Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = recycled fine fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4926 KB  
Article
Recycling Copper (Cu) from Waste Automotive Printed Circuit Boards (WPCBs) After Characterization and Liberation Study by Mineral Processing Techniques
by Mahsa Pourmohammad, Josep Oliva, Hernan Anticoi, Carlos Hoffmann Sampaio, Pura Alfonso, César Valderrama, Jose Luis Cortina and Percy Escalante
Minerals 2025, 15(12), 1259; https://doi.org/10.3390/min15121259 - 27 Nov 2025
Viewed by 945
Abstract
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and [...] Read more.
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and advanced characterization, WPCB boards were subjected to size reduction and then characterized through X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM-EDS), and mineral liberation analysis (MLA). Results indicated that copper is predominantly found in coarser particle sizes due to its ductility, while glass fibers and ceramics dominate finer fractions. Liberation studies revealed that Cu is essentially free in fine particles (<100 μm) but tends to remain locked in coarser fractions. Based on these results, gravity separation methods were employed to concentrate the copper: coarse particles (>300 μm) were treated on a shaking table, achieving a Cu recovery of 95%, while fine particles (<300 μm) were processed using a multi-gravity separator (MGS), with recoveries of 94% for 100 × 300 μm and 81.5% for <100 μm size fractions. This study presents a gravity-based separation strategy that combines shaking tables and MGS to optimize Cu recovery from automotive WPCBs. To the authors’ knowledge, the MGS application for WPCBs has received little attention, despite its strong potential for separating this type of waste. The proposed methodology enhances the concentration and purity of the metallic fraction (in this case, Cu), especially in fine particles, which are challenging to work with, while reducing environmental impacts through minimal chemical use, thereby contributing to sustainable e-waste recycling. Full article
Show Figures

Figure 1

15 pages, 1867 KB  
Article
Non-Anatomical Identification and Compositional Profiling of Processed Wood Using ATR-FTIR and Chemometric Modeling
by Olivia-Stella Salm, Jaan Kers and Maria Kulp
Analytica 2025, 6(4), 46; https://doi.org/10.3390/analytica6040046 - 12 Nov 2025
Viewed by 700
Abstract
In modern circular-economy value chains, wood is frequently processed into fines, chips, or powders—forms in which anatomical features are no longer visible, rendering traditional visual identification methods ineffective. This study introduces a rapid, non-destructive attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy approach, combined [...] Read more.
In modern circular-economy value chains, wood is frequently processed into fines, chips, or powders—forms in which anatomical features are no longer visible, rendering traditional visual identification methods ineffective. This study introduces a rapid, non-destructive attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy approach, combined with chemometric modeling, to address this challenge by enabling both the classification and compositional profiling of processed wood fractions. Using full-spectrum ATR-FTIR data, partial least squares discriminant analysis (PLS-DA) models achieved high-accuracy classification of wood by type, species, and provenance, with sensitivity and specificity reaching up to 1.00. In addition, PLS and backward interval BiPLS models predicted total lignin, acid-soluble lignin, and extractives with strong performance (R2 > 0.90, RPD > 2). Interval selection further enhanced prediction accuracy by reducing RMSEP by up to 30%, improving model stability for real-world application. By replacing slow, reagent-intensive wet chemistry with a rapid, green, and scalable technique, the presented methodology provides a valuable tool for authentication, quality control, and resource optimization when dealing with mechanically processed or recycled wood. Full article
(This article belongs to the Section Chemometrics)
Show Figures

Figure 1

31 pages, 5596 KB  
Article
Fly Ash as a Secondary Raw Material Improving the Sustainable Characteristics of a Conventional Silicoaluminate Refractory Castable
by Jesús Fernando López-Perales, Leonel Díaz-Tato, Sinuhe Uriel Costilla-Aguilar, Yadira González-Carranza, José Eulalio Contreras de León and Edén Amaral Rodríguez-Castellanos
Inorganics 2025, 13(11), 367; https://doi.org/10.3390/inorganics13110367 - 2 Nov 2025
Cited by 2 | Viewed by 810
Abstract
The global reliance on coal-fired power generation continues to produce vast quantities of fly ash, exceeding 500 million tons annually, with limited recycling rates. Given its high silica (SiO2) and alumina (Al2O3) contents, fly ash represents a [...] Read more.
The global reliance on coal-fired power generation continues to produce vast quantities of fly ash, exceeding 500 million tons annually, with limited recycling rates. Given its high silica (SiO2) and alumina (Al2O3) contents, fly ash represents a promising alternative raw material for sustainable refractory production. In this study, four aluminosilicate refractory castables were formulated using bauxite, calcined flint clay, kyanite, calcium aluminate cement, and microsilica, in which the fine fraction of flint clay was partially replaced by 0, 5, 10, and 15 wt.% fly ash. The specimens were dried at 120 °C and sintered at 850, 1050, and 1400 °C for 4 h. Their physical and mechanical properties were systematically evaluated, while phase evolution and microstructural development were analyzed through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results revealed that the incorporation of 10 wt.% fly ash (10FAC) provided the optimal balance between densification and strength, achieving compressive strengths of 45.0 MPa and 65.3 MPa after sintering at 1050 °C and 1400 °C, respectively. This improvement is attributed to the formation of a SiO2-rich liquid phase derived from fly ash impurities, which promoted the in-situ crystallization of acicular secondary mullite and enhanced interparticle bonding among corundum grains. The 10FAC castable also exhibited only a slight increase in apparent porosity (26.39%) compared with the reference (25.74%), indicating effective sintering without excessive vitrification. Overall, the study demonstrates the technical viability of using fly ash as a sustainable substitute for flint clay in refractory castables. The findings contribute to advancing circular economy principles by promoting industrial waste valorization and resource conservation, offering a low-carbon pathway for the development of high-performance refractory materials for structural and thermal applications in energy-intensive industries. Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Ceramic Matrix Composites)
Show Figures

Graphical abstract

32 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Viewed by 707
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

19 pages, 2576 KB  
Article
Ground Improvement Using Recycled Concrete Columns: A Case Study of Wind Turbine Foundation
by Katarzyna Markowska-Lech, Katarzyna Gabryś and Mariusz Lech
Buildings 2025, 15(20), 3752; https://doi.org/10.3390/buildings15203752 - 17 Oct 2025
Viewed by 695
Abstract
There is a growing global trend toward reducing the consumption of natural resources and newly produced construction materials by replacing them with secondary raw materials. Concrete derived from construction and demolition waste can be recycled multiple times and is considered environmentally sustainable. This [...] Read more.
There is a growing global trend toward reducing the consumption of natural resources and newly produced construction materials by replacing them with secondary raw materials. Concrete derived from construction and demolition waste can be recycled multiple times and is considered environmentally sustainable. This study evaluates the feasibility of reinforcing weak subsoil using crushed recycled concrete. Concrete obtained from the demolition of residential buildings was crushed under laboratory conditions to produce material with grain sizes corresponding to sands, and mixtures were subsequently prepared containing up to 30% fine fraction. The case study focuses on circular wind turbine foundations supported by symmetrically arranged columns made of four different materials, located beneath the foundation slab. The analyzed subsoil is characterized by strong stratification, low bearing capacity, and high compressibility. The calculation results indicate that the bearing capacity conditions for all foundations were met within similar ranges of the safety factor for the given loads, both for low- and high-power turbines. However, foundation deformations increased with turbine size and bending moments, and were nearly twice as large for recycled aggregates compared to recycled concrete. Numerical simulations demonstrate that recycled aggregate without fine fraction, as well as with fine fraction, and recycled concrete can provide load-bearing performance comparable to conventional concrete under low loading conditions, while offering significant environmental benefits. Full article
Show Figures

Figure 1

27 pages, 8857 KB  
Article
Second-Generation Recycled Concrete Aggregates: Comprehensive Characterization of Physical, Mechanical, and Microstructural Properties
by Farshad Ameri and Ildiko Merta
Recycling 2025, 10(5), 193; https://doi.org/10.3390/recycling10050193 - 15 Oct 2025
Viewed by 1282
Abstract
The rapid expansion of concrete production has intensified the depletion of natural aggregate (NA) resources, necessitating sustainable alternatives in the construction industry. Recycling construction and demolition (C&D) waste offers a solution to enhance environmental sustainability and resource efficiency. Most existing studies have mainly [...] Read more.
The rapid expansion of concrete production has intensified the depletion of natural aggregate (NA) resources, necessitating sustainable alternatives in the construction industry. Recycling construction and demolition (C&D) waste offers a solution to enhance environmental sustainability and resource efficiency. Most existing studies have mainly focused on first-generation RCAs (RCA1), with little work on second-generation RCAs (RCA2), especially fine fractions. This study examined the properties of recycled concrete aggregates (RCAs) across first and second recycling cycles, focusing on their upcycling potential. Therefore, commercially sourced NAs and RCA1 were compared with lab-produced RCA2, both coarse and fine, derived from further recycling of first-generation recycled aggregate concrete (RAC1). Comprehensive tests assessed morphology and physical, mechanical, and microstructural properties to provide a clear insight into how RCA2 differs from RCA1. Average sphericity for coarse RCA1 was 0.81, an 8% decrease from NA’s 0.88, while RCA2 had an average sphericity of 0.76, a 14% decrease. The results revealed a progressive decline in aggregate quality with each cycle. RCA1 exhibited water absorption of 9.53% (fine) and 5.55% (coarse), while RCA2 showed higher absorption at 13.16% (fine) and 6.88% (coarse). RCA1’s crushing value was 25.9%, a 41% rise over NA’s 18.09%, while RCA2’s reached 29.2%, a 61% increase. Coarse RCA2 contained 51.03% attached old mortar, 50% more than the 33.95% in RCA1. Fine RCA2 showed significant performance reductions, limiting these aggregates to non-structural downcycling applications. Microstructure analyses confirmed RCA2’s porous structure, attributed to increased adhered old mortar, including multiple weak interfaces, and numerous microcracks compared to RCA1, necessitating careful consideration when using coarse RCA2 for upcycling in sustainable construction. Full article
(This article belongs to the Topic Solid Waste Recycling in Civil Engineering Materials)
Show Figures

Figure 1

14 pages, 5404 KB  
Article
Emission Characteristics During the Co-Firing of Fine Coal and Refuse-Derived Fuel from Municipal Waste
by Zbigniew Jelonek and Przemysław Rompalski
Energies 2025, 18(20), 5414; https://doi.org/10.3390/en18205414 - 14 Oct 2025
Viewed by 660
Abstract
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, [...] Read more.
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, and effective waste management through sorting, recycling, and thermal conversion. Despite the increasing efficiency of recycling and the ever-lower quantities of waste delivered to waste dumps, the problem of the residual fraction remains unsolved. The portion of mixed municipal waste that cannot be recycled exhibits a high energy value. For this reason, it should be neither stored nor burnt in household boiler rooms, as doing so would constitute an environmental hazard. However, the waste can be used as an additive to fine coal in power boilers, provided that they are equipped with flue gas monitoring and purification systems. Tests involving proportionally prepared compositions of fine coal and refuse-derived fuel burnt in a laboratory boiler revealed a major variability in the flue gas parameters (physicochemical), depending on the applied proportions of the individual components. For instance, when burning a composition of 50% fine coal and 50% refuse-derived fuel, a reduction in CO2 emissions by about 12% was noted compared with that when burning fine coal exclusively. Furthermore, when burning refuse-derived fuel, an addition of 20% fine coal is enough to produce a 2.8% reduction in CO emission. Meanwhile, a composition of 80% fine coal and 20% refuse-derived fuel would reduce the emissions by 393 ppm. During the measurements, it was also noted that most of the measured parameters indicated a decrease in individual gas contents relative to the emissions obtained when burning fine coal or refuse-derived fuel exclusively. These relationships can be applied to prepare fuel compositions based on refuse-derived fuel and fine coal, depending on the power and flue gas purification capabilities of individual cogeneration systems. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

30 pages, 4727 KB  
Article
Modified Fine Recycled Concrete Aggregates with a Crystallizing Agent as Standard Sand Replacement in Mortar
by Daniel Suarez-Riera, Luca Lavagna, Devid Falliano, Giuseppe Andrea Ferro, Matteo Pavese, Jean-Marc Tulliani and Luciana Restuccia
Materials 2025, 18(17), 4208; https://doi.org/10.3390/ma18174208 - 8 Sep 2025
Viewed by 1310
Abstract
This study aimed to evaluate mortar performance by substituting part of standard sand with recycled fine aggregates sourced from concrete waste, aiming to assess mechanical properties and durability. Moreover, this study examined the use of crystallizing agents to understand their impact on mortar [...] Read more.
This study aimed to evaluate mortar performance by substituting part of standard sand with recycled fine aggregates sourced from concrete waste, aiming to assess mechanical properties and durability. Moreover, this study examined the use of crystallizing agents to understand their impact on mortar properties. Four mortar series were prepared with sand substitution percentages ranging from 25% to 100% while adhering to the diverse fraction proportions within the standardized sand particle size distribution. Mechanical results indicate that incorporating recycled concrete sand significantly enhances mechanical properties with respect to standard sand. The study showed the technical feasibility of producing mortars with up to 100% recycled fine concrete aggregate with enhanced compressive strength, albeit requiring higher superplasticizer dosages. The addition of crystallizing agents provided an increase in flexural strength in specific conditions, while they did not provide a significant improvement to compressive strength. Full article
Show Figures

Graphical abstract

20 pages, 2449 KB  
Article
From Waste to Resource: Circular Economy Approaches to Valorize Fine Glass, Ceramic, and Plastic Residues in a Glass Recycling Plant
by Ewa Siedlecka, Jarosław Siedlecki, Beniamin Bednarski and Szymon Białek
Sustainability 2025, 17(17), 7966; https://doi.org/10.3390/su17177966 - 4 Sep 2025
Cited by 1 | Viewed by 1552
Abstract
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine [...] Read more.
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine technological processes aimed at achieving a circular economy (CE) in the recycling of waste glass. Foam glass was made from the fine-grained, multicolored fraction of contaminated glass, an effective method for recycling glass waste at a low cost. A frothing system based on manganese oxide (MnO2) and silicon carbide (SiC) was proposed, and an optimum weight ratio of MnO2/SiC equal to 1.0 was determined. The possibility of controlling the process to achieve the desired foam glass densities was demonstrated. Statistical analysis was used to determine the effect of the MnO2/SiC ratio and MnO2 content on the density of the resulting foam glass products. Waste ceramics contaminated with different-colored glass were transformed into ceramic–glass granules. The characteristic temperature curve of the technological process was determined. The metal content in water extracts from ceramic–glass granules and pH value indicate their potential use for alkalizing areas degraded by industry and agriculture. Waste polyethylene-based plastics were converted into polyethylene waxes by thermal treatment carried out in two temperature ranges: low temperature (155–175 °C) and high temperature (optimum in 395 °C). The melting temperature range of the obtained waxes (95–105 °C) and their FTIR spectral characteristics indicate the potential application of these materials in the plastics and rubber industries. The integrated management of all material streams generated in the glass recycling process allowed for the development of a CE model for the glass recycling plant. Full article
Show Figures

Figure 1

26 pages, 4761 KB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Cited by 1 | Viewed by 739
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 5049 KB  
Article
Sustainable Mortar with Waste Glass and Fly Ash: Impact of Glass Aggregate Size and Life-Cycle Assessment
by Vimukthi Fernando, Weena Lokuge, Hannah Seligmann, Hao Wang and Chamila Gunasekara
Recycling 2025, 10(4), 133; https://doi.org/10.3390/recycling10040133 - 4 Jul 2025
Cited by 4 | Viewed by 1164
Abstract
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at [...] Read more.
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at 10%, 20%, and 30%. Three GFA size ranges were considered: <1.18 mm, 1.18–4.75 mm, and a combined fraction of <4.75 mm. At 100% replacement, <1.18 mm GFA reduced ASR expansion to 0.07%, compared to 0.2% for <4.75 mm and 0.46% for 1.18–4.75 mm GFA. It also improved long-term strength by 25% from 28 days to 6 months due to pozzolanic activity. However, refining GFA to below 1.18 mm increased environmental impacts and resulted in a 4.2% increase in energy demand due to the additional drying process. Incorporating 10% FA reduced ASR expansion to 0.044%, had no significant effect on strength, and decreased key environmental burdens such as toxicity by up to 18.2%. These findings indicate that FA utilisation offers greater benefits for ASR mitigation and environmental sustainability than further refining GFA size. Therefore, combining <4.75 mm GFA with 10% FA is identified as the optimal strategy for producing durable and sustainable mortar with recycled waste glass. Full article
Show Figures

Figure 1

30 pages, 3586 KB  
Article
Acoustic Analysis of Soundproofing Materials Using Recycled Rubber from Automobiles
by Miroslav Badida, Miriam Andrejiova, Miriama Pinosova and Marek Moravec
Materials 2025, 18(13), 3144; https://doi.org/10.3390/ma18133144 - 2 Jul 2025
Viewed by 1440
Abstract
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and [...] Read more.
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and the degree of compaction, with measurements performed using a model BSWA SW433 impedance tube in the frequency band 100–2500 Hz. Experimental samples of recycled rubber crumb were prepared with various thicknesses (2, 4.5, and 7 cm) and of various fractions (0–4 mm), and the granular samples were compacted under a pressure of 250–750 kPa. The results showed that the highest transmission loss (TL) is achieved by fine fractions at higher pressure and with greater sample thickness; Fraction 1 (below 1 mm) at a pressure of 750 kPa and a thickness of 7 cm had the best acoustic properties. Through regression analysis, mathematical models of the dependence of transmission loss on the monitored parameters for all types of samples (granular/compacted) were created. The regression analysis confirmed that the thickness, pressure, and size of the fraction significantly affect the acoustic properties of the material. Recycled rubber crumb therefore represents an efficient and environmentally sustainable alternative to traditional insulation materials, and optimizing its parameters enables a wide range of practical acoustic applications in construction, transport infrastructure, and manufacturing industries. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

22 pages, 5821 KB  
Article
Experimental Investigation on the Mechanical Properties of Geopolymer Recycled Aggregate Concrete Reinforced with Steel-Polypropylene Hybrid Fiber
by Lili Ma, Cheng Zhen, Qingxin Zeng and Biao Li
Buildings 2025, 15(10), 1723; https://doi.org/10.3390/buildings15101723 - 19 May 2025
Cited by 3 | Viewed by 1312
Abstract
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and [...] Read more.
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and multi-levels to synergistically improve its mechanical properties. This paper aims to investigate the mechanical properties of HFRGRAC with the parameters of steel fiber (SF) volume fraction (0%, 0.5%, 1%, 1.5%) and aspect ratio (40, 60, 80), polypropylene fiber (PF) volume fraction (0%, 0.05%, 0.1%, 0.15%), and RA substitution rate (0%, 25%, 50%, 75%, 100%) considered. Twenty groups of HFRGRAC specimens were designed and fabricated to evaluate the compressive splitting tensile strengths and flexural behavior emphasizing failure pattern, load–deflection curve, and toughness. The results indicated that adding SF enhances the specimen ductility, mechanical strength, and flexural toughness, with improvements proportional to SF content and aspect ratio. In contrast, a higher percentage of RA substitution increased fine cracks and reduced mechanical performance. Moreover, the inclusion of PF causes cracks to exhibit a jagged profile while slightly improving the concrete strength. The significant synergistic effect of SF and PF on mechanical properties of GRAC is observed, with SF playing a dominant role due to its high elasticity and crack-bridging capacity. However, the hydrophilic nature of SF combined with the hydrophobic property of PF weakens the bonding of the fiber–matrix interface, which degrades the concrete mechanical properties to some extent. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 6620 KB  
Article
Optimizing Recycled Tunnel Boring Machine (TBM)-Excavated Materials as Aggregates in Shotcrete Mix Design
by Wei Zhang, Rusheng Hao, Zhijun Men, Jingjing He, Yong Zhang and Wei Hu
Buildings 2025, 15(9), 1483; https://doi.org/10.3390/buildings15091483 - 27 Apr 2025
Viewed by 1161
Abstract
Tunnel Boring Machine (TBM) excavation materials were recycled by sieving and separating particles into sizes 5–10 mm (coarse aggregates) and below 5 mm (manufactured sand) to explore their potential as aggregates in shotcrete production, with the aim of reducing environmental harm from waste [...] Read more.
Tunnel Boring Machine (TBM) excavation materials were recycled by sieving and separating particles into sizes 5–10 mm (coarse aggregates) and below 5 mm (manufactured sand) to explore their potential as aggregates in shotcrete production, with the aim of reducing environmental harm from waste disposal. Mix proportion experiments were conducted to evaluate the mechanical properties—including failure patterns, compressive strength, flexural strength, and deflection—of the shotcrete specimens through cubic axial compression and four-point bending tests; furthermore, rebound tests were conducted on shotcrete mixed with the recycled TBM aggregates in foundation pit engineering. These tests assessed the effects of key parameters (water–binder ratio, sand ratio, fly ash content, synthetic fibers, and liquid alkali-free accelerator) on shotcrete composed of recycled TBM sand and gravel. The results indicated that crushing and grading flaky TBM-excavated rock fragments, and subsequently blending them with pre-screened fine aggregates in a 4:1 ratio, yielded manufactured sand with an optimized particle gradation and controlled stone powder content (18%). Adjusting the water–binder ratio (0.4–0.5), fly ash dosage (mixed with 0–20%), and sand ratio (0.5–0.6) are feasible steps in preparing shotcrete with a compressive strength of 29.1 MPa to 50.4 MPa and slump of 9 cm to 20 cm. Moreover, the rebound rate of the shotcrete reached 11.3% by applying polyoxymethylene (POM) fibers with a 0.15% volume fraction and a liquid-state alkali-free setting accelerator (8% dosage), demonstrating that the implemented approach enables a decrease in the rebound rate of shotcrete. Full article
Show Figures

Figure 1

26 pages, 4313 KB  
Review
Enhancing Concrete Sustainability: A Critical Review of the Performance of Recycled Concrete Aggregates (RCAs) in Structural Concrete
by Alireza Alibeigibeni, Flavio Stochino, Marco Zucca and Fernando López Gayarre
Buildings 2025, 15(8), 1361; https://doi.org/10.3390/buildings15081361 - 19 Apr 2025
Cited by 22 | Viewed by 10069
Abstract
In the context of sustainable construction, recycled concrete aggregates (RCAs), including both fine and coarse fractions derived from construction and demolition waste (CDW), are gaining traction due to their potential to mitigate environmental impacts by reducing reliance on natural aggregates and minimizing waste. [...] Read more.
In the context of sustainable construction, recycled concrete aggregates (RCAs), including both fine and coarse fractions derived from construction and demolition waste (CDW), are gaining traction due to their potential to mitigate environmental impacts by reducing reliance on natural aggregates and minimizing waste. This paper provides a comprehensive review of the effects of RCAs on the mechanical and durability properties of concrete, including compressive and tensile strengths, modulus of elasticity, and resistance to environmental degradation. The review highlights that the presence of adhered mortar and higher porosity in RCAs generally leads to reduced mechanical performance and durability. However, pretreatment methods—mechanical, chemical, and thermal—along with optimized mix designs and the use of supplementary cementitious materials (SCMs) have shown to significantly improve the concrete properties of RCAs. Additionally, recent studies on carbon dioxide (CO2) capture through the accelerated carbonation of RCAs offer promising environmental benefits. Life cycle assessment (LCA) analyses reveal reductions in energy use, CO2 emissions, and material costs when RCAs are properly processed and locally sourced. Despite challenges related to RCA quality variability, the review identifies pathways for the effective use of RCAs in structural applications. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

Back to TopTop