Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes
Abstract
:1. Introduction
2. Foundations and Versatility of bpp Complexes
2.1. Structural/Spectroscopic Foundations of bpp
2.2. Iron-Based bpp Complexes: Coupling Spin-State Behavior with Multifunctional Properties
2.3. Cobalt-Based bpp Complexes: Redox Activity, Magnetism, and Energy Storage
2.4. Ruthenium Complexes in Photovoltaic and Luminescent Applications
2.5. Complexes with Rhenium, Platinum, and f-Metals: Expanding the Photophysical Horizon
3. Functionalized bpp Ligands—Carboxylate and Ester Derivatives
3.1. 2,6-Bis(pyrazol-1-yl)isonicotinic Acid (bppCOOH) and 2,6-Bis(pyrazol-1-yl)pyridine-4-ethylcarboxylate (bppCOOEt)
3.2. 2,6-Bis(pyrazol-1-yl)pyridine-4-carboxylate (bppCOOMe)
3.3. 4-(2,6-Bis(1H-pyrazol-1-yl)pyridine-4-yl)benzoic Acid (bppBA)
4. Aromatic Modifications of bpp Ligands
4.1. Pyrene-Functionalized bpp Ligands and Their Complexes
4.2. Radical-Appended bpp Derivatives
4.3. Phosphazene-Linked Ruthenium Complexes
4.4. Fullerene-Appended bpp Systems
4.5. Helicene-Based bpp Derivatives
4.6. AIEgen- and Other Fluorescently Functionalized bpp Complexes
5. TTF-Functionalized bpp Complexes
5.1. bpp-TTF1: Merging TTF with bpp in Fe(II) Complexes
5.2. bpp-TTF2 and bpp-TTF3: Lanthanide Coordination and Luminescence
5.3. bpp-TTF4: Multifunctional Ligands for Lanthanide SMMs
5.4. Heterometallic 3d–4f and 4f–4f′ Complexes via bpp-TTF4: Advanced Multifunctionality
6. Surface Anchoring and Extended Conjugation in bpp-Based Materials
6.1. Sulfur-Functionalized bpp Derivatives for Surface Anchoring
6.2. bpp Derivatives with Extended Thiophene Substituents
6.3. bpp Derivatives with Alkynyl Substituents
6.4. Halomethyl-Functionalized bpp Derivatives
6.5. bpp Integrated into POM Frameworks
7. “Back-to-Back” bpp Derivatives and their Functional Architectures
7.1. bpp–bpp Derivatives
7.2. bpp–Ph–bpp and bpp–(Ph)2–bpp Derivatives
7.3. Amphiphilic bpp Derivatives and Triple Emission
7.4. bpp-Based Dithienylethene Photoswitches
7.5. Anthracene-Bridged bpp Derivatives
7.6. bpp–Phenylene Ethynylene Derivatives
8. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halcrow, M.A. The Synthesis and Coordination Chemistry of 2,6-Bis(Pyrazolyl)Pyridines and Related Ligands—Versatile Terpyridine Analogues. Coord. Chem. Rev. 2005, 249, 2880–2908. [Google Scholar] [CrossRef]
- Halcrow, M.A. Recent Advances in the Synthesis and Applications of 2,6-Dipyrazolylpyridine Derivatives and Their Complexes. New J. Chem. 2014, 38, 1868–1882. [Google Scholar] [CrossRef]
- Halcrow, M.A. Iron(II) Complexes of 2,6-Di(Pyrazol-1-Yl)Pyridines—A Versatile System for Spin-Crossover Research. Coord. Chem. Rev. 2009, 253, 2493–2514. [Google Scholar] [CrossRef]
- Attwood, M.; Turner, S.S. Back to Back 2,6-Bis(Pyrazol-1-Yl)Pyridine and 2,2′:6′,2″-Terpyridine Ligands: Untapped Potential for Spin Crossover Research and Beyond. Coord. Chem. Rev. 2017, 353, 247–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Torres-Cavanillas, R.; Yan, X.; Zeng, Y.; Jiang, M.; Clemente-León, M.; Coronado, E.; Shi, S. Spin Crossover Iron Complexes with Spin Transition near Room Temperature Based on Nitrogen Ligands Containing Aromatic Rings: From Molecular Design to Functional Devices. Chem. Soc. Rev. 2024, 53, 8764–8789. [Google Scholar] [CrossRef]
- Karam, A.R.; Catarí, E.L.; López-Linares, F.; Agrifoglio, G.; Albano, C.L.; Díaz-Barrios, A.; Lehmann, T.E.; Pekerar, S.V.; Albornoz, L.A.; Atencio, R.; et al. Synthesis, Characterization and Olefin Polymerization Studies of Iron(II) and Cobalt(II) Catalysts Bearing 2,6-Bis(Pyrazol-1-Yl)Pyridines and 2,6-Bis(Pyrazol-1-Ylmethyl)Pyridines Ligands. Appl. Catal. Gen. 2005, 280, 165–173. [Google Scholar] [CrossRef]
- Gong, D.; Jia, X.; Wang, B.; Zhang, X.; Jiang, L. Synthesis, Characterization, and Butadiene Polymerization of Iron(III), Iron(II) and Cobalt(II) Chlorides Bearing 2,6-Bis(2-Benzimidazolyl)Pyridyl or 2,6-Bis(Pyrazol)Pyridine Ligand. J. Organomet. Chem. 2012, 702, 10–18. [Google Scholar] [CrossRef]
- Gong, D.; Jia, X.; Wang, B.; Zhang, X.; Huang, K.-W. Trans-1,4 Selective Polymerization of 1,3-Butadiene with Symmetry Pincer Chromium Complexes Activated by MMAO. J. Organomet. Chem. 2014, 766, 79–85. [Google Scholar] [CrossRef]
- Pandey, S.; Mandal, T.; Mandal, S.K. Electronic Influence of Pyrazole-Appended Pyridine/Pyrazine Based N,N,N-Tridentate Ligands on Ru Complexes: Impact on Selectivity of Catalytic Alkene Oxidation with Mild Oxidant NaIO4. Inorganica Chim. Acta 2023, 556, 121667. [Google Scholar] [CrossRef]
- Li, M.; Luo, Z.; Liu, X.; Li, H. 2,6-Bis(Pyrazol-1-Yl)Pyridine Cobalt-Catalyzed High Selective Hydroboration of Alkenes. Mol. Catal. 2024, 568, 114516. [Google Scholar] [CrossRef]
- Arendt, K.M.; Doyle, A.G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem. Int. Ed. 2015, 54, 9876–9880. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.M.; Bercher, O.P.; Twitty, J.C.; Mortimer, T.; Watson, M.P. 2,6-Bis(Pyrazol-1-Yl)Pyridine (1-Bpp) as a General Ligand for the Negishi Alkylation of Alkylpyridinium Salts. J. Org. Chem. 2024, 89, 16249–16252. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Oh, B.J.; Ryu, J.Y.; Park, M.H.; Kim, M.; Lee, J.; Kim, Y. Synthesis, Characterization, and Cycloaddition Reaction Studies of Zinc(II) Acetate Complexes Containing 2,6-Bis(Pyrazol-1-Yl)Pyridine and 2,6-Bis(3,5-Dimethylpyrazol-1-Yl)Pyridine Ligands. Polyhedron 2017, 125, 101–106. [Google Scholar] [CrossRef]
- Annadhasan, M.; Basak, S.; Chandrasekhar, N.; Chandrasekar, R. Next-Generation Organic Photonics: The Emergence of Flexible Crystal Optical Waveguides. Adv. Opt. Mater. 2020, 8, 2000959. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Ajibade, P.A. Experimental and Theoretical Investigation of the Spectroscopic and Electronic Properties of Pyrazolyl Ligands. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 133, 831–845. [Google Scholar] [CrossRef]
- Díez-Barra, E.; García-Martínez, J.C.; Guerra, J.; Hornillos, V.; Merino, S.; del Rey, R.; Rodríguez-Curiel, R.I.; Rodríguez-López, J.; Sánchez-Verdú, P.; Tejeda, J. On the Synthesis of Heterocyclic Dendrons; Michigan Publishing, University of Michigan Library: Ann Arbor, MI, USA, 2002. [Google Scholar]
- Klein, C.; Baranoff, E.; Grätzel, M.; Nazeeruddin, M.K. Convenient Synthesis of Tridentate 2,6-Di(Pyrazol-1-Yl)-4-Carboxypyridine and Tetradentate 6,6′-Di(Pyrazol-1-Yl)-4,4′-Dicarboxy-2,2′-Bipyridine Ligands. Tetrahedron Lett. 2011, 52, 584–587. [Google Scholar] [CrossRef]
- Ayers, T.; Scott, S.; Goins, J.; Caylor, N.; Hathcock, D.; Slattery, S.J.; Jameson, D.L. Redox and Spin State Control of Co(II) and Fe(II) N-Heterocyclic Complexes. Inorganica Chim. Acta 2000, 307, 7–12. [Google Scholar] [CrossRef]
- Guillon, T.; Bonhommeau, S.; Costa, J.S.; Zwick, A.; Létard, J.-F.; Demont, P.; Molnár, G.; Bousseksou, A. On the Dielectric Properties of the Spin Crossover Complex [Fe(Bpp)2] [BF4]2. Phys. Status Solidi A 2006, 203, 2974–2980. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Demont, P.; Menegotto, J. Observation of a Thermal Hysteresis Loop in the Dielectric Constant of Spin Crossover Complexes: Towards Molecular Memory Devices. J. Mater. Chem. 2003, 13, 2069–2071. [Google Scholar] [CrossRef]
- Matsuda, M.; Tajima, H. Thin Film of a Spin Crossover Complex [Fe(Dpp)2](BF4)2. Chem. Lett. 2007, 36, 700–701. [Google Scholar] [CrossRef]
- Matsuda, M.; Isozaki, H.; Tajima, H. Electroluminescence Quenching Caused by a Spin-Crossover Transition. Chem. Lett. 2008, 37, 374–375. [Google Scholar] [CrossRef]
- Matsuda, M.; Isozaki, H.; Tajima, H. Reproducible on–off Switching of the Light Emission from the Electroluminescent Device Containing a Spin Crossover Complex. Thin Solid Films 2008, 517, 1465–1467. [Google Scholar] [CrossRef]
- Matsuda, M.; Kiyoshima, K.; Uchida, R.; Kinoshita, N.; Tajima, H. Characteristics of Organic Light-Emitting Devices Consisting of Dye-Doped Spin Crossover Complex Films. Thin Solid Films 2013, 531, 451–453. [Google Scholar] [CrossRef]
- Meded, V.; Bagrets, A.; Fink, K.; Chandrasekar, R.; Ruben, M.; Evers, F.; Bernand-Mantel, A.; Seldenthuis, J.S.; Beukman, A.; van der Zant, H.S.J. Electrical Control over the Fe(II) Spin Crossover in a Single Molecule: Theory and Experiment. Phys. Rev. B 2011, 83, 245415. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhu, J.; Guo, Y.; He, W.; Guo, Z. Synergetic Effect between Spin Crossover and Luminescence in the [Fe(Bpp)2][BF4]2 (Bpp = 2,6-Bis(Pyrazol-1-Yl)Pyridine) Complex. J. Mater. Chem. C 2017, 5, 5214–5222. [Google Scholar] [CrossRef]
- Üngör, Ö.; Choi, E.S.; Shatruk, M. Solvent-Dependent Spin-Crossover Behavior in Semiconducting Co–Crystals of [Fe(1-Bpp)2]2+ Cations and TCNQδ− Anions (0<δ<1). Eur. J. Inorg. Chem. 2021, 2021, 4812–4820. [Google Scholar] [CrossRef]
- Lu, J.; Scully, A.D.; Sun, J.; Tan, B.; Chesman, A.S.R.; Ruiz Raga, S.; Jiang, L.; Lin, X.; Pai, N.; Huang, W.; et al. Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. J. Phys. Chem. Lett. 2019, 10, 4675–4682. [Google Scholar] [CrossRef]
- Burschka, J.; Kessler, F.; Nazeeruddin, M.K.; Grätzel, M. Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells. Chem. Mater. 2013, 25, 2986–2990. [Google Scholar] [CrossRef]
- Świtlicka, A.; Machura, B.; Penkala, M.; Bieńko, A.; Bieńko, D.C.; Titiš, J.; Rajnák, C.; Boča, R.; Ozarowski, A. Slow Magnetic Relaxation in Hexacoordinated Cobalt(II) Field-Induced Single-Ion Magnets. Inorg. Chem. Front. 2020, 7, 2637–2650. [Google Scholar] [CrossRef]
- Yang, C.; Nikiforidis, G.; Park, J.Y.; Choi, J.; Luo, Y.; Zhang, L.; Wang, S.-C.; Chan, Y.-T.; Lim, J.; Hou, Z.; et al. Designing Redox-Stable Cobalt–Polypyridyl Complexes for Redox Flow Batteries: Spin-Crossover Delocalizes Excess Charge. Adv. Energy Mater. 2018, 8, 1702897. [Google Scholar] [CrossRef]
- Świtlicka, A.; Machura, B.; Penkala, M.; Bieńko, A.; Bieńko, D.C.; Titiš, J.; Rajnák, C.; Boča, R.; Ozarowski, A.; Ozerov, M. Slow Magnetic Relaxation in Cobalt(II) Field-Induced Single-Ion Magnets with Positive Large Anisotropy. Inorg. Chem. 2018, 57, 12740–12755. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Bhadbhade, M.; Baker, A.T. Reversible Five-Coordinate ⇄ Six-Coordinate Transformation in Cobalt(II) Complexes. J. Mol. Struct. 2018, 1157, 112–118. [Google Scholar] [CrossRef]
- Holland, J.M.; Kilner, C.A.; Thornton-Pett, M.; Halcrow, M.A. Steric Effects on the Electronic and Molecular Structures of Nickel(II) and Cobalt(II) 2,6-Dipyrazol-1-Ylpyridine Complexes. Polyhedron 2001, 20, 2829–2840. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Sarkhel, P.; Poddar, R.K. Ruthenium(II) and Palladium(II) Complexes with 2,6-(Bispyrazol-1-Yl)Pyridines. J. Coord. Chem. 2010, 63, 1563–1569. [Google Scholar] [CrossRef]
- Philippopoulos, A.I.; Terzis, A.; Raptopoulou, C.P.; Catalano, V.J.; Falaras, P. Synthesis, Characterization, and Sensitizing Properties of Heteroleptic RuII Complexes Based on 2,6-Bis(1-Pyrazolyl)Pyr idine and 2,2′-Bipyridine-4,4′-Dicarboxylic Acid Ligands. Eur. J. Inorg. Chem. 2007, 2007, 5633–5644. [Google Scholar] [CrossRef]
- Lei, Y.-Q.; Zhou, J.-Q.; Wang, J.; Gu, G.-X.; Guo, H.; Jia, R. Effect of the Linkage Position in Ruthenium Dyes on the Photoelectrochemical Perfomance. J. Saudi Chem. Soc. 2018, 22, 594–600. [Google Scholar] [CrossRef]
- Sangilipandi, S.; Nagarajaprakash, R.; Sutradhar, D.; Kaminsky, W.; Chandra, A.K.; Mohan Rao, K. Synthesis, Molecular Structural Studies and DFT Calculations of Tricarbonylrhenium(I) Metal Complexes Containing Nitrogen Based N∩N Donor Polypyridyl Ligands. Inorganica Chim. Acta 2015, 437, 177–187. [Google Scholar] [CrossRef]
- Willison, S.A.; Jude, H.; Antonelli, R.M.; Rennekamp, J.M.; Eckert, N.A.; Krause Bauer, J.A.; Connick, W.B. A Luminescent Platinum(II) 2,6-Bis(N-Pyrazolyl)Pyridine Complex. Inorg. Chem. 2004, 43, 2548–2555. [Google Scholar] [CrossRef]
- Cui, H.-L.; Zhan, S.-Z.; Li, M.; Ng, S.W.; Li, D. Luminescent Isomeric Pr–Ag Coordination Polymers Immobilized with Organic Sensitizer and Ag–S Clusters. Dalton Trans. 2011, 40, 6490–6493. [Google Scholar] [CrossRef]
- Sivakumar, R.; Marcelis, A.T.M.; Anandan, S. Synthesis and Characterization of Novel Heteroleptic Ruthenium Sensitizer for Nanocrystalline Dye-Sensitized Solar Cells. J. Photochem. Photobiol. Chem. 2009, 208, 154–158. [Google Scholar] [CrossRef]
- Abhervé, A.; Clemente-León, M.; Coronado, E.; Gómez-García, C.J.; López-Jordà, M. A Spin-Crossover Complex Based on a 2,6-Bis(Pyrazol-1-Yl)Pyridine (1-Bpp) Ligand Functionalized with a Carboxylate Group. Dalton Trans. 2014, 43, 9406–9409. [Google Scholar] [CrossRef] [PubMed]
- Abhervé, A.; Recio-Carretero, M.J.; López-Jordà, M.; Clemente-Juan, J.M.; Canet-Ferrer, J.; Cantarero, A.; Clemente-León, M.; Coronado, E. Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(Pyrazol-1-Yl)Pyridine Ligand Functionalized with a Carboxylate Group. Inorg. Chem. 2016, 55, 9361–9367. [Google Scholar] [CrossRef] [PubMed]
- Kershaw Cook, L.J.; Kulmaczewski, R.; Mohammed, R.; Dudley, S.; Barrett, S.A.; Little, M.A.; Deeth, R.J.; Halcrow, M.A. A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Angew. Chem. Int. Ed. 2016, 55, 4327–4331. [Google Scholar] [CrossRef] [PubMed]
- Capel Berdiell, I.; Michaels, E.; Munro, O.Q.; Halcrow, M.A. A Survey of the Angular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-Bis(Pyrazolyl)Pyridine Complexes. Inorg. Chem. 2024, 63, 2732–2744. [Google Scholar] [CrossRef]
- García-López, V.; Palacios-Corella, M.; Abhervé, A.; Pellicer-Carreño, I.; Desplanches, C.; Clemente-León, M.; Coronado, E. Spin-Crossover Compounds Based on Iron(II) Complexes of 2,6-Bis(Pyrazol-1-Yl)Pyridine (Bpp) Functionalized with Carboxylic Acid and Ethyl Carboxylic Acid. Dalton Trans. 2018, 47, 16958–16968. [Google Scholar] [CrossRef]
- García-López, V.; Orts-Mula, F.J.; Palacios-Corella, M.; Clemente-Juan, J.M.; Clemente-León, M.; Coronado, E. Field-Induced Slow Relaxation of Magnetization in a Mononuclear Co(II) Complex of 2,6-Bis(Pyrazol-1-Yl)Pyridine Functionalized with a Carboxylic Acid. Polyhedron 2018, 150, 54–60. [Google Scholar] [CrossRef]
- Bommakanti, S.; Venkataramudu, U.; Das, S.K. Functional Coordination Polymers from a Bifunctional Ligand: A Quantitative Transmetalation via Single Crystal to Single Crystal Transformation. Cryst. Growth Des. 2019, 19, 1155–1166. [Google Scholar] [CrossRef]
- Lu, H.; Xu, M.; Zheng, Z.; Liu, Q.; Qian, J.; Zhang, Z.-H.; He, M.-Y.; Qian, Y.; Wang, J.-Q.; Lin, J. Emergence of Thorium-Based Polyoxo Clusters as a Platform for Selective X-Ray Dosimetry. Inorg. Chem. 2021, 60, 18629–18633. [Google Scholar] [CrossRef]
- Xu, M.; Lu, H.; Wang, C.; Qiu, J.; Zheng, Z.; Guo, X.; Zhang, Z.-H.; He, M.-Y.; Qian, J.; Lin, J. Enhancing Photosensitivity via the Assembly of a Uranyl Coordination Polymer. Chem. Commun. 2022, 58, 9389–9392. [Google Scholar] [CrossRef]
- Rigamonti, L.; Bridonneau, N.; Poneti, G.; Tesi, L.; Sorace, L.; Pinkowicz, D.; Jover, J.; Ruiz, E.; Sessoli, R.; Cornia, A. A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy. Chem. Eur. J. 2018, 24, 8857–8868. [Google Scholar] [CrossRef]
- Aitchison, H.; Ortiz de la Morena, R.; Peifer, R.; Omar, S.; Lu, H.; Francis, S.M.; Zharnikov, M.; Grohmann, A.; Buck, M. Self-Assembly of Di(Pyrazol-1-Yl)Pyridine-Benzoic Acid on Underpotentially Deposited Ag from Solution. Langmuir 2018, 34, 9654–9664. [Google Scholar] [CrossRef]
- González-Prieto, R.; Fleury, B.; Schramm, F.; Zoppellaro, G.; Chandrasekar, R.; Fuhr, O.; Lebedkin, S.; Kappes, M.; Ruben, M. Tuning the Spin-Transition Properties of Pyrene-Decorated 2,6-Bispyrazolylpyridine Based Fe(II) Complexes. Dalton Trans. 2011, 40, 7564–7570. [Google Scholar] [CrossRef]
- Kumar, K.S.; Šalitroš, I.; Boubegtiten-Fezoua, Z.; Moldovan, S.; Hellwig, P.; Ruben, M. A Spin Crossover (SCO) Active Graphene-Iron(II) Complex Hybrid Material. Dalton Trans. 2017, 47, 35–40. [Google Scholar] [CrossRef]
- Burzurí, E.; García-Fuente, A.; García-Suárez, V.; Kumar, K.S.; Ruben, M.; Ferrer, J.; Zant, H.S.J. van der Spin-State Dependent Conductance Switching in Single Molecule-Graphene Junctions. Nanoscale 2018, 10, 7905–7911. [Google Scholar] [CrossRef]
- Kumar, K.S.; Šalitroš, I.; Moreno-Pineda, E.; Ruben, M. Spacer Type Mediated Tunable Spin Crossover (SCO) Characteristics of Pyrene Decorated 2,6-Bis(Pyrazol-1-Yl)Pyridine (Bpp) Based Fe(II) Molecular Spintronic Modules. Dalton Trans. 2017, 46, 9765–9768. [Google Scholar] [CrossRef]
- Kumar, K.S.; Šalitroš, I.; Suryadevara, N.; Moreno-Pineda, E.; Ruben, M. Supramolecular Interaction Tuning of Spin-Crossover in Pyrene/Fullerene (C60) Tethered FeII-2,6-Di(Pyrazol-1-Yl)Pyridine Complexes: Towards Switchable Molecular Devices. Eur. J. Inorg. Chem. 2018, 2018, 5091–5097. [Google Scholar] [CrossRef]
- Hui, P.; Arif, K.M.; Chandrasekar, R. Syntheses, Optical and Intramolecular Magnetic Properties of Mono- and Di-Radicals Based on Nitronyl-Nitroxide and Oxoverdazyl Groups Appended to 2,6-Bispyrazolylpyridine Cores. Org. Biomol. Chem. 2012, 10, 2439–2446. [Google Scholar] [CrossRef]
- Hui, P.; Chandrasekar, R. Shape-Defined and Shape-Shifting Paramagnetic Organic Nano/Microstructures Derived From a Doublet State Nitronyl Nitroxide Radical. ChemPlusChem 2012, 77, 1062–1065. [Google Scholar] [CrossRef]
- Davidson, R.J.; Ainscough, E.W.; Brodie, A.M.; Jameson, G.B.; Waterland, M.R.; Allcock, H.R.; Hindenlang, M.D. Terpyridine and 2,6-Di(1H-Pyrazol-1-Yl)Pyridine Substituted Cyclotri- and Polyphosphazene Ruthenium(II) Complexes: Chemical and Physical Behaviour. Polyhedron 2015, 85, 429–436. [Google Scholar] [CrossRef]
- Nuin, E.; Bauer, W.; Hirsch, A. Synthesis of Magnetic Molecular Complexes with Fullerene Anchor Groups. Eur. J. Org. Chem. 2017, 2017, 790–798. [Google Scholar] [CrossRef]
- Palacios-Corella, M.; Ramos-Soriano, J.; Souto, M.; Ananias, D.; Calbo, J.; Ortí, E.; Illescas, B.M.; Clemente-León, M.; Martín, N.; Coronado, E. Hexakis-Adducts of [60]Fullerene as Molecular Scaffolds of Polynuclear Spin-Crossover Molecules. Chem. Sci. 2021, 12, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Abhervé, A.; Martin, K.; Hauser, A.; Avarvari, N. Helicene Bis(Pyrazol-1-Yl)Pyridine Ligands for Luminescent Transition-Metal Complexes. Eur. J. Inorg. Chem. 2019, 2019, 4807–4814. [Google Scholar] [CrossRef]
- Abhervé, A.; Mastropasqua Talamo, M.; Vanthuyne, N.; Zinna, F.; Di Bari, L.; Grasser, M.; Le Guennic, B.; Avarvari, N. Chiral Emissive Lanthanide Complexes from Enantiopure [6]Helicene-Bis(Pyrazolyl)-Pyridine Ligands. Eur. J. Inorg. Chem. 2022, 2022, e202200010. [Google Scholar] [CrossRef]
- Yi, C.; Zhang, S.-H.; Zhao, L.; Yao, N.-T.; Zhao, G.-H.; Meng, Y.-S.; Liu, T. Constructing Spin Crossover-Fluorescence Bifunctional Iron(II) Complexes Based on Tetraphenyl Ethylene-Decorated AIEgens. Dalton Trans. 2023, 52, 5169–5175. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, X.-L.; Zhu, Z.; Zhao, C.; Liu, T.; Tang, J. An AIE-Active Fe(II) Complex Exhibiting Synergistic Spin-Crossover and Luminescent Properties. Cryst. Growth Des. 2025, 25, 1276–1281. [Google Scholar] [CrossRef]
- Zhao, G.-H.; Zhang, S.-H.; Yi, C.; Liu, T.; Meng, Y.-S. Construction of Spin Crossover-Fluorescence Bifunctional Iron(II) Complexes with Modified Bis(Pyrazole)Pyridine Ligands. New J. Chem. 2023, 47, 10967–10972. [Google Scholar] [CrossRef]
- Nihei, M.; Takahashi, N.; Nishikawa, H.; Oshio, H. Spin-Crossover Behavior and Electrical Conduction Property in Iron(II) Complexes with Tetrathiafulvalene Moieties. Dalton Trans. 2011, 40, 2154–2156. [Google Scholar] [CrossRef]
- Feng, M.; Pointillart, F.; Le Guennic, B.; Lefeuvre, B.; Golhen, S.; Cador, O.; Maury, O.; Ouahab, L. Unprecedented Sensitization of Visible and Near-Infrared Lanthanide Luminescence by Using a Tetrathiafulvalene-Based Chromophore. Chem. Asian J. 2014, 9, 2814–2825. [Google Scholar] [CrossRef]
- Faulkner, S.; Burton-Pye, B.P.; Khan, T.; Martin, L.R.; Wray, S.D.; Skabara, P.J. Interaction between Tetrathiafulvalene Carboxylic Acid and Ytterbium DO3A: Solution State Self-Assembly of a Ternary Complex Which Is Luminescent in the near IR. Chem. Commun. 2002, 1668–1669. [Google Scholar] [CrossRef]
- Feng, M.; Speed, S.; Pointillart, F.; Lefeuvre, B.; Le Guennic, B.; Golhen, S.; Cador, O.; Ouahab, L. Dysprosium- and Ytterbium-Based Complexes Involving Tetrathiafulvalene Derivatives Functionalised with 2,2′-Bipyridine or 2,6-Di(Pyrazol-1-Yl)-4-Pyridine. Eur. J. Inorg. Chem. 2016, 2016, 2039–2050. [Google Scholar] [CrossRef]
- Feng, M.; Pointillart, F.; Lefeuvre, B.; Dorcet, V.; Golhen, S.; Cador, O.; Ouahab, L. Multiple Single-Molecule Magnet Behaviors in Dysprosium Dinuclear Complexes Involving a Multiple Functionalized Tetrathiafulvalene-Based Ligand. Inorg. Chem. 2015, 54, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Speed, S.; Feng, M.; Garcia, G.F.; Pointillart, F.; Lefeuvre, B.; Riobé, F.; Golhen, S.; Guennic, B.L.; Totti, F.; Guyot, Y.; et al. Lanthanide Complexes Involving Multichelating TTF-Based Ligands. Inorg. Chem. Front. 2017, 4, 604–617. [Google Scholar] [CrossRef]
- Douib, H.; Gonzalez, J.F.; Speed, S.; Montigaud, V.; Lefeuvre, B.; Dorcet, V.; Riobé, F.; Maury, O.; Gouasmia, A.; Guennic, B.L.; et al. Modulation of the Magnetic and Photophysical Properties in 3d–4f and 4f–4f′ Heterobimetallic Complexes Involving a Tetrathiafulvalene-Based Ligand. Dalton Trans. 2022, 51, 16486–16496. [Google Scholar] [CrossRef]
- Shen, C.; Haryono, M.; Grohmann, A.; Buck, M.; Weidner, T.; Ballav, N.; Zharnikov, M. Self-Assembled Monolayers of a Bis(Pyrazol-1-Yl)Pyridine-Substituted Thiol on Au(111). Langmuir 2008, 24, 12883–12891. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Stocker, M.; Gieb, K.; Müller, P.; Haryono, M.; Student, K.; Grohmann, A. Spin-State Patterns in Surface-Grafted Beads of Iron(II) Complexes. Angew. Chem. Int. Ed. 2010, 49, 1159–1163. [Google Scholar] [CrossRef]
- Pukenas, L.; Benn, F.; Lovell, E.; Santoro, A.; Cook, L.J.K.; Halcrow, M.A.; Evans, S.D. Bead-like Structures and Self-Assembled Monolayers from 2,6-Dipyrazolylpyridines and Their Iron(II) Complexes. J. Mater. Chem. C 2015, 3, 7890–7896. [Google Scholar] [CrossRef]
- Devid, E.J.; Martinho, P.N.; Kamalakar, M.V.; Šalitroš, I.; Prendergast, Ú.; Dayen, J.-F.; Meded, V.; Lemma, T.; González-Prieto, R.; Evers, F.; et al. Spin Transition in Arrays of Gold Nanoparticles and Spin Crossover Molecules. ACS Nano 2015, 9, 4496–4507. [Google Scholar] [CrossRef]
- Kuppusamy, S.K.; Mizuno, A.; García-Fuente, A.; van der Poel, S.; Heinrich, B.; Ferrer, J.; van der Zant, H.S.J.; Ruben, M. Spin-Crossover in Supramolecular Iron(II)–2,6-Bis(1H-Pyrazol-1-Yl)Pyridine Complexes: Toward Spin-State Switchable Single-Molecule Junctions. ACS Omega 2022, 7, 13654–13666. [Google Scholar] [CrossRef]
- Rajnák, C.; Titiš, J.; Fuhr, O.; Ruben, M.; Boča, R. Single-Molecule Magnetism in a Pentacoordinate Cobalt(II) Complex Supported by an Antenna Ligand. Inorg. Chem. 2014, 53, 8200–8202. [Google Scholar] [CrossRef]
- Schäfer, B.; Bauer, T.; Faus, I.; Wolny, J.A.; Dahms, F.; Fuhr, O.; Lebedkin, S.; Wille, H.-C.; Schlage, K.; Chevalier, K.; et al. A Luminescent Pt2Fe Spin Crossover Complex. Dalton Trans. 2017, 46, 2289–2302. [Google Scholar] [CrossRef]
- Douib, H.; Cornet, L.; Gonzalez, J.F.; Trzop, E.; Dorcet, V.; Gouasmia, A.; Ouahab, L.; Cador, O.; Pointillart, F. Spin-Crossover and Field-Induced Single-Molecule Magnet Behaviour in Metal(II)-Dipyrazolylpyridine Complexes. Eur. J. Inorg. Chem. 2018, 2018, 4452–4457. [Google Scholar] [CrossRef]
- Palacios-Corella, M.; García-López, V.; Waerenborgh, J.C.; Vieira, B.J.C.; Espallargas, G.M.; Clemente-León, M.; Coronado, E. Redox and Guest Tunable Spin-Crossover Properties in a Polymeric Polyoxometalate. Chem. Sci. 2023, 14, 3048–3055. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Chandrasekar, R. Multiluminescent Hybrid Organic/Inorganic Nanotubular Structures: One-Pot Fabrication of Tricolor (Blue–Red–Purple) Luminescent Parallepipedic Organic Superstructure Grafted with Europium Complexes. Adv. Funct. Mater. 2011, 21, 667–673. [Google Scholar] [CrossRef]
- Basak, S.; Chandrasekar, R. Passive Optical Waveguiding Organic Rectangular Tubes: Tube Cutting, Controlling Light Propagation Distance and Multiple Optical out-Puts. J. Mater. Chem. C 2014, 2, 1404–1408. [Google Scholar] [CrossRef]
- Rajadurai, C.; Fuhr, O.; Kruk, R.; Ghafari, M.; Hahn, H.; Ruben, M. Above Room Temperature Spin Transition in a Metallo-Supramolecular Coordination Oligomer/Polymer. Chem. Commun. 2007, 2636–2638. [Google Scholar] [CrossRef]
- Schramm, F.; Chandrasekar, R.; Zevaco, T.A.; Rudolph, M.; Görls, H.; Poppitz, W.; Ruben, M. (Polypyridyl)Ruthenium(II) Complexes Based on a Back-to-Back Bis(Pyrazolylpyridine) Bridging Ligand. Eur. J. Inorg. Chem. 2009, 2009, 53–61. [Google Scholar] [CrossRef]
- Chandrasekhar, N.; Chandrasekar, R. Engineering Self-Assembled Fluorescent Organic Nanotapes and Submicrotubes from π-Conjugated Molecules. Chem. Commun. 2010, 46, 2915–2917. [Google Scholar] [CrossRef]
- Chandrasekhar, N.; Mohiddon, M.A.; Chandrasekar, R. Organic Submicro Tubular Optical Waveguides: Self-Assembly, Diverse Geometries, Efficiency, and Remote Sensing Properties. Adv. Opt. Mater. 2013, 1, 305–311. [Google Scholar] [CrossRef]
- Venkataramudu, U.; Venkatakrishnarao, D.; Chandrasekhar, N.; Mohiddon, M.A.; Chandrasekar, R. Single-Particle to Single-Particle Transformation of an Active Type Organic μ-Tubular Homo-Structure Photonic Resonator into a Passive Type Hetero-Structure Resonator. Phys. Chem. Chem. Phys. 2016, 18, 15528–15533. [Google Scholar] [CrossRef]
- Kumar, A.V.; Godumala, M.; Ravi, J.; Chandrasekar, R. A Broadband, Multiplexed-Visible-Light-Transport in Composite Flexible-Organic-Crystal Waveguide. Angew. Chem. Int. Ed. 2022, 61, e202212382. [Google Scholar] [CrossRef]
- Vinod Kumar, A.; Rohullah, M.; Chosenyah, M.; Ravi, J.; Venkataramudu, U.; Chandrasekar, R. Amphibian-like Flexible Organic Crystal Optical Fibers for Underwater/Air Micro-Precision Lighting and Sensing. Angew. Chem. Int. Ed. 2023, 62, e202300046. [Google Scholar] [CrossRef] [PubMed]
- Rohullah, M.; Avulu, V.K.; Chandrasekar, R. A Hybrid Organic-Crystal-Based Curved Waveguide Network for Producing, Splitting, and Transducing Multi-Color Outputs. Laser Photonics Rev. 2024, 18, 2400020. [Google Scholar] [CrossRef]
- Narayana, Y.S.L.V.; Chandrasekar, R. Triple Emission from Organic/Inorganic Hybrid Nanovesicles in a Single Excitation. ChemPhysChem 2011, 12, 2391–2396. [Google Scholar] [CrossRef]
- Venkatakrishnarao, D.; Mohiddon, M.A.; Chandrasekhar, N.; Chandrasekar, R. Photonic Microrods Composed of Photoswitchable Molecules: Erasable Heterostructure Waveguides for Tunable Optical Modulation. Adv. Opt. Mater. 2015, 3, 1035–1040. [Google Scholar] [CrossRef]
- Šalitroš, I.; Fuhr, O.; Gál, M.; Valášek, M.; Ruben, M. Photoisomerization of Bis(Tridentate) 2,6-Bis(1H-Pyrazol-1-Yl)Pyridine Ligands Exhibiting a Multi-Anthracene Skeleton. Chem. Eur. J. 2017, 23, 10100–10109. [Google Scholar] [CrossRef]
- Šalitroš, I.; Herchel, R.; Fuhr, O.; González-Prieto, R.; Ruben, M. Polynuclear Iron(II) Complexes with 2,6-Bis(Pyrazol-1-Yl)Pyridine-Anthracene Ligands Exhibiting Highly Distorted High-Spin Centers. Inorg. Chem. 2019, 58, 4310–4319. [Google Scholar] [CrossRef]
- Kumar, K.S.; Šalitroš, I.; Heinrich, B.; Moldovan, S.; Mauro, M.; Ruben, M. Spin-Crossover in Iron(II)-Phenylene Ethynylene-2,6-Di(Pyrazol-1-Yl) Pyridine Hybrids: Toward Switchable Molecular Wire-like Architectures. J. Phys. Condens. Matter 2020, 32, 204002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleksii, Y.; El-Ghayoury, A. Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes. Molecules 2025, 30, 1314. https://doi.org/10.3390/molecules30061314
Oleksii Y, El-Ghayoury A. Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes. Molecules. 2025; 30(6):1314. https://doi.org/10.3390/molecules30061314
Chicago/Turabian StyleOleksii, Yuliia, and Abdelkrim El-Ghayoury. 2025. "Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes" Molecules 30, no. 6: 1314. https://doi.org/10.3390/molecules30061314
APA StyleOleksii, Y., & El-Ghayoury, A. (2025). Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes. Molecules, 30(6), 1314. https://doi.org/10.3390/molecules30061314