul Ashrafi and Miah Himan
Processes 2024, 12(7), 1461; https://doi.org/10.3390/pr12071461 - 12 Jul 2024
Cited by 1 | Viewed by 2420
Abstract
Redox Flow Batteries (RFBs) offer a promising solution for energy storage due to their scalability and long lifespan, making them particularly attractive for integrating renewable energy sources with fluctuating power output. This study investigates the performance of a prototype Zinc-Chlorine Flow Battery (ZCFB) [...] Read more.
Redox Flow Batteries (RFBs) offer a promising solution for energy storage due to their scalability and long lifespan, making them particularly attractive for integrating renewable energy sources with fluctuating power output. This study investigates the performance of a prototype Zinc-Chlorine Flow Battery (ZCFB) designed for low-cost and readily available electrolytes. The ZCFB utilizes a saltwater electrolyte containing ZnCl2 and NaCl, paired with a mineral spirits catholyte. The electrolyte consists of a 4 M ZnCl2 and a 2 M NaCl solution, both with a pH of 4.55. The anode was a zinc metal electrode, while the cathode comprised a porous carbon electrode on a titanium grid current collector. The cell volume was approximately 4.0 mL, with separate reservoirs for the NaCl/H2O and mineral spirits electrolytes. Experiments were conducted under constant current conditions, with a 0.2 A charging current and a 5 mA discharge current chosen for optimal cell voltage. The study analyzed the relationship between voltage, current, power, and capacity during both charging and discharging cycles. Results from multiple charge/discharge cycles found that the current density of the battery is around 62.658 mA/cm2 with an energy capacity average of 1.2 Wh. These findings can contribute to the development of more efficient and practical ZCFBs, particularly for applications requiring low-cost and readily available electrolytes. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 3239 KiB  
Article
Physiochemical and Electrochemical Properties of a Heat-Treated Electrode for All-Iron Redox Flow Batteries
by Nitika Devi, Jay N. Mishra, Prabhakar Singh and Yong-Song Chen
Nanomaterials 2024, 14(9), 800; https://doi.org/10.3390/nano14090800 - 5 May 2024
Cited by 4 | Viewed by 2264
Abstract
Iron redox flow batteries (IRFBs) are cost-efficient RFBs that have the potential to develop low-cost grid energy storage. Electrode kinetics are pivotal in defining the cycle life and energy efficiency of the battery. In this study, graphite felt (GF) is heat-treated at 400, [...] Read more.
Iron redox flow batteries (IRFBs) are cost-efficient RFBs that have the potential to develop low-cost grid energy storage. Electrode kinetics are pivotal in defining the cycle life and energy efficiency of the battery. In this study, graphite felt (GF) is heat-treated at 400, 500 and 600 °C, and its physicochemical and electrochemical properties are studied using XPS, FESEM, Raman and cyclic voltammetry. Surface morphology and structural changes suggest that GF heat-treated at 500 °C for 6 h exhibits acceptable thermal stability while accessing the benefits of heat treatment. Specific capacitance was calculated for assessing the wettability and electrochemical properties of pristine and treated electrodes. The 600 °C GF has the highest specific capacitance of 34.8 Fg−1 at 100 mV s−1, but the 500 °C GF showed the best battery performance. The good battery performance of the 500 °C GF is attributed to the presence of oxygen functionalities and the absence of thermal degradation during heat treatment. The battery consisting of 500 °C GF electrodes offered the highest voltage efficiency of ~74%, Coulombic efficiency of ~94%, and energy efficiency of ~70% at 20 mA cm−2. Energy efficiency increased by 7% in a battery consisting of heat-treated GF in comparison to pristine GF. The battery is capable of operating for 100 charge–discharge cycles with an average energy efficiency of ~ 67% for over 100 cycles. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

18 pages, 3354 KiB  
Article
Thin Reinforced Anion-Exchange Membranes for Non-Aqueous Redox Flow Battery Employing Fe/Co-Metal Complex Redox Species
by Hyeon-Bee Song, Do-Hyeong Kim, Myung-Jin Lee and Moon-Sung Kang
Batteries 2024, 10(1), 9; https://doi.org/10.3390/batteries10010009 - 27 Dec 2023
Cited by 2 | Viewed by 2750
Abstract
Non-aqueous redox flow batteries (NARFBs) have been attracting much attention because they can significantly increase power and energy density compared to conventional RFBs. In this study, novel pore-filled anion-exchange membranes (PFAEMs) for application to a NAPFB employing metal polypyridyl complexes (i.e., Fe(bpy)3 [...] Read more.
Non-aqueous redox flow batteries (NARFBs) have been attracting much attention because they can significantly increase power and energy density compared to conventional RFBs. In this study, novel pore-filled anion-exchange membranes (PFAEMs) for application to a NAPFB employing metal polypyridyl complexes (i.e., Fe(bpy)32+/Fe(bpy)33+ and Co(bpy)32+/Co(bpy)33+) as the redox species are successfully developed. A porous polyethylene support with excellent solvent resistance and mechanical strength is used for membrane fabrication. The PFAEMs are prepared by filling an ionic liquid monomer containing an imidazolium group and a crosslinking agent into the pores of the support film and then performing in situ photopolymerization. As a result, the prepared membranes exhibit excellent mechanical strength and stability in a non-aqueous medium as well as high ion conductivity. In addition, a low crossover rate for redox ion species is observed for the prepared membranes because they have relatively low swelling characteristics in non-aqueous electrolyte solutions and low affinity for the metal-complex redox species compared to a commercial membrane. Consequently, the PFAEM is revealed to possess superior battery performance than a commercial membrane in the NARFB tests, showing high energy efficiency of about 85% and stable operation for 100 cycles. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Recent Advances and Perspectives)
Show Figures

Graphical abstract

24 pages, 8575 KiB  
Review
Recent Advances in Bromine Complexing Agents for Zinc–Bromine Redox Flow Batteries
by Uxua Jiménez-Blasco, José Carlos Arrebola and Alvaro Caballero
Materials 2023, 16(23), 7482; https://doi.org/10.3390/ma16237482 - 2 Dec 2023
Cited by 12 | Viewed by 4391
Abstract
The development of energy storage systems (ESS) has become an important area of research due to the need to replace the use of fossil fuels with clean energy. Redox flow batteries (RFBs) provide interesting features, such as the ability to separate the power [...] Read more.
The development of energy storage systems (ESS) has become an important area of research due to the need to replace the use of fossil fuels with clean energy. Redox flow batteries (RFBs) provide interesting features, such as the ability to separate the power and battery capacity. This is because the electrolyte tank is located outside the electrochemical cell. Consequently, it is possible to design each battery according to different needs. In this context, zinc–bromine flow batteries (ZBFBs) have shown suitable properties such as raw material availability and low battery cost. To avoid the corrosion and toxicity caused by the free bromine (Br2) generated during the charging process, it is necessary to use bromine complexing agents (BCAs) capable of creating complexes. As an overview, the different BCAs used have been listed to compare their behavior when used in electrolytes in ZBFBs. In addition, the coulombic and energy efficiencies obtained have been compared. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop