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Abstract: Adsorption technology is an effective method to remove volatile organic compounds
(VOCs). In this work, we prepared hierarchical porous materials using modified diatomite (Dt) as
a support and nano-sized silicalite-1 (S-1) seeds as inorganic fillers, which were applied to adsorb
volatile organic compounds (VOCs). The characterization of the composites indicated that S-1 was
successfully coated onto the surface of modified Dt, and the best surface area of the composites
was 398.8 m2/g, nearly 40 times as large as Dt. The adsorption capacities of Dt/S-1 composites
for three probe VOCs (ethyl acetate, acetone, and toluene) were rather superior to Dt, and the
composites had preferential adsorption selectivity for ethyl acetate. Effects of seeded zeolite contents
and hydrothermal conditions for the adsorption capacity of composites were discussed in this paper.
The composite seeded with 5 wt% S-1 zeolite, which was subsequently synthesized by hydrothermal
reaction at 100 ◦C for four days, showed the maximum adsorption capacity (1.31 mmol/g for ethyl
acetate). The pseudo second-order model provided a perfect fit to adsorption kinetics, while the
Langmuir model agreed the best with the adsorption isotherms. In addition, the composites had
selective adsorption to ethyl acetate among these three probes VOCs. The regeneration experiments
were also carried out, and the adsorption efficiency of the adsorbents was still up to 67% after five
adsorption–desorption cycles. The hierarchical porous Dt/S-1 composites have an excellent VOC
adsorption performance, satisfactory selectivity, and recycling ability.
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1. Introduction

Due to fast urbanization and industrialization, the emissions of volatile organic compounds
(VOCs) have increased dramatically over the last decade and have received considerable attention
because of the severe environmental hazards they create [1]. The term VOCs refers to organic
compounds that have a saturated vapor pressure greater than 133.3 Pa at room temperature and
a boiling point that varies from 50 ◦C to 260 ◦C [2]. VOCs discharged into the atmosphere could
become precursors of ozone and secondary organic aerosols by taking part in photochemical reactions
with nitrogen oxides under sunlight. The harmful products could furthermore induce photochemical
smog and haze and cause serious implications for human health and activities [3].

A number of studies have indicated the effectiveness of VOC removal by adsorption technology.
The most frequently used materials for the capture of VOCs are porous substances with large surface
areas and pore volume such as zeolites [4], resins [5] and activated carbons together with their
derivatives [6–9]. It has been demonstrated that zeolites are desirable materials for the removal of
hydrocarbons because of their “tailor-made” physico-chemical properties [10], together with their
high thermal and chemical stability and renewable ability [11]. However, most zeolites have a strong
hydrophilic function, resulting in water molecules taking up the adsorption sites of organic molecules.
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It has been found that pure silica zeolites tend to be hydrophobic, such as nano-sized silicalite-1 (S-1)
of MFI-type zeolite [12]. Nevertheless, two major issues still exist in the application of nano S-1 as
adsorbents. On the one hand, the cellular structure of zeolite leads to their adsorption to only a certain
size of small organic molecules, which is difficult to meet the actual needs of industries. On the other
hand, nanoparticle agglomeration might reduce the effective surface area and lower the adsorption
capacity [13–15].

Diatomite (Dt) is a natural siliceous rock composed of microfossils of aquatic algae called
diatoms [16,17]. Dt is abundant in China with low cost, a unique macroporous structure (50–800
nm), and high thermal stability [18]. However, raw Dt exhibits a relatively low adsorption capacity
due to its poor surface area. Proper modification would significantly improve the surface properties
of raw Dt, considering that raw Dt could be a suitable carrier material [19]. Anderson et al. [20]
synthesized a composite by loading S-1 seeds onto Dt. The obtained composite showed a low specific
surface area (SBET, 29.2 m2/g) and micropore volume (Vmicropore, 0.01 cm3/g). Yuan et al. [21] reported
that a hierarchically porous Dt/S-1 composite for benzene adsorption was fabricated via a facile
pre-modification in situ synthesis route. The surface area and micropore volume of the composite were
improved a lot, however, in situ synthesis without crystal seeds has its limitations such as uneven load
and active components easily draining away. Furthermore, as for the application of Dt/S-1 on VOC
adsorption, it is of great significance to explore multi-component and competitive adsorption of VOCs.

In this study, the highly dispersed nano S-1 modified Dt (Dt/S-1) for VOC adsorption was
synthesized by a pre-modification and two-step crystallization method. This kind of method could
make zeolites grow regularly around S-1 seeds on the surface of Dt, which may avoid zeolites blocking
up large pores of Dt at the same time. The adsorbents were characterized by X-ray diffraction
(XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analysis. Different
preparation conditions such as doping ratio, hydrothermal temperature and hydrothermal time were
investigated. Acetone, ethyl acetate, and toluene were used as probe adsorbates to systematically
evaluate the adsorption performance of the obtained Dt/S-1 composite. Single-component and
multi-component adsorption experiments were exhibited as a comparison. Adsorption kinetics,
isotherms and selectivity were included as adsorption assessments. Additionally, the regeneration of
the adsorbents was also discussed in this paper.

2. Materials and Methods

2.1. Chemicals

The synthesis of S-1 zeolite seeds was conducted from a mother solution containing
tetraethylorthosilicate, (TEOS, 98%, Alfa Aesar), tetrapropylammonium hydroxide (TPAOH, 20 wt%
in water, Alfa Aesar) and ultrapure water. Raw Dt powders were obtained from the Changbai deposit
in Jilin Province, China. Hydrochloric acid (Beijing Chemical Plant), sodium hydrate (NaOH, Beijing
Chemical Plant), and polydiallyldimethylammonium chloride (PDDA, 20 wt% in water, Alfa Aesar)
were used to modify Dt. Three organic compounds were selected as the probe adsorbates. Acetone
(CH3COCH3), ethyl acetate (CH3COOC2H5), and toluene (CH3C6H5) were purchased from Beijing
Chemical Plant.

2.2. Preparation of Dt/S-1 Composites

2.2.1. Synthesis of S-1 Zeolite Seeds

Nano-sized S-1 zeolite was synthesized from a colloidal precursor solution with the following
chemical compositions: 25 SiO2:9 TPAOH:480 H2O. The silica source for the preparation of the initial
precursors was TEOS, and the alkali source was TPAOH. These components were mixed under
vigorous stirring and aged on an orbital shaker at ambient temperature for 12 h prior to the further
hydrothermal treatment at 100 ◦C for 4 days. After the hydrothermal synthesis, the seeds were washed
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3 times by repetitive dispersions in water applying a 5-min ultrasonic treatment followed by a 10 min
centrifugation at 8000 rpm. Finally, the seeds were dried at 60 ◦C before being calcined at 550 ◦C for 4
h to remove the organic template.

2.2.2. Pre-Modification of Dt

Firstly, Dt was mixed with 6 mol/L hydrochloric acid solution to remove impurities [22]. After the
mixture was stirred vigorously for 3 h in a thermostatic bath pot at 60 ◦C, Dt was washed with
deionized water until the pH reached 7–8 and dried in a ventilated oven at 60 ◦C.

Secondly, the Dt treated by acid was further modified with alkali to enlarge the pores to prevent
zeolites blocking up the pores. The Dt was mixed with sodium hydroxide solution (pH = 13.5).
The mixture was stirred vigorously for 3 h in a thermostatic bath pot at 60 ◦C. Then the Dt was washed
until the pH reached 7–8 and dried at 60 ◦C after separation.

Finally, 1 g Dt treated as above was mixed with 20mL of 0.5 wt% PDDA solution. PDDA
modification could change the surface charge of Dt from negative to positive [23], which was beneficial
for combination with negatively charged S-1 seeds resulting from the electrostatic attraction. Then the
mixture was stirred for 1 h and aged for 30 min before it was washed and dried at 60 ◦C.

2.2.3. Seeds-Assisted Synthesis of Dt/S-1 Composites

A certain amount of nano-sized S-1 zeolite was dispersed into an ammonia solution (pH = 9.5),
then 1 g modified Dt was added into it. The mixture was stirred for 1 h and aged for 30 min, then
washed 3 times with 0.1 mol/L ammonia solution to finish the seeding procedure. Additionally,
a certain amount of the seeded sample was mixed with 40 mL zeolite colloidal precursor solution
(reported in Section 2.2.1) for further hydrothermal synthesis at 100 ◦C for 4 days. The obtained mixture
was washed repeatedly with water, dried at 60 ◦C, and finally calcined at 550 ◦C for 4 h. In this paper,
the effect of seeded zeolite content (1 wt%, 5 wt%, 10 wt% and 20 wt%), hydrothermal temperature
(90 ◦C, 100 ◦C and 110 ◦C) and hydrothermal time (3 days, 4 days and 5 days) were investigated.

2.3. Characterization of Adsorbents

X-ray diffraction (XRD) patterns were recorded by an X-ray diffractometer (Bruker D8 ADVANCE,
Karlsruhe, German) with a Cu Kα radiation source (k = 0.154 nm) operated under a generating voltage
of 40 kV and a current of 40 mA. Scanning electron microscopy (SEM) images were obtained with a
scanning electron microscope (TOPCON ABT-150S, Tokyo, Japan). A Micromeritics ASAP 2020 system
was used to measure the N2 adsorption–desorption isotherms (N2 adsorption isotherms at 77 K, and all
samples were pre-activated at 300 ◦C under vacuum for 10 h). The surface area was calculated from the
N2 adsorption data using the multi-point Brunauer–Emmett–Teller (BET) equation [24]. The micropore
volume was obtained via the t-plot method.

2.4. Adsorption Experiments

Adsorption experiments were performed in a 125 mL container with 0.01 g adsorbents. A specific
amount of liquid probe VOC (acetone, ethyl acetate, and toluene) was injected into the container before
it was sealed. The liquid organics were converted into vapour and adsorbed by the adsorbents at
60 ◦C. The concentrations of residual organics were determined by a gas chromatograph device
(GC-2014C, SHIMADZU, Japan) equipped with a WonderCap5 column and a flame ionization
detector (FID). The temperatures of the inlet, analyzer and column were 240 ◦C, 300 ◦C and
70 ◦C, respectively. The equilibrium time was 4 min. Adsorption experiments were performed
with an initial vapour concentration of 0.12 mmol/L, except for adsorption isotherms experiments.
Kinetics experiments were performed at different times, ranging from 5 min to 60 min, while
adsorption isotherms experiments were performed with initial vapour concentrations varying from 0.04
mmol/L to 0.27 mmol/L. Competitive adsorption experiments were conducted with multi-component
vapour in a single container with the same initial concentration. To evaluate regeneration capacity,
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the adsorption–desorption processes of ethyl acetate were performed for 6 cycles, and the desorption
experiments were carried out by heating the inactive materials at 120 ◦C for 6 h. Equilibrium adsorption
capacity, Qe, of the adsorbent was calculated as Equation (1):

Qe = (C0 − Ce) · V/W (1)

where C0 (mmol/L) and Ce (mmol/L) are the initial and equilibrium concentrations of the adsorbates.
V (L) and W (g) represent the vapour volume and the mass of Dt/S-1, respectively.

3. Results and Discussion

3.1. Characterization of the Adsorbents

3.1.1. XRD

The X-ray diffraction (XRD) patterns are shown in Figure 1. The XRD pattern of Dt revealed the
main phase of non-crystalline opal-A with the characteristic broad peak centered at 21.8◦ [25]. S-1
zeolite samples presented obvious diffraction peaks at about 7.8◦, 8.8◦, 14.8◦, 17.6◦, 23◦, 23.6◦ and
24.4◦, consistent with the crystal characteristic peaks of S-1 in the standard spectra [26]. Compared
with S-1, Dt/S-1 (5 wt%) almost owned the same characteristic diffraction peaks, indicating that S-1
was successfully loaded onto the surface of Dt.
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Figure 1. X-ray diffraction (XRD) patterns of diatomite (Dt), silicalite-1 (S-1) and Dt/S-1 (5 wt%).

3.1.2. SEM

SEM observations (Figure 2) revealed the surface appearance of Dt (a, b) and Dt/S-1 (5 wt%) (c, d).
Dt displayed a disk structure with a diameter between 20 µm to 25 µm. In particular, there were large
pores around 0.1–0.5 µm with a regular distribution. Figure 2c,d showed that Dt was successfully
loaded by S-1 crystals with the size of 60–70 nm. Macropores were observed on the composites as
shown in Figure 2d.
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Figure 2. Scanning electron microscopy (SEM) images of Dt (a,b) and Dt/S-1 (5 wt%) (c,d).

3.1.3. BET

The surface properties of Dt, S-1 and the Dt/S-1 composites determined by N2

adsorption–desorption were listed in Table 1 and Table S1. The surface area of Dt/S-1 (5 wt%)
was nearly 40 times as large as Dt. The total pore volume and micropore volume of Dt/S-1 (5 wt%)
were both much superior to that of Dt. The considerable porous parameters of the composite were
attributed to the nano-sized S-1 coated onto Dt. In addition, the wt% of zeolite in the composites was
calculated using Equation (2) [21]:

Wzeolite% =
[
Vmicropore(composite)− Vmicropore(Dt)

]
/Vmicropore(S − 1)× 100% (2)

According to the equation, the wt% of zeolite in Dt/S-1 (5 wt%) was 74.1%, and the content of
coated zeolite was higher than the work reported before.

Table 1. Porous parameters of Dt, S-1 and Dt/S-1 (5 wt%). SBET = specific surface area. Vmicropore =
micropore volume. Vtotal = total volume.

Sample Dt S-1 Dt/S-1 (5 wt%)

SBET (m2/g) 10.0 532.0 398.8
Vmicropore (cm3/g) 0.005 0.170 0.131

Vtotal (cm3/g) 0.045 0.515 0.342

Figure 3 showed the N2 adsorption–desorption isotherms of Dt, S-1 and Dt/S-1 (5 wt%).
The isotherm of raw Dt featured a type II curve with a minor H3 hysteresis loop according to the
IUPAC classification [27], which indicated that Dt contained small quantities of mesopores. When
P/P0 ≤ 0.1, Dt had poor adsorption to N2, which implies that Dt had few micropores. The rapidly
increased adsorption quantities when P/P0 ≈ 1.0 suggest abundant macroporosity. S-1 had a type IV
adsorption–desorption isotherm curve with an evident H3 hysteresis loop, which was an indication of
the formation of mesopores from the nano-crystal stacking. The adsorption of N2 on S-1 increased
rapidly while P/P0 ≤ 0.1 because of the rapid filling of N2 into the micropores of zeolites. In addition,
the adsorption rose again rapidly when P/P0 ≈ 1.0 according to the nano-size effect and particle
agglomeration. The Dt/S-1 (5 wt%) had a type IV adsorption–desorption isotherm curve and evident
H3 hysteresis loop, and the adsorption of N2 increased rapidly while P/P0 ≤ 0.1, similar to S-1,
indicating that the composite consisted of nano-sized S-1 particles. Finally, the increasing trend of
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N2 adsorption of Dt/S-1 (5 wt%) in the high pressure region (P/P0 ≈ 1.0) was moderated compared
with that of S-1, which explained that the composite materials still had a considerable number of
large pores. Above all, the hierarchical porous structure was synthesized successfully, making up for
the disadvantages of pure Dt and zeolite. The other samples had similar N2 adsorption–desorption
isotherms to Dt/S-1 (5 wt%) which are shown in Figure S1.

1 
 

 

Figure 3. N2 adsorption–desorption isotherms of Dt, S-1 and Dt/S-1 (5 wt%).

3.2. VOC Adsorption Capacity Tests

3.2.1. Effects of Seeded Zeolite Contents and Hydrothermal Conditions

The equilibrium adsorption capacities for the adsorption of three VOCs on various adsorbents
were exhibited in Table 2. Experimental results showed that the adsorption capacities of the adsorbents
with different loadings of S-1 seeds were 4–22 times that of Dt. In addition, with the increase of
seed content from 1 wt% to 10 wt%, ethyl acetate adsorption capacities on the adsorbents were
improved from 1.10 mmol/g to 1.31 mmol/g, and the specific surface area of the samples increased
from 319.2 m2/g to 402.3 m2/g (Table S1). However, the adsorption capacities of the three VOCs
declined obviously as the seed content increased up to 20 wt%. The specific surface area of Dt/S-1
(20 wt%) decreased to 336.8 m2/g. While the micropore volume improved, the total volume had
decreased, indicating that the dispersed S-1 nanocrystals were occupied inside the pores of Dt. On
the one hand, the hierarchical porous structure of Dt/S-1 enhanced the efficiency of large Dt pores
and made up for the shortcomings of pure zeolite for its limited pore size distribution. On the other
hand, the dispersion of S-1 on Dt could reduce the agglomeration of nanoparticles and decrease mass
transfer resistance. S-1 seeds played a guiding role in the growth of zeolite, but excessive load might
cause overgrowth of crystals and lead to particle agglomeration, reducing the surface area of the
adsorbents exposed to probe VOCs. The adsorption effect of Dt/S-1 (5 wt%) and Dt/S-1 (10 wt%)
were similar to pure S-1. Considering the actual content of zeolite in the composites (74.1% in Dt/S-1
(5 wt%)), the utilization efficiency of zeolite was greatly improved. Moreover, due to the introduction
of diatomite, the synthesis cost of the composite material is significantly lower than that of pure
S-1 zeolite.

Table 2. Equilibrium adsorption capacities (mmol/g) of three probe volatile organic compounds
(VOCs) on various adsorbents.

Dt/S-1 (wt%)
S-1 Dt

Sample 1 5 10 20

Acetone 0.82 ± 0.04 1.01 ± 0.06 1.02 ± 0.05 0.80 ± 0.04 1.01 ± 0.05 0.07 ± 0.002
Ethyl acetate 1.10 ± 0.05 1.31 ± 0.08 1.28 ± 0.08 0.92 ± 0.04 1.28 ± 0.08 0.06 ± 0.002

Toluene 0.62 ± 0.02 0.71 ± 0.03 0.69 ± 0.02 0.48 ± 0.01 0.72 ± 0.03 0.12 ± 0.005
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The adsorption capacities of probe VOCs were ethyl acetate > acetone > toluene. According
to existing research, the interaction between adsorbents and adsorbates is mostly the consequence
of the comprehensive effect of adsorbents’ pore canal structure and adsorbates’ physicochemical
qualities [28–33]. S-1 zeolite possessed sinusoidal channels with 0.54 nm circular cross-sections
interconnected with straight channels with 0.51 nm × 0.57 nm elliptical cross sections [34]. If the
adsorption became effective and stable, the adsorbent’s pore size must be close to the size of the
adsorbates [30]. The sizes of acetone and ethyl acetate were in the effective range of adsorption, but
toluene was not. Abundant research has indicated that high-silica MFI-type zeolites have a nonpolar
nature [12], and thus S-1 zeolite tended to adsorb substances of low polarity. Since the polarity of ethyl
acetate was smaller than acetone, according to the like-dissolves-like theory, the composite adsorbents
were more likely to adsorb ethyl acetate rather than acetone.

The equilibrium adsorption capacities of Dt/S-1 (5 wt%) prepared at different hydrothermal
temperatures are shown in Table 3. The adsorbent synthesized at 100 ◦C showed the most considerable
adsorption capacity, which was superior to the adsorbents synthesized at 90 ◦C and 110 ◦C. With the
increase in temperature, the crystallinity was improved accordingly (Figure S2). Nevertheless, higher
temperatures would cause the growth of over-sized molecules or the agglomeration of particles, and
then had a negative impact on the surface area and pore volume of the adsorbents [35].

Table 3. Equilibrium adsorption capacities (mmol/g) of Dt/S-1 (5 wt%) prepared at different temperatures.

Sample 90 ◦C 100 ◦C 110 ◦C

Acetone 0.58 ± 0.02 1.01 ± 0.06 0.97 ± 0.05
Ethyl acetate 0.90 ± 0.05 1.31 ± 0.08 1.22 ± 0.07

Toluene 0.48 ± 0.02 0.71 ± 0.04 0.68 ± 0.03

Table 4 shows the equilibrium adsorption capacities of Dt/S-1 (5 wt%) prepared at different
hydrothermal times. The results showed that the adsorbent synthesized for four days had the
most desirable adsorption capacity. With the increase in hydrothermal time, the overgrowth of
S-1 zeolite might lead to the occlusion of Dt’s large pores [36] and reduce the adsorption efficiency of
the adsorbents.

Table 4. Equilibrium adsorption capacities (mmol/g) of Dt/S-1 (5 wt%) prepared at different times.

Sample 3 Days 4 Days 5 Days

Acetone 0.88 ± 0.05 1.01 ± 0.06 0.98 ± 0.05
Ethyl acetate 1.17 ± 0.06 1.31 ± 0.08 1.19 ± 0.07

Toluene 0.71 ± 0.04 0.71 ± 0.03 0.69 ± 0.04

3.2.2. Adsorption Kinetics

Figure 4 demonstrates the kinetic adsorption process of Dt/S-1 (5 wt%) to probe VOCs. It took 25
min, 35 min and 45 min for toluene, acetone and ethyl acetate to reach the adsorption equilibrium,
respectively. Experimentally determined kinetic data were analyzed using nonlinear pseudo first-order
and pseudo second-order models using Equations (3) and (4) [37]:

Qt = Qe(1 − e−k1t) (3)

Qt =
k2Qe

2t
1 + k2Qet

(4)

where, k1 (min−1) is the pseudo first-order rate constant of adsorption, k2 (g·mol−1min−1) is the pseudo
second-order rate constant of adsorption, Qe (mol·g−1) is the adsorption capacity at equilibrium and
Qt (mol·g−1) is the adsorption capacity at a given time t.
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Figure 4. Kinetic adsorption process of Dt/S-1 (5 wt%) to acetate (a), ethyl acetate (b) and toluene (c).

The obtained kinetic parameters were shown in Table 5. It was noted that Qe (exp) represents
data from experiments, while Qe (cal) represents data from model fittings. It was observed that the
pseudo second-order model well fit the experimental data of the three organic compounds with a
higher correlation coefficient (R2). Also, Qe (cal) values from the pseudo second-order model were
found to agree better to the experimentally obtained Qe (exp). The fitting results thus indicated that
the adsorption rate was mainly determined by the chemical adsorption process [37].

Table 5. Adsorption kinetics parameters of three probe VOCs. Qe = adsorption capacity at equilibrium.
k1 = pseudo first-order rate constant of adsorption. k2 = pseudo second-order rate constant of adsorption.
R2 = correlation coefficient.

Model Pseudo First-Order Model Pseudo Second-Order Model

Parameter Qe (exp, mmol/g) Qe (cal, mmol/g) k1 R2 Qe(cal, mmol/g) k2 R2

Acetone 0.99 0.91 0.21 0.9874 1.04 0.27 0.9981
Ethyl acetate 1.31 1.22 0.17 0.9908 1.39 0.17 0.9995

Toluene 0.69 0.62 0.22 0.9948 0.75 0.35 0.9993

3.2.3. Adsorption Isotherms

Figure 5 demonstrated that the adsorbed amount of probe VOCs on Dt/S-1 (5 wt%) increased
with increasing initial concentrations. In order to figure out adsorption isotherms of the adsorbent, the
Henry model, Langmuir model and Freundlich model were utilized with Equations (5)–(7) [38]:

Qe = kHCe (5)

Qe =
QmaxkLCe

1 + kLCe
(6)

Qe = kFCe
1/n (7)

where Qmax (mol·g−1) is the maximum adsorption capacity, kH is the Henry constant (L·g−1), kL
(L·mmol−1) is the Langmuir equilibrium constant, kF (mmol1−n·Ln·g−1) is the Freundlich constant
and 1/n is the heterogeneity factor.

The adsorption isotherm parameters are listed in Table 6. The Langmuir model yields a much
better fit than that of the Henry model or the Freundlich model, indicating that the adsorption process
happened on a monolayer.
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Figure 5. Equilibrium adsorption capacities of acetate (a), ethyl acetate (b) and toluene (c) at different
equilibrium concentrations.

Table 6. Adsorption isotherm parameters of three probe VOCs. Qmax (mol·g−1) = maximum
adsorption capacity. kH (L·g−1) = Henry constant. kL (L·mmol−1) = Langmuir equilibrium constant. kF

(mmol1−n·Ln·g−1) = Freundlich constant. 1/n = heterogeneity factor.

Model Henry Langmuir Freundhch

Parameter kH R2 kL Qmax R2 kF n R2

Acetone 9.84 0.8250 13.24 1.85 0.9974 3.50 0.53 0.9933
Ethyl

acetate 19.15 0.7028 32.45 1.93 0.9986 4.62 0.47 0.9787

Toluene 8.08 0.8601 12.07 1.41 0.9903 3.03 0.60 0.9743

3.2.4. Adsorption Selectivity

In addition to single-component adsorption, this study also explored multi-component adsorption
onto Dt/S-1 (5 wt%). Figure 6 presents the competitive adsorption of three probe VOCs with the same
initial vapor concentrations. After five minutes, the adsorption value of acetone was close to ethyl
acetate, and the adsorption of toluene was far lower than the former two organics. Subsequently, the
adsorption of ethyl acetate continued to increase, while the adsorption of acetone decreased sharply.
After 45 min, adsorption of the three VOCs reached an equilibrium. In comparison with the adsorption
of a single component, the adsorption capacities decreased since adsorption competition existed among
the three probe organics. In a comprehensive way, single-component and multi-component adsorption
experiments showed that the composite had the capability of selective adsorption to ethyl acetate.
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The distribution coefficient (Kd) was used to analyze the selectivity of the absorbent toward three
probe VOCs. The equation is stated as [39]:

kd =
V · (C0 − Ce)

m · Ce
(8)

where C0 and Ce (mmol/L) represent the initial and equilibrium concentrations of solutes, respectively;
V (L) is the volume of solution; and m (g) is the mass of the adsorbent.

A selectivity coefficient (α) for the binding of a particular adsorbate in the presence of interfering
compounds is defined in Equation (9) as [39]:

α = kd(T)/kd(I) (9)

where Kd (T) is the Kd value of the targeted compound (ethyl acetate in this case) and Kd (I) is the
Kd value of the other compound in the multi-substance mixtures (acetone or toluene here). A larger
value of α indicates greater selectivity toward ethyl acetate than acetone or toluene. The calculated kd
of acetone, ethyl acetate and toluene were 6.25, 15 and 0.47 L/g, and the α values of ethyl acetate to
acetone and toluene were 2.4 and 31.91, respectively. These results showed better adsorption capacities
for ethyl acetate than acetone or toluene, indicating that Dt/S-1 (5 wt%) had selective adsorption
toward ethyl acetate.

3.2.5. Regeneration of the Adsorbents

The regeneration of Dt/S-1 (5 wt%) was carried out by performing five consecutive
adsorption–desorption cycles under the same experimental conditions. Figure 7 illustrates the
adsorption capacities of Dt/S-1 (5 wt%) at different adsorption–desorption cycles. The adsorption
capacities decreased from the first to the fifth cycle from 85.4% to 67%, which could be attributed to
the remaining VOCs in the adsorbents during the regeneration process or the morphology change of
Dt/S-1 (5 wt%) [40]. After five cycles, the adsorption efficiency was still more than 60%. Therefore, we
could conclude that Dt/S-1 (5 wt%) was suitable for its use and reuse with high removal and recovery.
Regeneration is the premise of adsorbents recycling. It is of great significance to reduce the operating
cost and increase the spread of adsorption technology.
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4. Conclusions

In this paper, nano S-1 seeds were loaded onto the surface of Dt using the advanced hydrothermal
method, which was characterized by XRD, SEM and BET. The Dt/S-1 (5 wt%) exhibited a considerably
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higher VOC adsorption capacity compared to raw Dt and other composites prepared under different
conditions. The pseudo second-order model provided the perfect fit to the dynamic behavior of VOC
adsorption onto the composite material for the whole contact time period, while the Langmuir model
agreed the best with the adsorption isotherms in terms of different initial concentrations. Further study
discovered that the composite had selective adsorption to ethyl acetate among the three VOCs. With a
considerable regeneration capacity, the composite material rendered its potential for application in
VOC removal techniques.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/4/551/s1,
Figure S1: N2 adsorption-desorption isotherms of Dt/S-1(1 wt%), Dt/S-1(10 wt%) and Dt/S-1(20 wt%), Figure
S2: X-ray diffraction (XRD) patterns of the Dt/S-1(5 wt%) synthesized at different temperature, Table S1: Porous
parameters of Dt, S-1 and Dt/S-1(5 wt%).
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