Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,241)

Search Parameters:
Keywords = reconfigurable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1886 KiB  
Article
Methodology-Dependent Reversals in Root Decomposition: Divergent Regulation by Forest Gap and Root Order in Pinus massoniana
by Haifeng Yin, Jie Zeng, Size Liu, Yu Su, Anwei Yu and Xianwei Li
Plants 2025, 14(15), 2365; https://doi.org/10.3390/plants14152365 (registering DOI) - 1 Aug 2025
Abstract
Understanding root decomposition dynamics is essential to address declining carbon sequestration and nutrient imbalances in monoculture plantations. This study elucidates how forest gaps regulate Pinus massoniana root decomposition through comparative methodological analysis, providing theoretical foundations for near-natural forest management and carbon–nitrogen cycle optimization [...] Read more.
Understanding root decomposition dynamics is essential to address declining carbon sequestration and nutrient imbalances in monoculture plantations. This study elucidates how forest gaps regulate Pinus massoniana root decomposition through comparative methodological analysis, providing theoretical foundations for near-natural forest management and carbon–nitrogen cycle optimization in plantations. The results showed the following: (1) Root decomposition was significantly accelerated by the in situ soil litterbag method (ISLM) versus the traditional litterbag method (LM) (decomposition rate (k) = 0.459 vs. 0.188), reducing the 95% decomposition time (T0.95) by nearly nine years (6.53 years vs. 15.95 years). ISLM concurrently elevated the root potassium concentration and reconfigured the relationships between root decomposition and soil nutrients. (2) Lower-order roots (orders 1–3) decomposed significantly faster than higher-order roots (orders 4–5) (k = 0.455 vs. 0.193). This disparity was amplified under ISLM (lower-/higher-order root k ratio = 4.1) but diminished or reversed under LM (lower-/higher-order root k ratio = 0.8). (3) Forest gaps regulated decomposition through temporal phase interactions, accelerating decomposition initially (0–360 days) while inhibiting it later (360–720 days), particularly for higher-order roots. Notably, forest gap effects fundamentally reversed between methodologies (slight promotion under LM vs. significant inhibition under ISLM). Our study reveals that conventional LM may obscure genuine ecological interactions during root decomposition, confirms lower-order roots as rapid nutrient-cycling pathways, provides crucial methodological corrections for plantation nutrient models, and advances theoretical foundations for precision management of P. massoniana plantations. Full article
Show Figures

Figure 1

31 pages, 4663 KiB  
Article
Design of Reconfigurable Handling Systems for Visual Inspection
by Alessio Pacini, Francesco Lupi and Michele Lanzetta
J. Manuf. Mater. Process. 2025, 9(8), 257; https://doi.org/10.3390/jmmp9080257 (registering DOI) - 31 Jul 2025
Abstract
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such [...] Read more.
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such reconfigurable machines remains a complex, expert-dependent, and time-consuming task. This is primarily due to the lack of structured methodologies and the reliance on trial-and-error processes. In this context, this study proposes a novel theoretical framework to facilitate the design of fully reconfigurable handling systems for VISs, with a particular focus on fixture design. The framework is grounded in Model-Based Definition (MBD), embedding semantic information directly into the 3D CAD models of the inspected product. As an additional contribution, a general hardware architecture for the inspection of axisymmetric components is presented. This architecture integrates an anthropomorphic robotic arm, Numerically Controlled (NC) modules, and adaptable software and hardware components to enable automated, software-driven reconfiguration. The proposed framework and architecture were applied in an industrial case study conducted in collaboration with a leading automotive half-shaft manufacturer. The resulting system, implemented across seven automated cells, successfully inspected over 200 part types from 12 part families and detected more than 60 defect types, with a cycle below 30 s per part. Full article
38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

19 pages, 3683 KiB  
Article
Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition
by María H. Guzmán-López, Susana Sánchez-León, Miriam Marín-Sanz and Francisco Barro
Plants 2025, 14(15), 2355; https://doi.org/10.3390/plants14152355 (registering DOI) - 31 Jul 2025
Abstract
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A [...] Read more.
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A glutelins. Three CRISPR/Cas9 constructs were designed: one specific to the 13 kDa prolamin subfamily and two targeting conserved GluA glutelin regions. Edited T0 and T1 lines were generated and analyzed using InDel analysis, SDS-PAGE, Bradford assay, and RP-HPLC. Insertions were more frequent than deletions, accounting for 56% and 74% of mutations in prolamin and glutelin genes, respectively. Editing efficiency varied between sgRNAs. All lines with altered protein profiles contained InDels in target genes. SDS-PAGE confirmed the absence or reduction in bands corresponding to 13 kDa prolamins or GluA subunits, showing consistent profiles among lines carrying the same construct. Quantification revealed significant shifts in SSP composition, including increased albumin and globulin content. Prolamin-deficient lines showed reduced prolamins, while GluA-deficient lines exhibited increased prolamins. Total protein content was significantly elevated in all edited lines, suggesting enrichment in lysine-rich fractions. These findings demonstrate that CRISPR/Cas9-mediated editing of SSP genes can effectively reconfigure the rice protein profile and enhance its nutritional value. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
16 pages, 3366 KiB  
Article
Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow
by Jishun Shi, Zhipeng Song, Xiaoming Chen, Ziang Bai, Jialin Yu, Qihang Ye, Zipeng Yang, Jianru Qiao, Shuhua Ma and Kailiang Zhang
Micromachines 2025, 16(8), 895; https://doi.org/10.3390/mi16080895 (registering DOI) - 31 Jul 2025
Abstract
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles [...] Read more.
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles of ICEO streaming to stimulate and adjust the whirling flow in the circle microfluidic chamber. Based on this, we studied the distribution of an ICEO whirling flow in the detection chamber by tuning the fixed potential on the gate electrodes by the simulations. Then, we established a fluid–structure interaction model to explore the influence of blade structure parameters on the rotation performance of microfluidic motors. In addition, we investigated the rotation dependence of microfluidic motors on the potential drop between two driving electrodes and fixed potential on the gate electrodes. Next, we numerically explored the capability of these microfluidic motors for the detection of low-abundance proteins. Finally, we studied the regulating effect of potential drops between the driving electrodes on the detection performance of microfluidic motors by numerical simulations. Microfluidic motors actuated by an ICEO whirling flow hold good potential in environmental monitoring and disease diagnosis for the outstanding advantages of flexible controllability, a simple structure, and gentle work condition. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

25 pages, 874 KiB  
Article
Optimization Method for Reliability–Redundancy Allocation Problem in Large Hybrid Binary Systems
by Florin Leon and Petru Cașcaval
Mathematics 2025, 13(15), 2450; https://doi.org/10.3390/math13152450 - 29 Jul 2025
Viewed by 186
Abstract
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) [...] Read more.
This paper addresses a well-known research topic in the design of complex systems, specifically within the class of reliability optimization problems (ROPs). It focuses on optimal reliability–redundancy allocation problems (RRAPs) for large binary systems with hybrid structures. Two main objectives are considered: (1) to maximize system reliability under cost and volume constraints, and (2) to achieve the required reliability at minimal cost under a volume constraint. The system reliability model includes components with only two states: normal operating or failed. High reliability can result from directly improving component reliability, allocating redundancy, or using both approaches together. Several redundancy strategies are covered: active, passive, hybrid standby with hot, warm, or cold spares, static redundancy such as TMR and 5MR, TMR structures with control logic and spares, and reconfigurable TMR/Simplex structures. The proposed method uses a zero–one integer programming formulation that applies log-transformed reliability functions and binary decision variables to represent subsystem configurations. The experimental results validate the approach and confirm its efficiency. Full article
Show Figures

Figure 1

16 pages, 754 KiB  
Article
Achievable Rate Optimization for Reconfigurable Intelligent Surface-Aided Multi-User Movable Antenna Systems
by Liji Yu and Yuhui Ren
Sensors 2025, 25(15), 4694; https://doi.org/10.3390/s25154694 - 29 Jul 2025
Viewed by 194
Abstract
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling [...] Read more.
This paper proposes a novel optimization framework for reconfigurable intelligent surface (RIS)-aided movable antenna (MA) systems, tackling the joint optimization problem of beamforming and antenna positions. Unlike traditional approaches, we reformulate the antenna positioning task as a sequential quadratic programming (SQP) problem, enabling efficient handling of nonlinear spatial constraints through iteratively solved quadratic subproblems. An alternating optimization scheme is adopted to decouple the overall problem into two subproblems: (1) optimal beamforming using maximum ratio transmission (MRT) and fixed-point iteration, and (2) precise antenna location optimization via SQP. Simulation results demonstrate that the proposed method significantly enhances spectral efficiency by fully exploiting the synergistic benefits of RIS and MA technologies. The proposed method could achieve about a 25% performance improvement compared to the fixed-position scheme. Current approaches predominantly rely on gradient search methods, which fail to fully exploit the potential of positional DoFs. In contrast, our proposed method is more effective. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

50 pages, 7974 KiB  
Article
Multiple Histories of Russian Occultism and the Unfinished Modernity: Imperial Esoterica Versus Modernizations of Avant-Garde Conceptualism
by Dennis Ioffe
Histories 2025, 5(3), 34; https://doi.org/10.3390/histories5030034 - 29 Jul 2025
Viewed by 526
Abstract
The essay offers an expansive and multi-stratified investigation into the role of esoteric traditions within the development of Russian modernity, reframing occultism not as an eccentric deviation but as a foundational epistemological regime integral to Russia’s aesthetic, philosophical, and political evolution. By analyzing [...] Read more.
The essay offers an expansive and multi-stratified investigation into the role of esoteric traditions within the development of Russian modernity, reframing occultism not as an eccentric deviation but as a foundational epistemological regime integral to Russia’s aesthetic, philosophical, and political evolution. By analyzing the arc from Petrine-era alchemical statecraft to the techno-theurgical aspirations of Russian Cosmism and the esoteric visual regimes of the avant-garde, this essay discloses the deep ontological entanglement between sacral knowledge and modernist radical experimentation. The work foregrounds figures such as Jacob Bruce, Wassily Kandinsky, and Kazimir Malevich, situating them within broader transnational currents of Hermeticism, Theosophy, and Rosicrucianism, while interrogating the role of occult infrastructures in both late-imperial and Soviet paradigms. Drawing on recent theoretical frameworks in the global history of esotericism and modernist studies, the long-read article elucidates the metaphysical substrata animating Russian Symbolism, Abstraction, Malevich’s non-Euclidian Suprematism and Moscow Conceptualism. This study contends that esotericism in Russia—far from marginal—served as a generative matrix for radical aesthetic innovation and ideological reconfiguration. It proposes a reconceptualization of Russian cultural history as a palimpsest of submerged sacral structures, where utopia and apocalypse, magic and technology, converge in a distinctively Russian cosmopoietic horizon. Ultimately, this essay reframes Russian and European occultism as an alternate technology of cognition and a performative semiotic universe shaping not only artistic modernism but also the very grammar of Russian historical imagination. Full article
(This article belongs to the Section Cultural History)
Show Figures

Figure 1

22 pages, 1111 KiB  
Article
Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
by Harika Meesala and Gianluca Brunori
Agriculture 2025, 15(15), 1636; https://doi.org/10.3390/agriculture15151636 - 29 Jul 2025
Viewed by 179
Abstract
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with [...] Read more.
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with agroecological principles, this case study unveils how digital tools can actively reinforce agroecological practices when embedded within supportive socio-technical networks. Novel findings of this study highlight how the use of digital technologies supported agroecological practices and led to the reconfiguration of social relations, knowledge systems, and governance structures within the farm. Employing a technographic approach revealed that the farm’s transformation was driven not just by technology but through collaborative arrangements involving different stakeholders. These interactions created new routines, roles, and information flows, supporting a more distributed and participatory model of innovation. By demonstrating how digital tools can catalyse agroecological transitions in a context-sensitive and socially embedded manner, this study challenges the binary framings of technology versus ecology and calls for a more nuanced understanding of digitalisation as a socio-technical process. Full article
Show Figures

Figure 1

34 pages, 1087 KiB  
Article
Reconfiguring Urban–Rural Systems Through Agricultural Service Reform: A Socio-Technical Perspective from China
by Yuchen Lu, Chenlu Yang, Yifan Tang and Yakun Chen
Systems 2025, 13(8), 634; https://doi.org/10.3390/systems13080634 - 29 Jul 2025
Viewed by 254
Abstract
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural [...] Read more.
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural production. Drawing on staggered provincial pilot programs, we apply a double machine learning framework to assess the causal impact of service reform on the urban–rural income gap, labor reallocation, and agricultural productivity. Results show that agricultural socialization services enhance systemic efficiency by reducing labor bottlenecks, increasing technology diffusion, and fostering large-scale coordination in agricultural operations. These effects are most pronounced in provinces with stronger institutional capacity and higher levels of mechanization. The findings highlight agricultural service reform as a systemic intervention that alters resource allocation logics, drives institutional change, and fosters structural convergence across urban and rural domains. This research contributes to the understanding of agricultural modernization as a systems-engineered solution for regional inequality. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

27 pages, 1128 KiB  
Article
Adaptive Multi-Hop P2P Video Communication: A Super Node-Based Architecture for Conversation-Aware Streaming
by Jiajing Chen and Satoshi Fujita
Information 2025, 16(8), 643; https://doi.org/10.3390/info16080643 - 28 Jul 2025
Viewed by 203
Abstract
This paper proposes a multi-hop peer-to-peer (P2P) video streaming architecture designed to support dynamic, conversation-aware communication. The primary contribution is a decentralized system built on WebRTC that eliminates reliance on a central media server by employing super node aggregation. In this architecture, video [...] Read more.
This paper proposes a multi-hop peer-to-peer (P2P) video streaming architecture designed to support dynamic, conversation-aware communication. The primary contribution is a decentralized system built on WebRTC that eliminates reliance on a central media server by employing super node aggregation. In this architecture, video streams from multiple peer nodes are dynamically routed through a group of super nodes, enabling real-time reconfiguration of the network topology in response to conversational changes. To support this dynamic behavior, the system leverages WebRTC data channels for control signaling and overlay restructuring, allowing efficient dissemination of topology updates and coordination messages among peers. A key focus of this study is the rapid and efficient reallocation of network resources immediately following conversational events, ensuring that the streaming overlay remains aligned with ongoing interaction patterns. While the automatic detection of such events is beyond the scope of this work, we assume that external triggers are available to initiate topology updates. To validate the effectiveness of the proposed system, we construct a simulation environment using Docker containers and evaluate its streaming performance under dynamic network conditions. The results demonstrate the system’s applicability to adaptive, naturalistic communication scenarios. Finally, we discuss future directions, including the seamless integration of external trigger sources and enhanced support for flexible, context-sensitive interaction frameworks. Full article
(This article belongs to the Special Issue Second Edition of Advances in Wireless Communications Systems)
Show Figures

Figure 1

22 pages, 10412 KiB  
Article
Design and Evaluation of Radiation-Tolerant 2:1 CMOS Multiplexers in 32 nm Technology Node: Transistor-Level Mitigation Strategies and Performance Trade-Offs
by Ana Flávia D. Reis, Bernardo B. Sandoval, Cristina Meinhardt and Rafael B. Schvittz
Electronics 2025, 14(15), 3010; https://doi.org/10.3390/electronics14153010 - 28 Jul 2025
Viewed by 222
Abstract
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely [...] Read more.
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely used in data-path routing, clock networks, and reconfigurable systems, provides a critical benchmark for assessing radiation-hardened design methodologies. In this context, this work aims to analyze the power consumption, area overhead, and delay of 2:1 multiplexer designs under transient fault conditions, employing the CMOS and Differential Cascode Voltage Switch Logic (DCVSL) logic styles and mitigation strategies. Electrical simulations were conducted using 32 nm high-performance predictive technology, evaluating both the original circuit versions and modified variants incorporating three mitigation strategies: transistor sizing, D-Cells, and C-Elements. Key metrics, including power consumption, delay, area, and radiation robustness, were analyzed. The C-Element and transistor sizing techniques ensure satisfactory robustness for all the circuits analyzed, with a significant impact on delay, power consumption, and area. Although the D-Cell technique alone provides significant improvements, it is not enough to achieve adequate levels of robustness. Full article
Show Figures

Figure 1

20 pages, 529 KiB  
Article
Maximization of Average Achievable Rate for NOMA-UAV Dual-User Communication System Assisted by RIS
by Yuandong Liu, Jianbo Ji and Juan Yang
Electronics 2025, 14(15), 2993; https://doi.org/10.3390/electronics14152993 - 27 Jul 2025
Viewed by 151
Abstract
Non-orthogonal multiple access (NOMA) technology can effectively improve spectrum efficiency, unmanned aerial vehicle (UAV) communication has the advantage of flexible deployment, and reconfigurable intelligent surface (RIS) can intelligently control the wireless transmission environment. Traditional communication systems have problems such as limited coverage and [...] Read more.
Non-orthogonal multiple access (NOMA) technology can effectively improve spectrum efficiency, unmanned aerial vehicle (UAV) communication has the advantage of flexible deployment, and reconfigurable intelligent surface (RIS) can intelligently control the wireless transmission environment. Traditional communication systems have problems such as limited coverage and low spectrum efficiency in complex scenarios. However, a key challenge in deploying RIS-assisted NOMA-UAV communication systems lies in how to jointly optimize the UAV flight trajectory, power allocation strategy, and RIS phase offset to achieve the maximum average achievable rate for users. The non-convex nature of the optimization complicates the problem, making it challenging to find an efficient solution. Based on this, this paper presents a RIS-assisted NOMA-UAV communication system consisting of one UAV, one RIS, and two ground users. To achieve the maximum average rate for users, the UAV flight trajectory, power allocation strategy, and RIS phase offset are jointly optimized. For the non-convex problem, we decompose it into three sub-problems based on its inherent structural characteristics and use an alternating iterative approach to gradually converge to a feasible solution. The simulation results demonstrate that the proposed scheme offers significant advantages in the application scenario. Compared to other benchmark schemes, it delivers superior performance improvements to the communication system and offers higher practical value. Full article
Show Figures

Figure 1

18 pages, 1040 KiB  
Article
A TDDPG-Based Joint Optimization Method for Hybrid RIS-Assisted Vehicular Integrated Sensing and Communication
by Xinren Wang, Zhuoran Xu, Qin Wang, Yiyang Ni and Haitao Zhao
Electronics 2025, 14(15), 2992; https://doi.org/10.3390/electronics14152992 - 27 Jul 2025
Viewed by 251
Abstract
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and [...] Read more.
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and communication by superimposing the communication and sensing signals within the same waveform. To decouple the complex joint design problem, a dual-DDPG architecture is introduced, in which one agent optimizes the transmit beamforming vector and the other adjusts the RIS phase shift matrix. Both agents share a unified reward function that comprehensively considers multi-user interference (MUI), total transmit power, RIS noise power, and sensing accuracy via the CRLB constraint. Simulation results demonstrate that the proposed TDDPG algorithm significantly outperforms conventional DDPG in terms of sum rate and interference suppression. Moreover, the adoption of a hybrid RIS enables an effective trade-off between communication performance and system energy efficiency, highlighting its practical deployment potential in dynamic IoV environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop