Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (623)

Search Parameters:
Keywords = reconnaissance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 (registering DOI) - 1 Aug 2025
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

16 pages, 3183 KiB  
Case Report
A Multidisciplinary Approach to Crime Scene Investigation: A Cold Case Study and Proposal for Standardized Procedures in Buried Cadaver Searches over Large Areas
by Pier Matteo Barone and Enrico Di Luise
Forensic Sci. 2025, 5(3), 34; https://doi.org/10.3390/forensicsci5030034 (registering DOI) - 1 Aug 2025
Abstract
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar [...] Read more.
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar (GPR), and cadaver dog (K9) deployment. A dedicated decision tree guided each phase, allowing for efficient allocation of resources and minimizing investigative delays. Although no human remains were recovered, the case demonstrates the practical utility and operational robustness of a structured, evidence-based model that supports decision-making even in the absence of positive findings. The approach highlights the relevance of “negative” results, which, when derived through scientifically validated procedures, offer substantial value by excluding burial scenarios with a high degree of reliability. This case is particularly significant in the Italian forensic context, where the adoption of standardized search protocols remains limited, especially in complex outdoor environments. The integration of geophysical, remote sensing, and canine methodologies—rooted in forensic geoarchaeology—provides a replicable framework that enhances both investigative effectiveness and the evidentiary admissibility of findings in court. The protocol illustrated in this study supports the consistent evaluation of large and morphologically complex areas, reduces the risk of interpretive error, and reinforces the transparency and scientific rigor expected in judicial settings. As such, it offers a model for improving forensic search strategies in both national and international contexts, particularly in long-standing or high-profile missing persons cases. Full article
Show Figures

Figure 1

21 pages, 15647 KiB  
Article
Research on Oriented Object Detection in Aerial Images Based on Architecture Search with Decoupled Detection Heads
by Yuzhe Kang, Bohao Zheng and Wei Shen
Appl. Sci. 2025, 15(15), 8370; https://doi.org/10.3390/app15158370 - 28 Jul 2025
Viewed by 222
Abstract
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to [...] Read more.
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to these characteristics and problems, we improved the feature extraction network Inception-ResNet using the Fast Architecture Search (FAS) module and proposed a one-stage anchor-free rotation object detector. The structure of the object detector is simple and only consists of convolution layers, which reduces the number of model parameters. At the same time, the label sampling strategy in the training process is optimized to resolve the problem of insufficient sampling. Finally, a decoupled object detection head is used to separate the bounding box regression task from the object classification task. The experimental results show that the proposed method achieves mean average precision (mAP) of 82.6%, 79.5%, and 89.1% on the DOTA1.0, DOTA1.5, and HRSC2016 datasets, respectively, and the detection speed reaches 24.4 FPS, which can meet the needs of real-time detection. Full article
(This article belongs to the Special Issue Innovative Applications of Artificial Intelligence in Engineering)
Show Figures

Figure 1

19 pages, 6372 KiB  
Article
Detecting Planting Holes Using Improved YOLO-PH Algorithm with UAV Images
by Kaiyuan Long, Shibo Li, Jiangping Long, Hui Lin and Yang Yin
Remote Sens. 2025, 17(15), 2614; https://doi.org/10.3390/rs17152614 - 28 Jul 2025
Viewed by 254
Abstract
The identification and detection of planting holes, combined with UAV technology, provides an effective solution to the challenges posed by manual counting, high labor costs, and low efficiency in large-scale planting operations. However, existing target detection algorithms face difficulties in identifying planting holes [...] Read more.
The identification and detection of planting holes, combined with UAV technology, provides an effective solution to the challenges posed by manual counting, high labor costs, and low efficiency in large-scale planting operations. However, existing target detection algorithms face difficulties in identifying planting holes based on their edge features, particularly in complex environments. To address this issue, a target detection network named YOLO-PH was designed to efficiently and rapidly detect planting holes in complex environments. Compared to the YOLOv8 network, the proposed YOLO-PH network incorporates the C2f_DyGhostConv module as a replacement for the original C2f module in both the backbone network and neck network. Furthermore, the ATSS label allocation method is employed to optimize sample allocation and enhance detection effectiveness. Lastly, our proposed Siblings Detection Head reduces computational burden while significantly improving detection performance. Ablation experiments demonstrate that compared to baseline models, YOLO-PH exhibits notable improvements of 1.3% in mAP50 and 1.1% in mAP50:95 while simultaneously achieving a reduction of 48.8% in FLOPs and an impressive increase of 26.8 FPS (frames per second) in detection speed. In practical applications for detecting indistinct boundary planting holes within complex scenarios, our algorithm consistently outperforms other detection networks with exceptional precision (F1-score = 0.95), low computational cost, rapid detection speed, and robustness, thus laying a solid foundation for advancing precision agriculture. Full article
Show Figures

Figure 1

24 pages, 20337 KiB  
Article
MEAC: A Multi-Scale Edge-Aware Convolution Module for Robust Infrared Small-Target Detection
by Jinlong Hu, Tian Zhang and Ming Zhao
Sensors 2025, 25(14), 4442; https://doi.org/10.3390/s25144442 - 16 Jul 2025
Viewed by 364
Abstract
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, [...] Read more.
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, low-contrast objects due to their limited receptive fields and insufficient feature extraction capabilities. To overcome these limitations, we propose a Multi-Scale Edge-Aware Convolution (MEAC) module that enhances feature representation for small infrared targets without increasing parameter count or computational cost. Specifically, MEAC fuses (1) original local features, (2) multi-scale context captured via dilated convolutions, and (3) high-contrast edge cues derived from differential Gaussian filters. After fusing these branches, channel and spatial attention mechanisms are applied to adaptively emphasize critical regions, further improving feature discrimination. The MEAC module is fully compatible with standard convolutional layers and can be seamlessly embedded into various network architectures. Extensive experiments on three public infrared small-target datasets (SIRSTD-UAVB, IRSTDv1, and IRSTD-1K) demonstrate that networks augmented with MEAC significantly outperform baseline models using standard convolutions. When compared to eleven mainstream convolution modules (ACmix, AKConv, DRConv, DSConv, LSKConv, MixConv, PConv, ODConv, GConv, and Involution), our method consistently achieves the highest detection accuracy and robustness. Experiments conducted across multiple versions, including YOLOv10, YOLOv11, and YOLOv12, as well as various network levels, demonstrate that the MEAC module achieves stable improvements in performance metrics while slightly increasing computational and parameter complexity. These results validate the MEAC module’s significant advantages in enhancing the detection of small and weak objects and suppressing interference from complex backgrounds. These results validate MEAC’s effectiveness in enhancing weak small-target detection and suppressing complex background noise, highlighting its strong generalization ability and practical application potential. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

32 pages, 5465 KiB  
Article
DETEAMSK: A Model-Based Reinforcement Learning Approach to Intelligent Top-Level Planning and Decisions for Multi-Drone Ad Hoc Teamwork by Decoupling the Identification of Teammate and Task
by Penghui Xu, Yu Zhang, Le Hao and Qilin Yan
Aerospace 2025, 12(7), 635; https://doi.org/10.3390/aerospace12070635 - 16 Jul 2025
Viewed by 195
Abstract
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement [...] Read more.
The ability to collaborate with new teammates, adapt to unfamiliar environments, and engage in effective planning is essential for multi-drone agents within unmanned combat systems. This paper introduces DETEAMSK (Model-based Reinforcement Learning by Decoupling the Identification of Teammates and Tasks), a model-based reinforcement learning method in intelligent top-level planning and decisions designed for ad hoc teamwork among multi-drone agents. It specifically addresses integrated reconnaissance and strike missions in urban combat scenarios under varying conditions. DETEAMSK’s performance is evaluated through comprehensive, multidimensional experiments and compared with other baseline models. The results demonstrate that DETEAMSK exhibits superior effectiveness, robustness, and generalization capabilities across a range of task domains. Moreover, the model-based reinforcement learning approach offers distinct advantages over traditional models, such as the PLASTIC-Model, and model-free approaches, like the PLASTIC-Policy, due to its unique “dynamic decoupling identification” feature. This study provides valuable insights for advancing both theoretical and applied research in model-based reinforcement learning methods for multi-drone systems. Full article
(This article belongs to the Special Issue Innovations in Unmanned Aerial Vehicle: Design and Development)
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Power-Independent Microwave Photonic Instantaneous Frequency Measurement System
by Ruiqiong Wang and Yongjun Li
Sensors 2025, 25(14), 4382; https://doi.org/10.3390/s25144382 - 13 Jul 2025
Viewed by 339
Abstract
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) [...] Read more.
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) curve, achieved by introducing a frequency-dependent time delay via an optical tunable delay line (OTDL) for the signal under test (SUT). System simulation demonstrates the measurement capability across a wide bandwidth of 0.1–40 GHz with high precision, exhibiting frequency errors ranging from −0.03 to 0.04 GHz. The scheme also maintains consistent performance under varying input power levels. Key implementation aspects, including single-sideband modulation selection and system extension methods, are analyzed in detail to optimize measurement accuracy. Notably, the proposed architecture features a simple and compact design with excellent integration potential. These characteristics, combined with its wide operational bandwidth and high measurement precision, make this approach particularly suitable for demanding applications in electronic reconnaissance and communication. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

28 pages, 19790 KiB  
Article
HSF-DETR: A Special Vehicle Detection Algorithm Based on Hypergraph Spatial Features and Bipolar Attention
by Kaipeng Wang, Guanglin He and Xinmin Li
Sensors 2025, 25(14), 4381; https://doi.org/10.3390/s25144381 - 13 Jul 2025
Viewed by 453
Abstract
Special vehicle detection in intelligent surveillance, emergency rescue, and reconnaissance faces significant challenges in accuracy and robustness under complex environments, necessitating advanced detection algorithms for critical applications. This paper proposes HSF-DETR (Hypergraph Spatial Feature DETR), integrating four innovative modules: a Cascaded Spatial Feature [...] Read more.
Special vehicle detection in intelligent surveillance, emergency rescue, and reconnaissance faces significant challenges in accuracy and robustness under complex environments, necessitating advanced detection algorithms for critical applications. This paper proposes HSF-DETR (Hypergraph Spatial Feature DETR), integrating four innovative modules: a Cascaded Spatial Feature Network (CSFNet) backbone with Cross-Efficient Convolutional Gating (CECG) for enhanced long-range detection through hybrid state-space modeling; a Hypergraph-Enhanced Spatial Feature Modulation (HyperSFM) network utilizing hypergraph structures for high-order feature correlations and adaptive multi-scale fusion; a Dual-Domain Feature Encoder (DDFE) combining Bipolar Efficient Attention (BEA) and Frequency-Enhanced Feed-Forward Network (FEFFN) for precise feature weight allocation; and a Spatial-Channel Fusion Upsampling Block (SCFUB) improving feature fidelity through depth-wise separable convolution and channel shift mixing. Experiments conducted on a self-built special vehicle dataset containing 2388 images demonstrate that HSF-DETR achieves mAP50 and mAP50-95 of 96.6% and 70.6%, respectively, representing improvements of 3.1% and 4.6% over baseline RT-DETR while maintaining computational efficiency at 59.7 GFLOPs and 18.07 M parameters. Cross-domain validation on VisDrone2019 and BDD100K datasets confirms the method’s generalization capability and robustness across diverse scenarios, establishing HSF-DETR as an effective solution for special vehicle detection in complex environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 23971 KiB  
Article
Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo
by Xuyang Zhou, Ruofei He, Wei Jia, Hongjuan Liu, Yuanchao Ma and Wei Sun
Remote Sens. 2025, 17(14), 2426; https://doi.org/10.3390/rs17142426 - 12 Jul 2025
Viewed by 305
Abstract
In this work, we propose a geolocation framework for distant ground targets integrating laser rangefinder sensors with multimodal visual servo control. By simulating binocular visual servo measurements through monocular visual servo tracking at fixed time intervals, our approach requires only single-session sensor attitude [...] Read more.
In this work, we propose a geolocation framework for distant ground targets integrating laser rangefinder sensors with multimodal visual servo control. By simulating binocular visual servo measurements through monocular visual servo tracking at fixed time intervals, our approach requires only single-session sensor attitude correction calibration to accurately geolocalize multiple targets during a single flight, which significantly enhances operational efficiency in multi-target geolocation scenarios. We design a step-convergent target geolocation optimization algorithm. By adjusting the step size and the scale factor of the cost function, we achieve fast accuracy convergence for different UAV reconnaissance modes, while maintaining the geolocation accuracy without divergence even when the laser ranging sensor is turned off for a short period. The experimental results show that through the UAV’s continuous reconnaissance measurements, the geolocalization error of remote ground targets based on our algorithm is less than 7 m for 3000 m, and less than 3.5 m for 1500 m. We have realized the fast and high-precision geolocalization of remote targets on the ground under the high-altitude reconnaissance of UAVs. Full article
Show Figures

Figure 1

19 pages, 2468 KiB  
Article
A Dual-Branch Spatial-Frequency Domain Fusion Method with Cross Attention for SAR Image Target Recognition
by Chao Li, Jiacheng Ni, Ying Luo, Dan Wang and Qun Zhang
Remote Sens. 2025, 17(14), 2378; https://doi.org/10.3390/rs17142378 - 10 Jul 2025
Viewed by 392
Abstract
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address [...] Read more.
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address these challenges, we propose a dual-branch spatial-frequency domain fusion recognition method with cross-attention, achieving deep fusion of spatial and frequency domain features. In the spatial domain, we propose an enhanced multi-scale feature extraction module (EMFE), which adopts a multi-branch parallel structure to effectively enhance the network’s multi-scale feature representation capability. Combining frequency domain guided attention, the model focuses on key regional features in the spatial domain. In the frequency domain, we design a hybrid frequency domain transformation module (HFDT) that extracts real and imaginary features through Fourier transform to capture the global structure of the image. Meanwhile, we introduce a spatially guided frequency domain attention to enhance the discriminative capability of frequency domain features. Finally, we propose a cross-domain feature fusion (CDFF) module, which achieves bidirectional interaction and optimal fusion of spatial-frequency domain features through cross attention and adaptive feature fusion. Experimental results demonstrate that our method achieves significantly superior recognition accuracy compared to existing methods on the MSTAR dataset. Full article
Show Figures

Figure 1

13 pages, 4310 KiB  
Technical Note
Framework for Mapping Sublimation Features on Mars’ South Polar Cap Using Object-Based Image Analysis
by Racine D. Cleveland, Vincent F. Chevrier and Jason A. Tullis
Remote Sens. 2025, 17(14), 2372; https://doi.org/10.3390/rs17142372 - 10 Jul 2025
Viewed by 911
Abstract
Mars’ south polar cap hosts dynamic landforms known as Swiss cheese features (SCFs), which form through the sublimation of carbon dioxide (CO2) ice driven by the planet’s extreme seasonal and diurnal solar insolation cycles. These shallow, rounded depressions—first identified by Mars [...] Read more.
Mars’ south polar cap hosts dynamic landforms known as Swiss cheese features (SCFs), which form through the sublimation of carbon dioxide (CO2) ice driven by the planet’s extreme seasonal and diurnal solar insolation cycles. These shallow, rounded depressions—first identified by Mars Global Surveyor in 1999 and later monitored by the Mars Reconnaissance Orbiter (MRO)—have been observed to increase in size over time. However, large-scale analysis of SCF formation and growth has been limited by the slow and labor-intensive nature of manual mapping techniques. This study applies object-based image analysis (OBIA) to automate the detection and measurement of SCFs using High-Resolution Imaging Science Experiment (HiRISE) images spanning five Martian years. Results show that SCFs exhibit a near-linear increase in area, suggesting that summer sublimation consistently outpaces winter CO2 deposition. Validation against manual digitization shows discrepancies of less than 1%, confirming the reliability of the OBIA method. Regression-based extrapolation of growth trends indicates that the current generation of SCFs likely began forming between Martian years 7 and 16, approximately corresponding to Earth years 1976 to 1998. These findings provide a quantitative assessment of SCF evolution and contribute to our understanding of recent climate-driven surface changes on Mars. HiRISE images were processed using the eCognition software to detect, classify, and measure SCFs, demonstrating that OBIA is a scalable and effective tool for analyzing dynamic planetary landforms. Full article
Show Figures

Graphical abstract

26 pages, 23518 KiB  
Article
Avalanche Hazard Dynamics and Causal Analysis Along China’s G219 Corridor: A Case Study of the Wenquan–Khorgas Section
by Xuekai Wang, Jie Liu, Qiang Guo, Bin Wang, Zhiwei Yang, Qiulian Cheng and Haiwei Xie
Atmosphere 2025, 16(7), 817; https://doi.org/10.3390/atmos16070817 - 4 Jul 2025
Viewed by 338
Abstract
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through [...] Read more.
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through image interpretation. Snowpack properties were primarily acquired via in situ field testing within the study area. Methodologically, statistical modeling and RAMMS::AVALANCHE simulations revealed spatiotemporal and dynamic characteristics of avalanches. Subsequent application of the Certainty Factor (CF) model and sensitivity analysis determined dominant controlling factors and quantified zonal influence intensity for each parameter. This study, utilizing field reconnaissance and drone aerial photography, identified 86 avalanche points in the study area. We used field tests and weather data to run the RAMMS::AVALANCHE model. Then, we categorized and summarized regional avalanche characteristics using both field surveys and simulation results. Furthermore, the Certainty Factor Model (CFM) and the parameter Sensitivity Index (Sa) were applied to assess the influence of elevation, slope gradient, aspect, and maximum snow depth on the severity of avalanche disasters. The results indicate the following: (1) Avalanches exhibit pronounced spatiotemporal concentration: temporally, they cluster between February and March and during 13:00–18:00 daily; spatially, they concentrate within the 2100–3000 m elevation zone. Chute-confined avalanches dominate the region, comprising 73.26% of total events; most chute-confined avalanches feature multiple release areas; therefore the number of release areas exceeds avalanche points; in terms of scale, medium-to-large-scale avalanches dominate, accounting for 86.5% of total avalanches. (2) RAMMS::AVALANCHE simulations yielded the following maximum values for the region: flow height = 15.43 m, flow velocity = 47.6 m/s, flow pressure = 679.79 kPa, and deposition height = 10.3 m. Compared to chute-confined avalanches, unconfined slope avalanches exhibit higher flow velocities and pressures, posing greater hazard potential. (3) The Certainty Factor Model and Sensitivity Index identify elevation, slope gradient, and maximum snow depth as the key drivers of avalanches in the study area. Their relative impact ranks as follows: maximum snow depth > elevation > slope gradient > aspect. The sensitivity index values were 1.536, 1.476, 1.362, and 0.996, respectively. The findings of this study provide a scientific basis for further research on avalanche hazards, the development of avalanche warning systems, and the design of avalanche mitigation projects in the study area. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

14 pages, 5319 KiB  
Article
Efficiency Analysis of Disruptive Color in Military Camouflage Patterns Based on Eye Movement Data
by Xin Yang, Su Yan, Bentian Hao, Weidong Xu and Haibao Yu
J. Eye Mov. Res. 2025, 18(4), 26; https://doi.org/10.3390/jemr18040026 - 2 Jul 2025
Viewed by 329
Abstract
Disruptive color on animals’ bodies can reduce the risk of being caught. This study explores the camouflaging effect of disruptive color when applied to military targets. Disruptive and non-disruptive color patterns were placed on the target surface to form simulation materials. Then, the [...] Read more.
Disruptive color on animals’ bodies can reduce the risk of being caught. This study explores the camouflaging effect of disruptive color when applied to military targets. Disruptive and non-disruptive color patterns were placed on the target surface to form simulation materials. Then, the simulation target was set in woodland-, grassland-, and desert-type background images. The detectability of the target in the background was obtained by collecting eye movement indicators after the observer observed the background targets. The influence of background type (local and global), camouflage pattern type, and target viewing angle on the disruptive-color camouflage pattern was investigated. This study aims to design eye movement observation experiments to statistically analyze the indicators of first discovery time, discovery frequency, and first-scan amplitude in the target area. The experimental results show that the first discovery time of mixed disruptive-color targets in a forest background was significantly higher than that of non-mixed disruptive-color targets (t = 2.54, p = 0.039), and the click frequency was reduced by 15% (p < 0.05), indicating that mixed disruptive color has better camouflage effectiveness in complex backgrounds. In addition, the camouflage effect of mixed disruptive colors on large-scale targets (viewing angle ≥ 30°) is significantly improved (F = 10.113, p = 0.01), providing theoretical support for close-range reconnaissance camouflage design. Full article
Show Figures

Figure 1

22 pages, 6123 KiB  
Article
Real-Time Proprioceptive Sensing Enhanced Switching Model Predictive Control for Quadruped Robot Under Uncertain Environment
by Sanket Lokhande, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen and Hao Xu
Electronics 2025, 14(13), 2681; https://doi.org/10.3390/electronics14132681 - 2 Jul 2025
Viewed by 480
Abstract
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors [...] Read more.
Quadruped robots have shown significant potential in disaster relief applications, where they have to navigate complex terrains for search and rescue or reconnaissance operations. However, their deployment is hindered by limited adaptability in highly uncertain environments, especially when relying solely on vision-based sensors like cameras or LiDAR, which are susceptible to occlusions, poor lighting, and environmental interference. To address these limitations, this paper proposes a novel sensor-enhanced hierarchical switching model predictive control (MPC) framework that integrates proprioceptive sensing with a bi-level hybrid dynamic model. Unlike existing methods that either rely on handcrafted controllers or deep learning-based control pipelines, our approach introduces three core innovations: (1) a situation-aware, bi-level hybrid dynamic modeling strategy that hierarchically combines single-body rigid dynamics with distributed multi-body dynamics for modeling agility and scalability; (2) a three-layer hybrid control framework, including a terrain-aware switching MPC layer, a distributed torque controller, and a fast PD control loop for enhanced robustness during contact transitions; and (3) a multi-IMU-based proprioceptive feedback mechanism for terrain classification and adaptive gait control under sensor-occluded or GPS-denied environments. Together, these components form a unified and computationally efficient control scheme that addresses practical challenges such as limited onboard processing, unstructured terrain, and environmental uncertainty. A series of experimental results demonstrate that the proposed method outperforms existing vision- and learning-based controllers in terms of stability, adaptability, and control efficiency during high-speed locomotion over irregular terrain. Full article
(This article belongs to the Special Issue Smart Robotics and Autonomous Systems)
Show Figures

Figure 1

21 pages, 1761 KiB  
Article
Protecting IOT Networks Through AI-Based Solutions and Fractional Tchebichef Moments
by Islam S. Fathi, Hanin Ardah, Gaber Hassan and Mohammed Aly
Fractal Fract. 2025, 9(7), 427; https://doi.org/10.3390/fractalfract9070427 - 29 Jun 2025
Viewed by 386
Abstract
Advancements in Internet of Things (IoT) technologies have had a profound impact on interconnected devices, leading to exponentially growing networks of billions of intelligent devices. However, this growth has exposed Internet of Things (IoT) systems to cybersecurity vulnerabilities. These vulnerabilities are primarily caused [...] Read more.
Advancements in Internet of Things (IoT) technologies have had a profound impact on interconnected devices, leading to exponentially growing networks of billions of intelligent devices. However, this growth has exposed Internet of Things (IoT) systems to cybersecurity vulnerabilities. These vulnerabilities are primarily caused by the inherent limitations of these devices, such as finite battery resources and the requirement for ubiquitous connectivity. The rapid evolution of deep learning (DL) technologies has led to their widespread use in critical application domains, thereby highlighting the need to integrate DL methodologies to improve IoT security systems beyond the basic secure communication protocols. This is essential for creating intelligent security frameworks that can effectively address the increasingly complex cybersecurity threats faced by IoT networks. This study proposes a hybrid methodology that combines fractional discrete Tchebichef moment analysis with deep learning for the prevention of IoT attacks. The effectiveness of our proposed technique for detecting IoT threats was evaluated using the UNSW-NB15 and Bot-IoT datasets, featuring illustrative cases of common IoT attack scenarios, such as DDoS, identity spoofing, network reconnaissance, and unauthorized data access. The empirical results validate the superior classification capabilities of the proposed methodology in IoT cybersecurity threat assessments compared with existing solutions. This study leveraged the synergistic integration of discrete Tchebichef moments and deep convolutional networks to facilitate comprehensive attack detection and prevention in IoT ecosystems. Full article
(This article belongs to the Section Optimization, Big Data, and AI/ML)
Show Figures

Figure 1

Back to TopTop