Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo
Abstract
1. Introduction
- A UAV visual geolocalization framework based on multimodal visual servoing is proposed, which is combined with UAV GPS information to achieve global geo-localization of remote targets on the ground;
- The hardware framework requires only one initial calibration after the assembly is completed and does not need to be calibrated again before each subsequent measurement, which greatly improves the positioning efficiency.
- The stepped localization convergence model improves the robustness to abnormal measurement interference based on ensuring the convergence speed of localization accuracy.
2. Materials and Methods
2.1. Materials
2.2. Global Geolocation Model
2.3. Attitude Error Calibration
2.4. Fast Step Convergence Model
3. Results
3.1. Experiments’ Setup
3.2. Experiments’ Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicle |
EOSTP | Electro-optical stabilization and tracking platform |
MEMS | Micro-Electro-Mechanical System |
VOTL | Vertical take-off and landing |
References
- Zhang, Z.; Huang, L.; Wang, Q.; Jiang, L.; Qi, Y.; Wang, S.; Shen, T.; Tang, B.H.; Gu, Y. UAV Hyperspectral Remote Sensing Image Classification: A Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 3099–3124. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Wan, S.; Xu, X.; Wang, T.; Gu, Z. An intelligent video analysis method for abnormal event detection in intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4487–4495. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, D.; Qian, W.; Ren, K.; Zhang, J.; Xu, L. Vision-based inter-vehicle distance estimation for driver alarm system. IET Intell. Transp. Syst. 2019, 13, 927–932. [Google Scholar] [CrossRef]
- He, A.; Li, X.; Wu, X.; Su, C.; Chen, J.; Xu, S.; Guo, X. ALSS-YOLO: An Adaptive Lightweight Channel Split and Shuffling Network for TIR Detection in UAV Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 17308–17326. [Google Scholar] [CrossRef]
- Yang, S.; Scherer, S. CubeSLAM: Monocular 3-D object SLAM. IEEE Trans. Robot. 2019, 35, 925–938. [Google Scholar] [CrossRef]
- Chabot, F.; Chaouch, M.; Rabarisoa, J.; Teuliere, C.; Chateau, T. Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2040–2049. [Google Scholar]
- Ding, M.; Chen, W.-H.; Cao, Y.-F. Thermal infrared single-pedestrian tracking for advanced driver assistance system. IEEE Trans. Intell. Veh. 2023, 8, 814–824. [Google Scholar] [CrossRef]
- Lee, C.; Seo, H.; Kim, H.J. Position-based monocular visual servoing of an unknown target using online self-supervised learning. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4467–4473. [Google Scholar]
- Park, J.; Kim, T.; Kim, J. Model-referenced pose estimation using monocular vision for autonomous intervention tasks. Auto. Robot. 2020, 44, 205–216. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Kang, B.; Lun, D.P.-K. Multiple binocular cameras-based indoor localization technique using deep learning and multimodal fusion. IEEE Sens. J. 2022, 22, 1597–1608. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, Y.; Zhou, Y.; Wang, C.; Li, Q. A binocular stereo visual servo system for bird repellent in substations. Multimed. Tools Appl. 2023, 82, 29353–29377. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Gao, Y.; Zhang, G. Robust method for measuring the position and orientation of drogue based on stereo vision. IEEE Trans. Ind. Electron. 2021, 68, 4298–4308. [Google Scholar] [CrossRef]
- Pan, T.; Deng, B.; Dong, H.; Gui, J.; Zhao, B. Monocular-Vision-Based Moving Target Geolocation Using Unmanned Aerial Vehicle. Drones 2023, 7, 87. [Google Scholar] [CrossRef]
- Kim, Y.; Kum, D. Deep learning based vehicle position and orientation estimation via inverse perspective mapping image. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 317–323. [Google Scholar]
- You, Y.; Wang, Y.; Chao, W.L.; Garg, D.; Pleiss, G.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR++: Accurate depth for 3D object detection in autonomous driving. In Proceedings of the International Conference on Learning Representations, Virtual Only Conference, 26 April–1 May 2020. [Google Scholar]
- Sun, L.; Yin, W.; Xie, E.; Li, Z.; Sun, C.; Shen, C. Improving monocular visual odometry using learned depth. IEEE Trans. Robot. 2022, 38, 3173–3186. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Li, L.; Deng, F.; Gao, F. Outdoor long-range target positioning based on multi-monocular vision fusion. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 5273–5278. [Google Scholar]
- Gao, F.; Deng, F.; Li, L.; Zhang, L.; Zhu, J.; Yu, C. MGG: Monocular global geolocation for outdoor long-range targets. IEEE Trans. Image Process. 2021, 30, 6349–6363. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, L.; Gao, F.; Qiu, H.; Gao, X.; Chen, J. Long-range binocular vision target geolocation using handheld electronic devices in outdoor environment. IEEE Trans. Image Process. 2020, 29, 5531–5541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, N.; Yan, G.; Li, W. The development of distributed cooperative localization algorithms for Multi-UAV systems in the past decade. Measurement 2025, 256, 118040. [Google Scholar] [CrossRef]
- Xin, X.; Pan, F.; Wang, Y.; Feng, X. Multi-UAV Cooperative Localization Using Adaptive Wasserstein Filter with Distance-Constrained Bare Bones Self-Recovery Particles. Drones 2024, 8, 234. [Google Scholar] [CrossRef]
- Pan, T.; Gui, J.; Dong, H.; Deng, B.; Zhao, B. Vision-Based Moving-Target Geolocation Using Dual Unmanned Aerial Vehicles. Remote Sens. 2023, 15, 389. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Zhang, L.; Deng, F. AGCG: Air–Ground Collaboration Geolocation Based on Visual Servo with Uncalibrated Cameras. IEEE Trans. Ind. Electron. 2024, 71, 14410–14419. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Z.; Wang, X.; Fan, Z.; Wang, X.; Zhang, L.; Fu, H.; Deng, F. VSG: Visual Servo Based Geolocalization for Long-Range Target in Outdoor Environment. IEEE Trans. Intell. Veh. 2024, 9, 4504–4517. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, T.; Bai, Y.; Ning, Y.; Li, Y.; Fan, J.; Li, D. Online ground multitarget geolocation based on 3-D map construction using a UAV platform. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5621817. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Sun, C.; He, R.; Zhang, Y. HSP-YOLOv8: UAV Aerial Photography Small Target Detection Algorithm. Drones 2024, 8, 453. [Google Scholar] [CrossRef]
- Wang, D.; Gao, Z.; Fang, J.; Li, Y.; Xu, Z. Improving UAV Aerial Imagery Detection Method via Superresolution Synergy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 3959–3972. [Google Scholar] [CrossRef]
- Gao, H.; Yan, Y.; He, Y.; Zhou, J.; Zhang, Z.; Yang, Y. CAIL: Cross-Modal Vehicle Reidentification in Aerial Images Using the Centroid-Aligned Implicit Learning Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 2577–2588. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shi, Z.; Zhang, Y.; Zhang, Y. Moderately Dense Adaptive Feature Fusion Network for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5616712. [Google Scholar] [CrossRef]
- Xu, C.; Huang, D.; Liu, J. Target location of unmanned aerial vehicles based on the electro-optical stabilization and tracking platform. Measurement 2019, 147, 106848. [Google Scholar] [CrossRef]
- Yi, N.; Sun, W.; Zhou, X.; Chen, L.; Zhang, J.; Han, D.; Sun, C. A Decoupled-DCM Orientation Estimator for Eliminating Influence of Magnetic Interference on Roll Angle and Pitch Angle. IEEE Trans. Instrum. Meas. 2023, 72, 9511514. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L.; Sun, C.; Jia, W.; Yi, N.; Sun, W. Highly Accurate Attitude Estimation of Unmanned Aerial Vehicle Payloads Using Low-Cost MEMS. Micromachines 2025, 16, 632. [Google Scholar] [CrossRef]
- Zhou, X.; Jia, W.; He, R.; Sun, W. High-Precision Localization Tracking and Motion State Estimation of Ground-Based Moving Target Utilizing Unmanned Aerial Vehicle High-Altitude Reconnaissance. Remote Sens. 2025, 17, 735. [Google Scholar] [CrossRef]
- Bi, T.; Li, X.; Chen, W.; Ma, Z.; Xu, L.; Li, D. Two-Parameter Gauss-Newton Based Real-Time Ranging Method for Full-Waveform LiDAR. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
Parameter Name | Error Value |
---|---|
UAV navigational yaw angle | 1° |
UAV navigational pitch angle | 0.2° |
UAV navigational roll angle | 0.2° |
Optoelectronic load pitch angle | 0.1° |
Optoelectronic load rotation angle | 0.1° |
UAV GPS | 10 m |
Laser measurement distance | 10 m |
Experiment Name | A | B(a) | B(b) | C | D | E | F | |
---|---|---|---|---|---|---|---|---|
VSG one-shot | 38.13 | 39.29 | 38.13 | 40.13 | 41.61 | 57.19 | 59.99 | |
VSG + G-N | 13.45 | 17.88 | 290.61 | 23.47 | 21.85 | 24.48 | 27.78 | |
Ours | λ = 0.05 | 2.79 | 2.43 | 1.62 | 9.45 | 5.74 | 15.86 | 22.13 |
λ = 0.25 | 2.12 | 1.58 | 3.55 | 3.30 | 3.34 | 4.38 | 6.24 | |
λ = 0.45 | 2.48 | 2.77 | 7.14 | 3.96 | 3.86 | 5.93 | 8.17 | |
λ = 0.65 | 2.57 | 4.05 | 10.33 | 4.22 | 4.12 | 6.75 | 9.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; He, R.; Jia, W.; Liu, H.; Ma, Y.; Sun, W. Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo. Remote Sens. 2025, 17, 2426. https://doi.org/10.3390/rs17142426
Zhou X, He R, Jia W, Liu H, Ma Y, Sun W. Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo. Remote Sensing. 2025; 17(14):2426. https://doi.org/10.3390/rs17142426
Chicago/Turabian StyleZhou, Xuyang, Ruofei He, Wei Jia, Hongjuan Liu, Yuanchao Ma, and Wei Sun. 2025. "Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo" Remote Sensing 17, no. 14: 2426. https://doi.org/10.3390/rs17142426
APA StyleZhou, X., He, R., Jia, W., Liu, H., Ma, Y., & Sun, W. (2025). Remote Target High-Precision Global Geolocalization of UAV Based on Multimodal Visual Servo. Remote Sensing, 17(14), 2426. https://doi.org/10.3390/rs17142426