Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (361)

Search Parameters:
Keywords = recycling lithium-ion batteries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4385 KiB  
Review
Sustainable Recycling of Lithium-Ion Battery Cathodes: Life Cycle Assessment, Technologies, and Economic Insights
by Dongjie Pang, Haoyu Wang, Yimin Zeng, Xue Han and Ying Zheng
Nanomaterials 2025, 15(16), 1283; https://doi.org/10.3390/nano15161283 - 20 Aug 2025
Viewed by 294
Abstract
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical [...] Read more.
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical approaches—including pyrometallurgy, hydrometallurgy, and other processes such as organic acid leaching and in situ reduction roasting—are systematically reviewed. While pyrometallurgy offers scalability, it is hindered by high energy consumption and excessive greenhouse gas emissions. Hydrometallurgy achieves higher metal recovery rates with better environmental performance but requires complex chemical and wastewater management. Emerging methods and regeneration techniques such as co-precipitation and sol–gel synthesis demonstrate potential for high-purity material recovery and circular manufacturing. LCA results confirm that recycling significantly reduces GHG emissions, especially for high-nickel cathode chemistry. However, the environmental benefits are affected by upstream factors such as collection, disassembly, and logistics. Technoeconomic simulations show that profitability is strongly influenced by battery composition, regional cost structures, and collection rates. The study highlights the necessity of harmonized LCA boundaries, process optimization, and supportive policy frameworks to scale environmentally and economically sustainable LIB recycling, ensuring long-term supply security for critical battery materials. Full article
Show Figures

Graphical abstract

14 pages, 11988 KiB  
Article
Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries
by Xinmei Wang, Junqiang Han, Jianing Ni and Changlei Qin
Energies 2025, 18(16), 4237; https://doi.org/10.3390/en18164237 - 9 Aug 2025
Viewed by 318
Abstract
With the advancement of global carbon reduction efforts and the rapid development of battery industries, the scale of spent lithium-ion batteries (LIBs) has increased dramatically. Extracting lithium from spent LIBs to synthesize Li4SiO4 sorbents not only addresses the challenge of [...] Read more.
With the advancement of global carbon reduction efforts and the rapid development of battery industries, the scale of spent lithium-ion batteries (LIBs) has increased dramatically. Extracting lithium from spent LIBs to synthesize Li4SiO4 sorbents not only addresses the challenge of battery recycling but also reduces the production cost of CO2 sorbents, making it a research hotspot. However, the CO2 adsorption behavior of these sorbents under the effect of impurities may differ from the traditional Li4SiO4, and there is a lack of systematic research on the adsorption kinetics. To address this issue, two Li4SiO4 sorbents are prepared from spent ternary LIBs, and their adsorption kinetics are comprehensively investigated using classical kinetic models. Results show that the reaction order of LSO and Na-LSO is 0.41 and 1.63, respectively, with activation energies of 72.93 kJ/mol and 99.23 kJ/mol in the initial kinetic-controlled stage, and 323.15 kJ/mol and 176.79 kJ/mol in the following diffusion-controlled stage. In the cyclic processes, loss-in-capacity is observed on LSO due to the simultaneous decrease in rate constants in both the kinetic and diffusion-controlled stages, while Na-LSO could almost maintain its capacity by having a much bigger rate constant during the kinetic-controlled stage. This study reveals the adsorption kinetics of Li4SiO4 prepared from spent LIBs and could provide theoretical support for the targeted design of efficient and low-cost CO2 sorbents. Full article
Show Figures

Figure 1

21 pages, 1124 KiB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 - 5 Aug 2025
Viewed by 468
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Viewed by 1334
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

32 pages, 8366 KiB  
Article
A Comprehensive Study of the Cobalt(II) Chelation Mechanism by an Iminodiacetate-Decorated Disaccharide Ligand
by Cécile Barbot, Laura Gouriou, Mélanie Mignot, Muriel Sebban, Ping Zhang, David Landy, Chang-Chun Ling and Géraldine Gouhier
Molecules 2025, 30(15), 3263; https://doi.org/10.3390/molecules30153263 - 4 Aug 2025
Viewed by 346
Abstract
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment [...] Read more.
We report an investigation on the cobalt(II) chelation mechanism by a modified α-maltoside ligand 9 decorated with two iminodiacetate (IDA) residues on C6,C6′ positions. Herein we uncovered the capacity of this biodegradable ligand to chelate cobalt(II), an ionic metal contaminant in the environment that is used, in particular, in lithium-ion batteries. The interactions between cobalt(II) and synthesized ligand 9 were systematically studied using different analytical methods such as 1H and 13C NMR, potentiometry, spectrophotometry, ITC, and ICP-AES. We observed a high affinity for the 1:1 complex, one cobalt(II) associated with two iminodiacetate groups, which is 10-fold higher than the 2:1 complex, where each of the two IDA groups interacts alone with a cobalt(II). Taking into account the log βCoL value obtained (≈12.3) with the stoichiometry 1:1, the strength of this complexation with cobalt(II) can be ranked as follows for the most common ligands: IDA < MIDA < NTA < 9 < EDTA < TTHA < DTPA. We further completed a preliminary remediation test with water contaminated with cobalt(II) and recovered cobalt(II) metal using Chelex® resin, which allowed a recycling of the synthetic ligand for future recovering experiments. The results shed light on the great potential of using this synthetic ligand as an effective and green remediation tool. Full article
Show Figures

Graphical abstract

26 pages, 1085 KiB  
Article
Evaluating Sustainable Battery Recycling Technologies Using a Fuzzy Multi-Criteria Decision-Making Approach
by Chia-Nan Wang, Nhat-Luong Nhieu and Yen-Hui Wang
Batteries 2025, 11(8), 294; https://doi.org/10.3390/batteries11080294 - 4 Aug 2025
Viewed by 445
Abstract
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling [...] Read more.
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling technologies under uncertainty. Ten key evaluation criteria—encompassing environmental, economic, and technological dimensions—were identified through expert consultation and literature synthesis. The T-Spherical Fuzzy DEMATEL method was first applied to analyze the causal interdependencies among criteria and determine their relative weights, revealing that environmental drivers such as energy consumption, greenhouse gas emissions, and waste generation exert the most systemic influence. Subsequently, six recycling alternatives were assessed and ranked using the CoCoSo method enhanced by Einstein-based aggregation, which captured the complex interactions present in the experts’ evaluations and assessments. Results indicate that Direct Recycling is the most favorable option, followed by the Hydrometallurgical and Bioleaching methods, while Pyrometallurgical Recycling ranked lowest due to its high energy demands and environmental burden. The proposed hybrid model effectively handles linguistic uncertainty, expert variability, and interdependent evaluation structures, offering a robust decision-support tool for sustainable technology selection in the circular battery economy. The framework is adaptable to other domains requiring structured expert-based evaluations under fuzzy environments. Full article
Show Figures

Figure 1

14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 400
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

18 pages, 840 KiB  
Article
Centralized vs. Decentralized Black-Mass Production: A Comparative Analysis of Lithium Reverse Logistics Supply Chain Networks
by Oluwatosin S. Atitebi and Erick C. Jones
Logistics 2025, 9(3), 97; https://doi.org/10.3390/logistics9030097 - 23 Jul 2025
Viewed by 447
Abstract
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study [...] Read more.
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study proposes a modified lithium reverse logistics network that decentralizes black-mass production at distributed facilities before centralized extraction, contrasting with conventional models that transport raw LIBs directly to central processing sites. Using the United States as a case study, two mathematical optimization (mixed-integer linear programming) models were developed to compare the traditional and modified networks in terms of cost efficiency and carbon emissions. Results: The model indicates that the proposed network significantly reduces both operational costs and emissions. Conclusions: This study highlights its potential to support a greener economy and inform policy development. Full article
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 345
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

27 pages, 1344 KiB  
Review
An Overview of Lithium-Ion Battery Recycling: A Comparison of Brazilian and International Scenarios
by Jean Furlanetto, Marcus V. C. de Lara, Murilo Simionato, Vagner do Nascimento and Giovani Dambros Telli
World Electr. Veh. J. 2025, 16(7), 371; https://doi.org/10.3390/wevj16070371 - 3 Jul 2025
Viewed by 1825
Abstract
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their [...] Read more.
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their life grows, particularly the battery pack, which significantly contributes to the vehicle’s final cost and generates environmental impacts and CO2 during production. This work presents an overview of the recycling processes for lithium-ion automotive batteries, emphasizing the developing Brazilian scenario and more established international scenarios. In Brazil, companies and research centers are investing in recycling and using reused cathode material to manufacture new batteries through the hydrometallurgical process. On the international front, pyrometallurgy and physical recycling are being applied, and other methods, such as direct processes and biohydrometallurgy, are also under study. Regardless of the recycling method, the main challenge is scaling prototype processes to meet current and future battery demand, driven by the growth of electric and hybrid vehicles, pursuing both environmental gains through reduced mining and CO2 emissions and economic viability to make recycling profitable and support global electrification. Full article
Show Figures

Figure 1

17 pages, 3910 KiB  
Article
Extraction of Valuable Metals from Spent Li-Ion Batteries Combining Reduction Smelting and Chlorination
by Chen Wang, Wei Liu, Congren Yang and Hongbin Ling
Metals 2025, 15(7), 732; https://doi.org/10.3390/met15070732 - 30 Jun 2025
Cited by 1 | Viewed by 471
Abstract
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization [...] Read more.
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization process for the comprehensive recovery of strategic metals (Li, Mn, Cu, Co, Ni) from spent ternary lithium-ion batteries; calcium chloride was selected as the chlorinating agent for this purpose. Thermodynamic analysis was performed to understand the phase evolution during reduction smelting and to design an appropriate slag composition. Preliminary experiments compared carbon and aluminum powder as reducing agents to identify optimal operational parameters: a smelting temperature of 1450 °C, 2.5 times theoretical CaCl2 dosage, and duration of 120 min. The process achieved effective element partitioning with lithium and manganese volatilizing as chloride species, while transition metals (Cu, Ni, Co) were concentrated into an alloy phase. Process validation in an induction furnace with N2-O2 top blowing demonstrated enhanced recovery efficiency through optimized oxygen supplementation (four times the theoretical oxygen requirement). The recovery rates of Li, Mn, Cu, Co, and Ni reached 94.1%, 93.5%, 97.6%, 94.4%, and 96.4%, respectively. This synergistic approach establishes an energy-efficient pathway for simultaneous multi-metal recovery, demonstrating industrial viability for large-scale lithium-ion battery recycling through minimized processing steps and maximized resource utilization. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 708
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

29 pages, 7261 KiB  
Review
Critical Pathways for Transforming the Energy Future: A Review of Innovations and Challenges in Spent Lithium Battery Recycling Technologies
by Zhiyong Lu, Liangmin Ning, Xiangnan Zhu and Hao Yu
Materials 2025, 18(13), 2987; https://doi.org/10.3390/ma18132987 - 24 Jun 2025
Cited by 1 | Viewed by 879
Abstract
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental [...] Read more.
In the wake of global energy transition and the “dual-carbon” goal, the rapid growth of electric vehicles has posed challenges for large-scale lithium-ion battery decommissioning. Retired batteries exhibit dual attributes of strategic resources (cobalt/lithium concentrations several times higher than natural ores) and environmental risks (heavy metal pollution, electrolyte toxicity). This paper systematically reviews pyrometallurgical and hydrometallurgical recovery technologies, identifying bottlenecks: high energy/lithium loss in pyrometallurgy, and corrosion/cost/solvent regeneration issues in hydrometallurgy. To address these, an integrated recycling process is proposed: low-temperature physical separation (liquid nitrogen embrittlement grinding + froth flotation) for cathode–anode separation, mild roasting to convert lithium into water-soluble compounds for efficient metal oxide separation, stepwise alkaline precipitation for high-purity lithium salts, and co-precipitation synthesis of spherical hydroxide precursors followed by segmented sintering to regenerate LiNi1/3Co1/3Mn1/3O2 cathodes with morphology/electrochemical performance comparable to virgin materials. This low-temperature, precision-controlled methodology effectively addresses the energy-intensive, pollutive, and inefficient limitations inherent in conventional recycling processes. By offering an engineered solution for sustainable large-scale recycling and high-value regeneration of spent ternary lithium ion batteries (LIBs), this approach proves pivotal in advancing circular economy development within the renewable energy sector. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

8 pages, 2364 KiB  
Article
Machine Learning-Based Methodology for Fast Assessment of Battery Health Status
by Woongchul Choi
Batteries 2025, 11(7), 236; https://doi.org/10.3390/batteries11070236 - 20 Jun 2025
Viewed by 508
Abstract
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early [...] Read more.
Global electric vehicle (EV) markets are rapidly expanding, and the efficient management of batteries has become increasingly important due to supply constraints of rare metals and other raw materials required for lithium-ion batteries. Accordingly, the reuse and recycling of used batteries from early EVs are emerging as key solutions. This study proposes a machine learning-based approach to rapidly and reliably estimate the static capacity of used batteries. While conventional methods require significant measurement time, this study demonstrates that accurate static capacity estimation is possible using only short-term partial discharge data (6 min under 1C-rate CC conditions) by leveraging an RNN (recurrent neural network) architecture specialized for time-series data processing. The proposed model achieves high prediction accuracy, with an average RMSE of 28.439 mAh, average MSE of 808.799 mAh2, average MAE of 13.049 mAh, and average R2 of 0.9993, while significantly reducing the evaluation time compared to conventional methods. This is expected to greatly enhance the efficiency and practicality of battery reuse and recycling processes. Full article
Show Figures

Figure 1

20 pages, 2139 KiB  
Article
Optimized Ammonia Leaching and Energy-Efficient Stripping for Lithium and Cobalt Recovery from Spent LiCoO2 Cathodes
by Aisulu Batkal, Kaster Kamunur, Lyazzat Mussapyrova, Bagdatgul Milikhat and Rashid Nadirov
Metals 2025, 15(7), 690; https://doi.org/10.3390/met15070690 - 20 Jun 2025
Viewed by 328
Abstract
This study investigates the optimization of an ammonia-based leaching process for the recovery of lithium and cobalt from spent LiCoO2 cathodes, coupled with an energy-efficient ammonia stripping approach. Kinetic analysis revealed that both lithium and cobalt extraction follow pseudo-first-order kinetics, with activation [...] Read more.
This study investigates the optimization of an ammonia-based leaching process for the recovery of lithium and cobalt from spent LiCoO2 cathodes, coupled with an energy-efficient ammonia stripping approach. Kinetic analysis revealed that both lithium and cobalt extraction follow pseudo-first-order kinetics, with activation energies of 76.54 kJ/mol and 97.22 kJ/mol, respectively, indicating a chemically controlled process. Optimal leaching conditions were established at 6 M NH3, 1.5 M (NH4)2CO3, liquid-to-solid ratio of 10:1, and 70 °C for 5 h, achieving 82.5% lithium and 96.1% cobalt recovery. The ammonia stripping process was optimized for energy efficiency, with operations at 95–98 °C providing the best balance between rapid NH3 removal and energy consumption. At 98 °C, energy demand was reduced to ~282 kJ/mol, a sevenfold improvement over lower temperature operations. A stepwise separation strategy was developed, involving selective lithium precipitation at pH 10.7–10.8, followed by controlled ammonia stripping to precipitate cobalt at pH 8.8–9.0. This integrated approach offers a promising alternative to conventional acid-based recycling methods, combining high metal recovery with improved energy efficiency and reagent recyclability. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop