Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = recombinant polymerase amplification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2686 KB  
Article
Rapid Visual Detection of Senecavirus A Based on RPA-CRISPR/Cas12a System with Canonical or Suboptimal PAM
by Xinrui Zhao, Genghong Jiang, Qinyi Ruan, Yunjie Qu, Xiaoyu Yang, Yongyan Shi, Dedong Wang, Jianwei Zhou, Jue Liu and Lei Hou
Viruses 2025, 17(9), 1264; https://doi.org/10.3390/v17091264 - 18 Sep 2025
Viewed by 253
Abstract
Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there [...] Read more.
Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there remains a pressing need for rapid, convenient, highly sensitive, and specific diagnostic tools. Here, we developed a two-pot assay combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a containing crRNA targeting canonical protospacer adjacent motifs (PAMs) for simple, rapid, and visual identification of SVA in clinical samples. Subsequently, we successfully streamlined this system into a one-pot assay by selecting a specially designed crRNA targeting suboptimal PAM and integrating RPA amplification reagents and CRISPR/Cas12a detection components into a single reaction system in one tube. The developed methods exhibited diagnostic specificity, showing no cross-reactivity with four major swine viruses, while showing remarkable sensitivity with a lower detection limit of just two copies. Clinical validation in field samples using these two methods revealed perfect agreement (100% concordance) with conventional quantitative PCR (qPCR) results (sample size, n = 28), with both assays completing detection within 30 min. These results demonstrate that both the one-pot and two-pot RPA-CRISPR/Cas12a assays offer a reliable and efficient method for detecting SVA in this pilot study. Despite the limited sample size, the assays combine rapid reaction time with high sensitivity and specificity, showing great potential for future diagnostic applications. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

12 pages, 3211 KB  
Article
CRISPR/Cas12a-Based One-Tube RT-RAA Assay for PoRV Genotyping
by Mingfang Bi, Zunbao Wang, Kaijie Li, Yuhe Ren, Dan Ma and Xiaobing Mo
Int. J. Mol. Sci. 2025, 26(14), 6846; https://doi.org/10.3390/ijms26146846 - 16 Jul 2025
Viewed by 596
Abstract
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and [...] Read more.
Porcine rotavirus (PoRV), a primary etiological agent of viral diarrhea in piglets, frequently co-infects with other enteric pathogens, exacerbating disease severity and causing substantial economic losses. Its genetic recombination capability enables cross-species transmission potential, posing public health risks. Globally, twelve G genotypes and thirteen P genotypes have been identified, with G9, G5, G3, and G4 emerging as predominant circulating strains. The limited cross-protective immunity between genotypes compromises vaccine efficacy, necessitating genotype surveillance to guide vaccine development. While conventional molecular assays demonstrate sensitivity, they lack rapid genotyping capacity and face technical limitations. To address this, we developed a novel diagnostic platform integrating reverse transcription recombinase-aided amplification (RT-RAA) with CRISPR–Cas12a. This system employs universal primers for the simultaneous amplification of G4/G5/G9 genotypes in a single reaction, coupled with sequence-specific CRISPR recognition, achieving genotyping within 50 min at 37 °C with 100 copies/μL sensitivity. Clinical validation showed a high concordance with reverse transcription quantitative polymerase chain reaction (RT-qPCR). This advancement provides an efficient tool for rapid viral genotyping, vaccine compatibility evaluation, and optimized epidemic control strategies. Full article
(This article belongs to the Special Issue Protein Design and Engineering in Biochemistry)
Show Figures

Figure 1

19 pages, 10572 KB  
Article
Development and Application of a TaqMan-Based qPCR Assay for Detecting ENTV-2 in Goats
by Pengfei Li, Haike Yin, Xiaoan Cao, Xi Lan, Jinyan Wu, Jijun He, Ligang Yuan and Youjun Shang
Genes 2025, 16(5), 529; https://doi.org/10.3390/genes16050529 - 29 Apr 2025
Viewed by 697
Abstract
Background: In recent years, enzootic nasal tumor virus 2 (ENTV-2) has become prevalent in China, resulting in substantial economic losses for the goat industry. In order to enrich the availability of detection methods for ENTV-2, this study developed an expedited and accurate reverse-transcription [...] Read more.
Background: In recent years, enzootic nasal tumor virus 2 (ENTV-2) has become prevalent in China, resulting in substantial economic losses for the goat industry. In order to enrich the availability of detection methods for ENTV-2, this study developed an expedited and accurate reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) assay to facilitate the detection and quantification of ENTV-2. Methods: Specifically, a pair of primers and a TaqMan probe targeting conserved regions of the pro gene were designed to allow the specific amplification and detection of viral RNA in clinical samples. Moreover, modifying the method for use in a quantitative real-time PCR (qPCR) assay enables the detection of proviral DNA in tumor specimens. Results: Both methods exhibited a detection limit for the ENTV-2 standard plasmid at 100 copies/µL. The detection methods we established exhibited high specificity and sensitivity to ENTV-2, without cross-reactivity with other pathogens causing respiratory diseases or endogenous retroviruses (EBRVs). We performed an ENTV-2 analysis of clinical samples in goats via RT-qPCR using nasal swab samples (n = 558) collected from three geographically distinct flocks in Lingyou County, Baoji City, Shaanxi Province, China, and 58 positive samples were detected for a positivity rate of 10.4%. After euthanasia, the autopsy report showed nasal cavity masses. Histopathological analysis demonstrated an epithelial neoplasm, in compliance with the features of enzootic nasal adenocarcinoma (ENA). Three full-length genomes were sequenced to assess genomic sequence conservation and variation. Multiple-sequence alignment demonstrated the existence of sequence variations among strains. Phylogenetic analysis of the nucleotide sequences revealed that the ENTV-2 SX1~3 isolates were phylogenetically related to the Chinese ENTV-2 isolates, especially the JY strain. Furthermore, recombination analysis suggested that both ENTV-2 SX1 and ENTV-2 SX2 might be recombinant variants. Conclusions: In conclusion, both methods are highly specific for the pro gene of ENTV-2, and the development of this assay has been deemed crucial to the early identification and subsequent control of this viral infection. Our results provide valuable information for further research on the genetic variation and evolution of ENTV-2 in China. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3434 KB  
Article
Development of Real-Time and Lateral Flow Dipstick Recombinase Polymerase Amplification Assays for the Rapid Field Diagnosis of MGF-505R Gene-Deleted Mutants of African Swine Fever Virus
by Jizhou Lv, Junhua Deng, Yu Lin, Dongjie Chen, Xiangfen Yuan, Fang Wei, Caixia Wang, Xiaolin Xu and Shaoqiang Wu
Vet. Sci. 2025, 12(3), 193; https://doi.org/10.3390/vetsci12030193 - 20 Feb 2025
Viewed by 1070
Abstract
Pigs are susceptible to the deadly infectious disease known as African swine fever (ASF), which is brought on by the African swine fever virus (ASFV). As such, prompt and precise disease detection is essential. Deletion of the virulence-related genes MGF-505/360 and EP402R generated [...] Read more.
Pigs are susceptible to the deadly infectious disease known as African swine fever (ASF), which is brought on by the African swine fever virus (ASFV). As such, prompt and precise disease detection is essential. Deletion of the virulence-related genes MGF-505/360 and EP402R generated from the virulent genotype II virus significantly reduces its virulence, and animal tests using one of the recombinant viruses show great lethality and transmissibility in pigs. The isothermal technique known as recombinase polymerase amplification (RPA) is perfect for rapid in-field detection. To accurately identify ASFV MGF-505R gene-deleted mutants and assess the complex infection situation of ASF, RPA assays in conjunction with real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA-LFD assay) were created. These innovative methods allow for the direct detection of ASFV from pigs, offering in-field pathogen detection, timely disease management, and satisfying animal quarantine requirements. The specific primers and probes were designed against conserved regions of ASFV B646L and MGF-505R genes. Using recombinant plasmid DNA containing ASFV MGF-505R gene-deleted mutants as a template, the sensitivity of both ASF real-time RPA and ASF RPA-LFD assays were demonstrated to be 10 copies per reaction within 20 min at 37 °C. Neither assay had cross-reactions with CSFV, PRRSV, PPV, PRV, ot PCV2, common viruses seen in pigs, indicating that these methods were highly specific for ASFV. The evaluation of the performance of ASFV real-time RPA and ASFV RPA-LFD assays with clinical samples (n = 453) demonstrated their ability to specifically detect ASFV or MGF-505R gene-deleted mutants in samples of pig feces, ham, fresh pork, and blood. Both assays exhibited the same diagnostic rate as the WOAH-recommended real-time fluorescence PCR, highlighting their reliability and validity. These assays offer a simple, cost-effective, rapid, and sensitive method for on-site identification of ASFV MGF-505R gene-deleted mutants. As a promising alternative to real-time PCR, they have the potential to significantly enhance the prevention and control of ASF in field settings. Full article
Show Figures

Figure 1

19 pages, 1796 KB  
Review
Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification
by Shiwen Wu, Wenhan Yu, Xianshu Fu, Xiaoping Yu, Zihong Ye, Mingzhou Zhang, Yulou Qiu and Biao Ma
Molecules 2024, 29(20), 4972; https://doi.org/10.3390/molecules29204972 - 21 Oct 2024
Cited by 7 | Viewed by 3827
Abstract
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA [...] Read more.
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected. Full article
(This article belongs to the Special Issue Applied Analytical Chemistry: Second Edition)
Show Figures

Figure 1

19 pages, 4219 KB  
Article
Exploring Molecular Drivers of PARPi Resistance in BRCA1-Deficient Ovarian Cancer: The Role of LY6E and Immunomodulation
by Tirzah Braz Petta and Joseph Carlson
Int. J. Mol. Sci. 2024, 25(19), 10427; https://doi.org/10.3390/ijms251910427 - 27 Sep 2024
Cited by 2 | Viewed by 2230
Abstract
Approximately 50% of patients diagnosed with ovarian cancer harbor tumors with mutations in BRCA1, BRCA2, or other genes involved in homologous recombination repair (HR). The presence of homologous recombination deficiency (HRD) is an approved biomarker for poly-ADP-ribose polymerase inhibitors (PARPis) as a maintenance [...] Read more.
Approximately 50% of patients diagnosed with ovarian cancer harbor tumors with mutations in BRCA1, BRCA2, or other genes involved in homologous recombination repair (HR). The presence of homologous recombination deficiency (HRD) is an approved biomarker for poly-ADP-ribose polymerase inhibitors (PARPis) as a maintenance treatment following a positive response to initial platinum-based chemotherapy. Despite this treatment option, the development of resistance to PARPis is common among recurrent disease patients, leading to a poor prognosis. In this study, we conducted a comprehensive analysis using publicly available datasets to elucidate the molecular mechanisms driving PARPi resistance in BRCA1-deficient ovarian cancer. Our findings reveal a central role for the interferon (IFN) pathway in mediating resistance in the context of BRCA1 deficiency. Through integrative bioinformatics approaches, we identified LY6E, an interferon-stimulated gene, as a key mediator of PARPi resistance, with its expression linked to an immunosuppressive tumor microenvironment (TME) encouraging tumor progression and invasion. LY6E amplification correlates with poor prognosis and increased expression of immune-related gene signatures, which is predictive of immunotherapy response. Interestingly, LY6E expression upon PARPi treatment resistance was found to be dependent on BRCA1 status. Gene expression analysis in the Orien/cBioPortal database revealed an association between LY6E and genes involved in DNA repair, such as Rad21 and PUF60, emphasizing the interplay between DNA repair pathways and immune modulation. Moreover, PUF60, Rad21, and LY6E are located on chromosome 8q24, a locus often amplified and associated with the progression of ovarian cancer. Overall, our study provides novel insights into the molecular determinants of PARPi resistance and highlights LY6E as a promising prognostic biomarker in the management of HRD ovarian cancer. Future studies are needed to fully elucidate the molecular mechanisms underlying the role of LY6E in PARPi resistance. Full article
Show Figures

Figure 1

12 pages, 4600 KB  
Article
Step-by-Step Development of a Recombinase Polymerase Amplification (RPA) Assay for Sex Identification in Papaya
by José Guadalupe Ávila-Hernández, Alejandro Coreño-Alonso, Mario Alberto Pantoja-Alonso, Francisco Javier Córdoba-Andrade, Rogelio González-González, Corina E. Díaz-Quezada, Alberto Camas-Reyes and Agustino Martínez-Antonio
Appl. Biosci. 2024, 3(4), 426-437; https://doi.org/10.3390/applbiosci3040027 - 24 Sep 2024
Viewed by 3309
Abstract
Papaya is a globally important crop, with production primarily based on hermaphrodite plants. Papaya has three sex types—male, female, and hermaphrodite—determined by flower morphology, but this is only distinguishable at the flowering stage. In this study, a recombinase polymerase amplification (RPA) assay was [...] Read more.
Papaya is a globally important crop, with production primarily based on hermaphrodite plants. Papaya has three sex types—male, female, and hermaphrodite—determined by flower morphology, but this is only distinguishable at the flowering stage. In this study, a recombinase polymerase amplification (RPA) assay was developed and optimized to identify the three sexes of papaya. Recombinant uvsX, uvsY, gp32, and Bsu DNA polymerase were used to study the effects of temperature, reaction time, and sensitivity conditions for RPA reaction efficiency. The optimal conditions were found to be 41 °C and a 30 min reaction time, allowing the detection of the target sex from specific DNA markers, even when using crude extract. This study shows that RPA could be used for sex determination in papaya, and the findings could contribute to developing a point-of-need strategy due to their sensitivity and specificity. Full article
Show Figures

Graphical abstract

11 pages, 1548 KB  
Article
Graphene-Based Virus Enrichment Protocol Increases the Detection Sensitivity of Human Norovirus in Strawberry and Oyster Samples
by Shuqing Zhou, Min Jin, Jing Yin, Danyang Shi, Haibei Li, Zhixian Gao, Zhengshan Chen, Zhongwei Yang, Tianjiao Chen, Huaran Wang, Junwen Li and Dong Yang
Foods 2024, 13(18), 2967; https://doi.org/10.3390/foods13182967 - 19 Sep 2024
Cited by 1 | Viewed by 1353
Abstract
Human noroviruses (HuNoVs), the most prevalent viral contaminant in food, account for a substantial proportion of nonbacterial gastroenteritis cases. Extensive work has been focused on the diagnosis of HuNoVs in clinical samples, whereas the availability of sensitive detection methods for their detection in [...] Read more.
Human noroviruses (HuNoVs), the most prevalent viral contaminant in food, account for a substantial proportion of nonbacterial gastroenteritis cases. Extensive work has been focused on the diagnosis of HuNoVs in clinical samples, whereas the availability of sensitive detection methods for their detection in food is lacking. Here, we developed a virus enrichment approach utilizing graphene-based nanocomposites (CTAB-rGO-Fe3O4) that does not rely on large instruments and is suitable for on-site food pretreatment. The recovery efficiency of the developed virus enrichment procedure for serially diluted GII.4 norovirus ranged from 10.06 to 72.67% in strawberries and from 2.66 to 79.65% in oysters. Furthermore, we developed a real-time recombinase polymerase amplification (real-time RPA) assay, which can detect as low as 1.22 genome copies µL−1 of recombinant plasmid standard and has no cross-reactivity with genomes of astrovirus, rotavirus, adenovirus, and MS2 bacteriophage. Notably, the combined virus enrichment and real-time RPA detection assay enhanced the detection limits to 2.84 and 37.5 genome copies g−1 in strawberries and oysters, respectively, compared to those of qPCR. Our strategy, the graphene-based virus enrichment method combined with real-time RPA, presents a promising tool for sensitively detecting HuNoVs in food samples. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 3135 KB  
Article
Recombinant Polymerase Amplification Coupled with CRISPR/Cas12a Detection System for Rapid Visual Detection of Porcine Circovirus 3
by Genghong Jiang, Xiaoyu Yang, Zhaoyang Li, Jingyu Mao, Penghui Zeng, Dedong Wang, Zhi Wu, Changzhe Liu, Yonghui Qiu, Yongqiu Cui, Jianwei Zhou, Jue Liu and Lei Hou
Animals 2024, 14(17), 2527; https://doi.org/10.3390/ani14172527 - 30 Aug 2024
Cited by 4 | Viewed by 1748
Abstract
The porcine circovirus type 3 (PCV3) infection is an emerging disease associated with clinical signs of porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs. Currently, there is a lack of effective vaccines and therapeutics against this disease. Therefore, rapid, effective, sensitive, and specific [...] Read more.
The porcine circovirus type 3 (PCV3) infection is an emerging disease associated with clinical signs of porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs. Currently, there is a lack of effective vaccines and therapeutics against this disease. Therefore, rapid, effective, sensitive, and specific detection methods are crucial for the timely identification, prevention, and control of PCV3. In this study, we developed one- and two-pot visual detection methods for PCV3 using a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a detection system combined with recombinase polymerase amplification (RPA). These two methods demonstrated no cross-reactivity with eight other swine viruses and exhibited minimum detection limits of five and two copies of viral DNA, respectively, revealing their high specificity and sensitivity. During a clinical sample detection within 30 min, the coincidence rates between the one- and two-pot detection methods and real-time quantitative polymerase chain reaction (qPCR) were 100%. In conclusion, both one- and two-pot RPA-CRISPR/Cas12a detection methods have significant potential for the rapid, sensitive, and specific visual detection of PCV3. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 5685 KB  
Article
Production of Reverse Transcriptase and DNA Polymerase in Bacterial Expression Systems
by Kristína Hriňová, Johana Dlapová, Bohuš Kubala, Ľubica Kormanová, Zdenko Levarski, Eva Struhárňanská, Ján Turňa and Stanislav Stuchlík
Bioengineering 2024, 11(7), 727; https://doi.org/10.3390/bioengineering11070727 - 18 Jul 2024
Cited by 1 | Viewed by 2380
Abstract
DNA amplification and reverse transcription enzymes have proven to be invaluable in fast and reliable diagnostics and research applications because of their processivity, specificity, and robustness. Our study focused on the production of mutant Taq DNA polymerase and mutant M-MLV reverse transcriptase in [...] Read more.
DNA amplification and reverse transcription enzymes have proven to be invaluable in fast and reliable diagnostics and research applications because of their processivity, specificity, and robustness. Our study focused on the production of mutant Taq DNA polymerase and mutant M-MLV reverse transcriptase in the expression hosts Vibrio natriegens and Escherichia coli under various expression conditions. We also examined nonspecific extracellular production in V. natriegens. Intracellularly, M-MLV was produced in V. natriegens at the level of 11% of the total cell proteins (TCPs) compared with 16% of TCPs in E. coli. We obtained a soluble protein that accounted for 11% of the enzyme produced in V. natriegens and 22% of the enzyme produced in E. coli. Taq pol was produced intracellularly in V. natriegens at the level of 30% of TCPs compared with 26% of TCPs in E. coli. However, Taq pol was almost non-soluble in E. coli, whereas in V. natriegens, we obtained a soluble protein that accounted for 23% of the produced enzyme. We detected substantial extracellular production of Taq pol. Thus, V. natriegens is a suitable alternative host with the potential for production of recombinant proteins. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

12 pages, 1112 KB  
Article
A Dual and Rapid RPA-CRISPR/Cas12a Method for Simultaneous Detection of Cattle and Soybean-Derived Adulteration in Goat Milk Powder
by Yuanjun Wen, Shuqin Huang, Hongtao Lei, Xiangmei Li and Xing Shen
Foods 2024, 13(11), 1637; https://doi.org/10.3390/foods13111637 - 24 May 2024
Cited by 2 | Viewed by 1595
Abstract
The adulteration of goat milk powder occurs frequently; cattle-derived and soybean-derived ingredients are common adulterants in goat milk powder. However, simultaneously and rapidly detecting cattle-derived and soybean-derived components is still a challenge. An efficient, high-throughput screening method for adulteration detection is needed. In [...] Read more.
The adulteration of goat milk powder occurs frequently; cattle-derived and soybean-derived ingredients are common adulterants in goat milk powder. However, simultaneously and rapidly detecting cattle-derived and soybean-derived components is still a challenge. An efficient, high-throughput screening method for adulteration detection is needed. In this study, a rapid method was developed to detect the adulteration of common cattle-derived and soybean-derived components simultaneously in goat milk powder by combining the CRISPR/Cas12a system with recombinant polymerase amplification (RPA). A dual DNA extraction method was employed. Primers and crRNA for dual detection were designed and screened, and a series of condition optimizations were carried out in this experiment. The optimized assay rapidly detected cattle-derived and soybean-derived components in 40 min. The detection limits of both cattle-derived and soybean-derived components were 1% (w/w) for the mixed adulteration models. The established method was applied to a blind survey of 55 commercially available goat milk powder products. The results revealed that 36.36% of the samples contained cattle-derived or soybean-derived ingredients, which revealed the noticeable adulteration situation in the goat milk powder market. This study realized a fast flow of dual extraction, dual amplification, and dual detection of cattle-derived and soybean-derived components in goat milk powder for the first time. The method developed can be used for high-throughput and high-efficiency on-site primary screening of goat milk powder adulterants, and provides a technical reference for combating food adulteration. Full article
Show Figures

Figure 1

11 pages, 3429 KB  
Article
A Fusion of Taq DNA Polymerase with the CL7 Protein from Escherichia coli Remarkably Improves DNA Amplification
by Zhongchen Li, Yaping Wang, Xiangyi Wang, Shuhui Niu, Zhenlong Su, Fei Wang, Jing Ni, Yan Gong and Ben Rao
Molecules 2024, 29(5), 1145; https://doi.org/10.3390/molecules29051145 - 4 Mar 2024
Cited by 1 | Viewed by 4291
Abstract
DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study [...] Read more.
DNA polymerases are important enzymes that synthesize DNA molecules and therefore are critical to various scientific fields as essential components of in vitro DNA synthesis reactions, including PCR. Modern diagnostics, molecular biology, and genetic engineering require DNA polymerases with improved performance. This study aimed to obtain and characterize a new CL7-Taq fusion DNA polymerase, in which the DNA coding sequence of Taq DNA polymerase was fused with that of CL7, a variant of CE7 (Colicin E7 DNase) from Escherichia coli. The resulting novel recombinant open reading frame was cloned and expressed in E. coli. The recombinant CL7-Taq protein exhibited excellent thermostability, extension rate, sensitivity, and resistance to PCR inhibitors. Our results showed that the sensitivity of CL7-Taq DNA polymerase was 100-fold higher than that of wild-type Taq, which required a template concentration of at least 1.8 × 105 nM. Moreover, the extension rate of CL7-Taq was 4 kb/min, which remarkably exceeded the rate of Taq DNA polymerase (2 kb/min). Furthermore, the CL7 fusion protein showed increased resistance to inhibitors of DNA amplification, including lactoferrin, heparin, and blood. Single-cope human genomic targets were readily available from whole blood, and pretreatment to purify the template DNA was not required. Thus, this is a novel enzyme that improved the properties of Taq DNA polymerase, and thus may have wide application in molecular biology and diagnostics. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

21 pages, 778 KB  
Article
PCR-Based Equine Gene Doping Test for the Australian Horseracing Industry
by Tessa Wilkin, Natasha A. Hamilton, Adam T. Cawley, Somanath Bhat and Anna Baoutina
Int. J. Mol. Sci. 2024, 25(5), 2570; https://doi.org/10.3390/ijms25052570 - 22 Feb 2024
Cited by 7 | Viewed by 2854
Abstract
The term ‘gene doping’ is used to describe the use of any unauthorized gene therapy techniques. We developed a test for five likely candidate genes for equine gene doping: EPO, FST, GH1, IGF1, and ILRN1. The test is based [...] Read more.
The term ‘gene doping’ is used to describe the use of any unauthorized gene therapy techniques. We developed a test for five likely candidate genes for equine gene doping: EPO, FST, GH1, IGF1, and ILRN1. The test is based on real-time polymerase chain reaction (PCR) and includes separate screening and confirmation assays that detect different unique targets in each transgene. For doping material, we used nonviral (plasmid) and viral (recombinant adeno-associated virus) vectors carrying complementary DNA for the targeted genes; the vectors were accurately quantified by digital PCR. To reduce non-specific amplification from genomic DNA observed in some assays, a restriction digest step was introduced in the PCR protocol prior to cycling to cut the amplifiable targets within the endogenous genes. We made the screening stage of the test simpler and faster by multiplexing PCR assays for four transgenes (EPO, FST, IGF1, and ILRN1), while the GH1 assay is performed in simplex. Both stages of the test reliably detect at least 20 copies of each transgene in a background of genomic DNA equivalent to what is extracted from two milliliters of equine blood. The test protocol was documented and tested with equine blood samples provided by an official doping control authority. The developed tests will form the basis for screening official horseracing samples in Australia. Full article
(This article belongs to the Special Issue Gene Doping Control)
Show Figures

Figure 1

17 pages, 4648 KB  
Article
Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay for the Rapid and Sensitive Detection of Pseudo-nitzschia multiseries
by Yuqing Yao, Ningjian Luo, Yujie Zong, Meng Jia, Yichen Rao, Hailong Huang and Haibo Jiang
Int. J. Mol. Sci. 2024, 25(2), 1350; https://doi.org/10.3390/ijms25021350 - 22 Jan 2024
Cited by 4 | Viewed by 2996
Abstract
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related [...] Read more.
The harmful algal bloom (HAB) species Pseudo-nitzschia multiseries is widely distributed worldwide and is known to produce the neurotoxin domoic acid, which harms marine wildlife and humans. Early detection and preventative measures are more critical than late management. However, the major challenge related to early detection is the accurate and sensitive detection of microalgae present in low abundance. Therefore, developing a sensitive and specific method that can rapidly detect P. multiseries is critical for expediting the monitoring and prediction of HABs. In this study, a novel assay method, recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD), is first developed for the detection of P. multiseries. To obtain the best test results, several important factors that affected the amplification effect were optimized. The internal transcribed spacer sequence of the nuclear ribosomal DNA from P. multiseries was selected as the target region. The results showed that the optimal amplification temperature and time for the recombinase polymerase amplification (RPA) of P. multiseries were 37 °C and 15 min. The RPA products could be visualized directly using the lateral flow dipstick after only 3 min. The RPA-LFD assay sensitivity for detection of recombinant plasmid DNA (1.9 × 100 pg/μL) was 100 times more sensitive than that of RPA, and the RPA-LFD assay sensitivity for detection of genomic DNA (2.0 × 102 pg/μL) was 10 times more sensitive than that of RPA. Its feasibility in the detection of environmental samples was also verified. In conclusion, these results indicated that the RPA-LFD detection of P. multiseries that was established in this study has high efficiency, sensitivity, specificity, and practicability. Management measures made based on information gained from early detection methods may be able to prevent certain blooms. The use of a highly sensitive approach for early warning detection of P. multiseries is essential to alleviate the harmful impacts of HABs on the environment, aquaculture, and human health. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 4179 KB  
Article
Rapid Visual Detection of African Swine Fever Virus with a CRISPR/Cas12a Lateral Flow Strip Based on Structural Protein Gene D117L
by Desheng Zhang, Sen Jiang, Nengwen Xia, Youwen Zhang, Jiajia Zhang, Anjing Liu, Chenyang Zhang, Nanhua Chen, Francois Meurens, Wanglong Zheng and Jianzhong Zhu
Animals 2023, 13(23), 3712; https://doi.org/10.3390/ani13233712 - 30 Nov 2023
Cited by 9 | Viewed by 2397
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a [...] Read more.
African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV. Full article
(This article belongs to the Special Issue Prevalence and Diagnosis of Viral Diseases in Pig Production)
Show Figures

Figure 1

Back to TopTop