Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = recycled diatomites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Viewed by 182
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

19 pages, 7033 KiB  
Article
Study on Demulsification via Vacuum Filtration with Superamphiphilic Diatomite/G-C3N4/Rice Husk Charcoal Composite Filter Layer
by Yue Wang, Tianxin Chen, Yu Jia, Feng Qin, Junhui Gao, Xingyang Zhang, Jiahong He and Jian He
Nanomaterials 2025, 15(5), 344; https://doi.org/10.3390/nano15050344 - 22 Feb 2025
Viewed by 1039
Abstract
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To [...] Read more.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid. In this study, a composite filtration layer with superhydrophilic and superoleophilic properties was successfully prepared using water-based polyurethane as a binder. The g-C3N4 was used to improve the affinity of the filtration layer to water and oil. The diatomite and rice husk carbon were used as an adsorbent and a filter aid, respectively. The contact angles (CA) of both oil and water on the surface of the filtration layer were measured to be 0°. During the demulsification process, vacuum filtration was employed to increase the pressure difference across the filtration layer, thereby improving the treatment flux of flowback fluid. The experimental results showed that the filtration flux with the addition of rice husk charcoal increased from 160.58 L∙m−2∙h−1 to 174.68 L∙m−2∙h−1 compared to the filter layer without rice husk charcoal. Based on the composite filtration layer, the apparent demulsification efficiency exceeded 90.6% for various types of emulsion. The mechanism of demulsification was investigated by the molecular dynamics method. The results showed that the adsorption layer density of water molecules reached 1.5 g/cm3, and the adsorption layer density of oil molecules exceeded 2.5 g/cm3. The porous structure wall has a strong adsorption effect on both oil and water molecules, resulting in deformation and destruction of the oil–water interface, so that the dispersed phase is adsorbed and aggregated by the filter layer at the same time and permeates from the filter layer after reaching saturation, thus separating the two phases. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 3139 KiB  
Article
Properties of Cement-Based Materials Incorporating Ground-Recycled Diatom
by Carlos Rodriguez, Fernando Fernandez, Roberto Rodriguez, Marina Sanchez, Pablo Gómez, Felipe Martí, Miriam Hernández, Isabel Miñano, Carlos Parra, Francisco Benito and Irene Beleña
Crystals 2024, 14(12), 1030; https://doi.org/10.3390/cryst14121030 - 28 Nov 2024
Viewed by 1115
Abstract
This research investigates the use of recycled diatomaceous earth (diatomite) from the wine, beer, and oil industries as supplementary cementitious materials in cement-based mixtures. This study aims to reduce embodied energy and promote circular economy practices by incorporating these industrial by-products. The research [...] Read more.
This research investigates the use of recycled diatomaceous earth (diatomite) from the wine, beer, and oil industries as supplementary cementitious materials in cement-based mixtures. This study aims to reduce embodied energy and promote circular economy practices by incorporating these industrial by-products. The research evaluates the compressive strength, durability, and pozzolanic activity of the mixtures over 7, 28, and 90 days of hydration. The results demonstrate that uncalcined diatoms from wine and oil showed lower compressive strength than natural diatomite, whereas calcination at 500 °C significantly improved performance. Beer diatoms exhibited the lowest mechanical strength because of the organic matter content in their composition. The incorporation of quicklime failed to induce pozzolanic activity in uncalcined diatoms; however, calcination at 500 °C led to improved long-term performance, highlighting the importance of heat treatment for activating diatoms’ pozzolanic properties. This study concludes that recycled diatoms, particularly when calcined, have potential as sustainable cementitious materials. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

14 pages, 5204 KiB  
Article
Application of Sustainable Wood-Plastic Composites in Energy-Efficient Construction
by Yeng-Fong Shih, Chun-Wei Chang, Teng-Hsiang Hsu and Wei-Yi Dai
Buildings 2024, 14(4), 958; https://doi.org/10.3390/buildings14040958 - 1 Apr 2024
Cited by 7 | Viewed by 2879
Abstract
Wood–plastic composites (WPCs), abbreviated as WPCs, are typically composite materials made by mixing wood flour and thermoplastic resins, and then shaped through processes such as extrusion or compression. They have emerged as a viable and advanced alternative to traditional wood and plastic materials, [...] Read more.
Wood–plastic composites (WPCs), abbreviated as WPCs, are typically composite materials made by mixing wood flour and thermoplastic resins, and then shaped through processes such as extrusion or compression. They have emerged as a viable and advanced alternative to traditional wood and plastic materials, offering an amalgamation of the best properties of both. This study utilized discarded milk bottles as the polymer matrix (mainly composed of high-density polyethylene, HDPE) and added wood flour, recycled protective clothing (Tyvek®), and diatomite recycled from brewery waste as reinforcement. Additionally, pre-treated aluminum hydroxide powder from waste artificial marble was added. The results indicated that the optimal processing temperature for the WPCs was 175 °C. The mechanical properties of the material increased with the addition of recycled protective clothing and pre-treated aluminum hydroxide powder. The increase in tensile strength can reach up to 28%. The thermal conductivity of the WPCs also significantly increased with the addition of pre-treated aluminum hydroxide powder. Furthermore, sunlight analysis showed that the surface temperature of the WPCs decreased by approximately 8.5 °C, which corresponds to a reduction of 13% after adding pre-treated aluminum hydroxide powder. Therefore, they can be applied to outdoor cool WPCs to reduce the risk of foot burns or used as roof heat-insulating layers to reduce indoor air conditioning usage, achieving energy-saving and carbon reduction. This study demonstrates that high-performance and high-value green plastics made from various recycled materials can contribute to the goals of a circular economy and sustainable carbon reduction. Full article
Show Figures

Figure 1

13 pages, 4417 KiB  
Article
Diatomite-Based Recyclable and Green Coating for Efficient Radiative Cooling
by Jing Lu, Yile Fan, Xing Lou, Wei Xie, Binyuan Zhao, Han Zhou and Tongxiang Fan
Biomimetics 2024, 9(1), 50; https://doi.org/10.3390/biomimetics9010050 - 13 Jan 2024
Cited by 4 | Viewed by 2613
Abstract
Radiative cooling is a promising strategy to address energy challenges arising from global warming. Nevertheless, integrating optimal cooling performance with commercial applications is a considerable challenge. Here, we demonstrate a scalable and straightforward approach for fabricating green radiative cooling coating consisting of methyl [...] Read more.
Radiative cooling is a promising strategy to address energy challenges arising from global warming. Nevertheless, integrating optimal cooling performance with commercial applications is a considerable challenge. Here, we demonstrate a scalable and straightforward approach for fabricating green radiative cooling coating consisting of methyl cellulose matrix-random diatomites with water as a solvent. Because of the efficient scattering of the porous morphology of diatomite and the inherent absorption properties of both diatomite and cellulose, the aqueous coating exhibits an excellent solar reflectance of 94% in the range of 0.25–2.5 μm and a thermal emissivity of 0.9 in the range of 8–14 µm. During exposure to direct sunlight at noon, the obtained coating achieved a maximum subambient temperature drop of 6.1 °C on sunny days and 2.5 °C on cloudy days. Furthermore, diatomite is a naturally sourced material that requires minimal pre-processing, and our coatings can be prepared free from harmful organic compounds. Combined with cost-effectiveness and environmental friendliness, it offers a viable path for the commercial application of radiative cooling. Full article
(This article belongs to the Special Issue Bioinspired Photonic Materials for Optical and Thermal Manipulation)
Show Figures

Figure 1

21 pages, 8472 KiB  
Article
Effects of Processing Conditions on the Properties of Porous Diatomite Granules Prepared by Sodium Alginate Gelation
by Maria Dolores Sosa Lucio, Eun-Ji Oh, Jang-Hoon Ha, Jongman Lee, Hong-Joo Lee and In-Hyuck Song
Appl. Sci. 2023, 13(16), 9474; https://doi.org/10.3390/app13169474 - 21 Aug 2023
Cited by 8 | Viewed by 1907
Abstract
The proper application of millimeter-sized spherical porous ceramic supports in catalytic operations relies on their ease of handling, convenient separation, recyclability, high-catalyst-solid loading, and the optimum mass transfer of reactants and products. However, common granulation techniques of spherical carriers entail complex liquid-phase-based processes [...] Read more.
The proper application of millimeter-sized spherical porous ceramic supports in catalytic operations relies on their ease of handling, convenient separation, recyclability, high-catalyst-solid loading, and the optimum mass transfer of reactants and products. However, common granulation techniques of spherical carriers entail complex liquid-phase-based processes under severe conditions and the use of toxic or expensive reagents. The present study discusses the manufacturing of porous ceramic granules derived from an inexpensive silica source (diatomite, solid network) and a biopolymer cross-linked by ion exchange (sodium alginate, patterning structure). The results indicated that, with fixed granulation conditions, porous diatomite granules with a sphericity of approximately 0.9 could be successfully obtained by optimization of the diatomite/sodium alginate dispersion to a 30.07 wt.% solid content and 1560 mPa·s viscosity (at ~0.3 s−1). Moreover, the described manufacturing process was proven effective in developing hierarchically porous diatomite granules that were heat-treated at 1200 °C with high sphericity (~0.9), acceptable compressive strength (5.17 ± 0.31 MPa), and porosity features (total porosity: 69.0 ± 2.9%, macropore size: 2.777 μm, mesopore size: 35.34 nm), establishing them as well-matched support materials for either catalytic or adsorption applications. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

19 pages, 7953 KiB  
Article
Integrated Nanostructures of TiO2/g-C3N4/Diatomite Based on Low-Grade Diatomite as Efficient Catalyst for Photocatalytic Degradation of Methylene Blue: Performance and Mechanism
by Junxia Zhou, Liang Cheng, Zhijun Ma, Xingyuan Weng and Jing Gao
Catalysts 2023, 13(5), 796; https://doi.org/10.3390/catal13050796 - 24 Apr 2023
Cited by 6 | Viewed by 1911
Abstract
The comprehensive utilization of low-grade diatomite resources and the effective treatment of printing and dyeing wastewater have attracted widespread attention. The combined scrubbing-magnetic separation-acid leaching-roasting process was used to increase the SiO2 content from 59.22% to 86.93%, reduce the Al2O [...] Read more.
The comprehensive utilization of low-grade diatomite resources and the effective treatment of printing and dyeing wastewater have attracted widespread attention. The combined scrubbing-magnetic separation-acid leaching-roasting process was used to increase the SiO2 content from 59.22% to 86.93%, reduce the Al2O3 content from 18.32% to 6.75%, and reduce the Fe2O3 content from 6.85% to 1.24% in the low-grade diatomite from Heilongjiang, China. The TiO2/g-C3N4/diatomite nanocomposite was prepared by a facile ultrasonic-thermal polymerization method. In this ternary structure, diatomite skeleton effectively increased the surface area with abundant adsorption sites, prevented g-C3N4 from restacking, and facilitated the separation of electrons and holes via the formation of TiO2/g-C3N4 heterojunctions. The degradation rate was 98.77%, 90.59%, and 89.16% for the three catalytic reaction cycles of the MB solution, respectively. The composite showed a high degradation rate of the MB solution after three cycles, which indicated that the composite had good recyclability. Through the free radical capture test, it was elucidated that O2·, h+, and ·OH all played a role in the photocatalytic reaction of the TiO2/g-C3N4/diatomite to the MB solution, in which O2· was mainly responsible for the photocatalytic oxidation mechanism, and the reaction kinetics were further investigated. This nanostructured TiO2/g-C3N4/diatomite composite has fascinating visible light catalytic activity and excellent stability. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

17 pages, 2601 KiB  
Article
Preparation and Superstrong Adsorption of a Novel La(Ⅲ)-Crosslinked Alginate/Modified Diatomite Macroparticle Composite for Anionic Dyes Removal from Aqueous Solutions
by Yuting Zhao and Beigang Li
Gels 2022, 8(12), 810; https://doi.org/10.3390/gels8120810 - 10 Dec 2022
Cited by 27 | Viewed by 2300
Abstract
In order to solve the problem of dye pollution of the water environment, a green macroparticle composite (CPAM-Dia/SA-La) as a bioadsorbent was prepared through a sodium alginate (SA) reaction with a polyacrylamide (CPAM)-modified diatomite (Dia) and further La(III) ion crosslinking polymerization, and characterized [...] Read more.
In order to solve the problem of dye pollution of the water environment, a green macroparticle composite (CPAM-Dia/SA-La) as a bioadsorbent was prepared through a sodium alginate (SA) reaction with a polyacrylamide (CPAM)-modified diatomite (Dia) and further La(III) ion crosslinking polymerization, and characterized by various analytical methods. The important preparation and adsorption conditions of the composite were explored by the adsorption of Acid blue 113 (AB 113) and Congo red (CR) dyes. The dye adsorption efficiency was evaluated. The results show that CPAM-Dia/SA-La composite prepared under the optimized conditions displays superstrong adsorption capacities of 2907 and 1578 mg/g for AB 113 and CR and almost 100% removal efficiency within 60 min adsorption time at pH 2.0 and 298 K, and they decrease slightly with the pH increase to 10. The fitting of equilibrium data to the Langmuir model is the best and the adsorption kinetic processes can be expressed by the Pseudo-second-order kinetic model. The adsorption processes are both spontaneous and exothermic. The analysis results of FT−IR and XPS revealed that the superstrong adsorption of CPAM-Dia/SA-La for dyes. The composite adsorbed by the dye can be recycled. CPAM-Dia/SA-La is a promising biosorbent for dye wastewater treatment. Full article
Show Figures

Graphical abstract

18 pages, 6940 KiB  
Article
3D Natural Mesoporous Biosilica-Embedded Polysulfone Made Ultrafiltration Membranes for Application in Separation Technology
by Murali Krishna Paidi, Veerababu Polisetti, Krishnaiah Damarla, Puyam Sobhindro Singh, Subir Kumar Mandal and Paramita Ray
Polymers 2022, 14(9), 1750; https://doi.org/10.3390/polym14091750 - 26 Apr 2022
Cited by 10 | Viewed by 3519
Abstract
Diatoms are the most abundant photosynthetic microalgae found in all aquatic habitats. In the extant study, the spent biomass (after lipid extraction) of the centric marine diatom Thalassiosira lundiana CSIRCSMCRI 001 was subjected to acid digestion for the extraction of micro composite inorganic [...] Read more.
Diatoms are the most abundant photosynthetic microalgae found in all aquatic habitats. In the extant study, the spent biomass (after lipid extraction) of the centric marine diatom Thalassiosira lundiana CSIRCSMCRI 001 was subjected to acid digestion for the extraction of micro composite inorganic biosilica. Then, the resulting three-dimensional mesoporous biosilica material (diatomite) was used as a filler in polysulfone (PSF) membrane preparation by phase inversion. The fabricated PSF/diatomite composite membranes were characterized by SEM-EDX, TGA, and ATR-IR, and their performances were evaluated. The number of pores and pore size were increased on the membrane surface with increased diatomite in the composite membranes as compared to the control. The diatomite composite membranes had high hydrophilicity and thermal stability, lower surface roughness, and excellent water permeability. Membranes with high % diatomite, i.e., PSF/Dia0.5, had a maximum water flux of 806.8 LMH (Liter/m2/h) at 20 psi operating pressure. High-diatomite content membranes also exhibited the highest rejection of BSA protein (98.5%) and rhodamine 6G (94.8%). Similarly, in biomedical rejection tests, the PSF/Dia0.5 membrane exhibited a maximum rejection of ampicillin (75.84%) and neomycin (85.88%) at 20 Psi pressure. In conclusion, the mesoporous inorganic biosilica material was extracted from spent biomass of diatom and successfully used in filtration techniques. The results of this study could enhance the application of natural biogenic porous silica materials in wastewater treatment for water recycling. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Graphical abstract

19 pages, 12212 KiB  
Article
Preparation of Graphene Oxide Composites and Assessment of Their Adsorption Properties for Lanthanum (III)
by Jie Zhou, Xiaosan Song, Boyang Shui and Sanfan Wang
Coatings 2021, 11(9), 1040; https://doi.org/10.3390/coatings11091040 - 29 Aug 2021
Cited by 5 | Viewed by 3041
Abstract
In this study, graphene oxide (GO) was prepared using the improved Hummers’ method, and GO was carboxylated and modified into hydroxylated graphene oxide (GOH). Diatomaceous earth (DE), which exhibits stable chemical properties, a large specific surface area, and high porosity, as well as [...] Read more.
In this study, graphene oxide (GO) was prepared using the improved Hummers’ method, and GO was carboxylated and modified into hydroxylated graphene oxide (GOH). Diatomaceous earth (DE), which exhibits stable chemical properties, a large specific surface area, and high porosity, as well as chitosan/magnetic chitosan, was loaded by solution blending. Subsequently, carboxylated graphene oxide/diatomite/chitosan (GOH/DCS) and carboxylated graphene oxide/diatomite/magnetic chitosan (GOH/DMCS) composites were prepared through simple solid–liquid separation. The results showed that the modified GOH/DCS and GOH/DMCS composites could be used to remove lanthanum La(III)), which is a rare earth element. Different factors, such as initial solution concentration, pH of the solution, adsorbent dosage, adsorption contact time, and adsorption reaction temperature, on adsorption, were studied, and the adsorption mechanism was explored. An adsorption–desorption recycling experiment was also used to evaluate the recycling performance of the composite material. The results show that at the initial solution concentration of 50 mg·g−1, pH = 8.0, 3 g·L−1 adsorbent dosage, reaction temperature of 45 °C, and adsorption time of 50 min, the adsorption effect is the best. The adsorption process is more in line with the pseudo-second-order kinetic model and Langmuir model, and the internal diffusion is not the only controlling effect. The adsorption process is an endothermic and spontaneous chemical adsorption process. The maximum adsorption capacity of GOH/DMCS for La(III) at 308K is 302.51 mg/g through model simulation. After four adsorption–desorption cycles, the adsorption capacity of the GOH/DMCS composite for La(III) initially exceeded 74%. So, GOH/DMCS can be used as a reusable and efficient adsorbent. Full article
(This article belongs to the Special Issue Natural Fiber Based Composites II)
Show Figures

Figure 1

13 pages, 2858 KiB  
Article
Properties of Precast Concrete Using Food Industry-Filtered Recycled Diatoms
by Carlos Rodriguez, Isabel Miñano, Carlos Parra, Pedro Pujante and Francisco Benito
Sustainability 2021, 13(6), 3137; https://doi.org/10.3390/su13063137 - 12 Mar 2021
Cited by 8 | Viewed by 2517
Abstract
The concrete industry is under increasing pressure to reduce greenhouse gas emissions. An immediate solution is to minimize the amount of Portland cement used by partially substituting other supplementary cementitious materials. This article presents the results of an experimental campaign on the influence [...] Read more.
The concrete industry is under increasing pressure to reduce greenhouse gas emissions. An immediate solution is to minimize the amount of Portland cement used by partially substituting other supplementary cementitious materials. This article presents the results of an experimental campaign on the influence of replacing Portland cement with both calcined and uncalcined diatomites from the filtration of beer and wine in the production of elements made of vibro-pressed pre-cast concrete, such as pipes. Additionally, a natural diatomite is used. The mechanical properties, capillary water absorption, carbonation, and chloride ingress are tested. The results obtained show the possibility of using natural and recycled diatomites on an industrial scale, which can improve even the long term properties of prepared precast concrete. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

20 pages, 4102 KiB  
Article
High and Low Temperature Performance and Fatigue Properties of Silica Fume/SBS Compound Modified Asphalt
by Xuewen Zheng, Wenyuan Xu, Huimin Feng and Kai Cao
Materials 2020, 13(19), 4446; https://doi.org/10.3390/ma13194446 - 7 Oct 2020
Cited by 18 | Viewed by 2729
Abstract
In order to study the high and low temperature properties, and fatigue properties, of silica fume/SBS (Styrene-Butadiene-Styrene) compound modified asphalt (SFSCMA), dynamic shear rheometer (DSR) and bending beam rheometer (BBR) are used to study matrix asphalt (MA), silica fume modified asphalt (SFMA) (silica [...] Read more.
In order to study the high and low temperature properties, and fatigue properties, of silica fume/SBS (Styrene-Butadiene-Styrene) compound modified asphalt (SFSCMA), dynamic shear rheometer (DSR) and bending beam rheometer (BBR) are used to study matrix asphalt (MA), silica fume modified asphalt (SFMA) (silica fume (SF) 6%), SBS modified asphalt (SBSMA) (mass ratio of SBS to Matrix asphalt 4%), and silica fume/SBS compound modified asphalt, and the high temperature rheological properties of silica fume/SBS compound modified asphalt with different silica fume additions are also studied. The modification mechanism of SFSCMA was studied by scanning electron microscope (SEM). The investigation results turn out: along with the increase in the content of SF, the high temperature performance of SFSCMA is improved significantly. When the content of SF is 6%, the high temperature performance is the best. When the content of SF is more than 6%, the high temperature property of SFSCMA is lower than that of SBSMA. It is suggested to choose 6% as the content of SF. Compared with MA, SFMA, and SBSMA, SFSCMA has excellent high temperature performance; compared with MA and SFMA, the low temperature performance of SFSCMA is improved, but it is worse than that of SBSMA. Moreover, when the temperature is lower than −30 °C, its low temperature performance is close to that of MA, or even worse than that of MA. After the compound modification of SF and SBSMA, the fatigue properties of the asphalt are improved, and the fatigue performance of SFSCMA is the best among the four kinds of asphalt. There is a cross-linking force in the network structure of SFSCMA, which restrains the flow of the whole system, so that the stability of the compound modified asphalt is significantly improved, which is favorable to the high temperature performance and fatigue resistance of the compound modified asphalt. However, due to its low mobility, it has a negative impact on the low temperature performance of the compound modified asphalt. In addition, according to previous studies, compared with diatomite, it is proven that SF can reach the same level as diatomite in improving the high temperature performance and fatigue performance of asphalt. Therefore, SF can be used as a good choice of asphalt modifier and can achieve the purpose of waste recycling and environmental protection. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 2437 KiB  
Article
Fabrication of Diatomite/Silicalite-1 Composites and Their Property for VOCs Adsorption
by Yutong Liu and Tao Tian
Materials 2019, 12(4), 551; https://doi.org/10.3390/ma12040551 - 13 Feb 2019
Cited by 37 | Viewed by 4066
Abstract
Adsorption technology is an effective method to remove volatile organic compounds (VOCs). In this work, we prepared hierarchical porous materials using modified diatomite (Dt) as a support and nano-sized silicalite-1 (S-1) seeds as inorganic fillers, which were applied to adsorb volatile organic compounds [...] Read more.
Adsorption technology is an effective method to remove volatile organic compounds (VOCs). In this work, we prepared hierarchical porous materials using modified diatomite (Dt) as a support and nano-sized silicalite-1 (S-1) seeds as inorganic fillers, which were applied to adsorb volatile organic compounds (VOCs). The characterization of the composites indicated that S-1 was successfully coated onto the surface of modified Dt, and the best surface area of the composites was 398.8 m2/g, nearly 40 times as large as Dt. The adsorption capacities of Dt/S-1 composites for three probe VOCs (ethyl acetate, acetone, and toluene) were rather superior to Dt, and the composites had preferential adsorption selectivity for ethyl acetate. Effects of seeded zeolite contents and hydrothermal conditions for the adsorption capacity of composites were discussed in this paper. The composite seeded with 5 wt% S-1 zeolite, which was subsequently synthesized by hydrothermal reaction at 100 °C for four days, showed the maximum adsorption capacity (1.31 mmol/g for ethyl acetate). The pseudo second-order model provided a perfect fit to adsorption kinetics, while the Langmuir model agreed the best with the adsorption isotherms. In addition, the composites had selective adsorption to ethyl acetate among these three probes VOCs. The regeneration experiments were also carried out, and the adsorption efficiency of the adsorbents was still up to 67% after five adsorption–desorption cycles. The hierarchical porous Dt/S-1 composites have an excellent VOC adsorption performance, satisfactory selectivity, and recycling ability. Full article
Show Figures

Figure 1

11 pages, 5109 KiB  
Article
Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation
by Lu Cai, Jiuyan Gong, Jianshe Liu, Hailong Zhang, Wendong Song and Lili Ji
Materials 2018, 11(2), 267; https://doi.org/10.3390/ma11020267 - 9 Feb 2018
Cited by 26 | Viewed by 4715
Abstract
In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the [...] Read more.
In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation. Full article
Show Figures

Figure 1

Back to TopTop