Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,880)

Search Parameters:
Keywords = real working task

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4283 KiB  
Review
Review on Upper-Limb Exoskeletons
by André Pires, Filipe Neves dos Santos and Vítor Tinoco
Machines 2025, 13(8), 642; https://doi.org/10.3390/machines13080642 - 23 Jul 2025
Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the [...] Read more.
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual’s ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond. Full article
(This article belongs to the Special Issue Design and Control of Assistive Robots)
Show Figures

Figure 1

19 pages, 5417 KiB  
Article
SE-TFF: Adaptive Tourism-Flow Forecasting Under Sparse and Heterogeneous Data via Multi-Scale SE-Net
by Jinyuan Zhang, Tao Cui and Peng He
Appl. Sci. 2025, 15(15), 8189; https://doi.org/10.3390/app15158189 - 23 Jul 2025
Abstract
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with [...] Read more.
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with reinforcement-driven optimization to adaptively re-weight environmental, economic, and social features. A benchmark dataset of 17.8 million records from 64 countries and 743 cities (2016–2024) is compiled from the Open Travel Data repository in github (OPTD) for training and validation. SE-TFF introduces (i) a multi-channel SE module for fine-grained feature selection under heterogeneous conditions, (ii) a Top-K attention filter to preserve salient context in highly sparse matrices, and (iii) a Double-DQN layer that dynamically balances prediction objectives. Experimental results show SE-TFF attains 56.5% MAE and 65.6% RMSE reductions over the best baseline (ARIMAX) at 20% sparsity, with 0.92 × 103 average MAE across multi-task outputs. SHAP analysis ranks climate anomalies, tourism revenue, and employment as dominant predictors. These gains demonstrate SE-TFF’s ability to deliver real-time, interpretable forecasts for data-limited destinations. Future work will incorporate real-time social media signals and larger multimodal datasets to enhance generalizability. Full article
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

33 pages, 3525 KiB  
Article
Investigation into the Performance Enhancement and Configuration Paradigm of Partially Integrated RL-MPC System
by Wanqi Guo and Shigeyuki Tateno
Mathematics 2025, 13(15), 2341; https://doi.org/10.3390/math13152341 - 22 Jul 2025
Abstract
The improvement of the partially integrated reinforcement learning-model predictive control (RL-MPC) system is developed in the paper by introducing the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. This framework differs from the traditional ones, which completely [...] Read more.
The improvement of the partially integrated reinforcement learning-model predictive control (RL-MPC) system is developed in the paper by introducing the Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms. This framework differs from the traditional ones, which completely substitute the MPC prediction model; instead, an RL agent refines predictions through feedback correction and thus maintains interpretability while improving robustness. Most importantly, the study details two configuration paradigms: decoupled (offline policy application) and coupled (online policy update) and tests them for their effectiveness in trajectory tracking tasks within simulation and real-life experiments. A decoupled framework based on TD3 showed significant improvements in control performance compared to the rest of the implemented paradigms, especially concerning Integral of Time-weighted Absolute Error (ITAE) and mean absolute error (MAE). This work also illustrated the advantages of partial integration in balancing adaptability and stability, thus making it suitable for real-time applications in robotics. Full article
Show Figures

Figure 1

37 pages, 5898 KiB  
Article
A Unified Machine Learning Framework for Li-Ion Battery State Estimation and Prediction
by Afroditi Fouka, Alexandros Bousdekis, Katerina Lepenioti and Gregoris Mentzas
Appl. Sci. 2025, 15(15), 8164; https://doi.org/10.3390/app15158164 - 22 Jul 2025
Abstract
The accurate estimation and prediction of internal states in lithium-ion (Li-Ion) batteries, such as State of Charge (SoC) and Remaining Useful Life (RUL), are vital for optimizing battery performance, safety, and longevity in electric vehicles and other applications. This paper presents a unified, [...] Read more.
The accurate estimation and prediction of internal states in lithium-ion (Li-Ion) batteries, such as State of Charge (SoC) and Remaining Useful Life (RUL), are vital for optimizing battery performance, safety, and longevity in electric vehicles and other applications. This paper presents a unified, modular, and extensible machine learning (ML) framework designed to address the heterogeneity and complexity of battery state prediction tasks. The proposed framework supports flexible configurations across multiple dimensions, including feature engineering, model selection, and training/testing strategies. It integrates standardized data processing pipelines with a diverse set of ML models, such as a long short-term memory neural network (LSTM), a convolutional neural network (CNN), a feedforward neural network (FFNN), automated machine learning (AutoML), and classical regressors, while accommodating heterogeneous datasets. The framework’s applicability is demonstrated through five distinct use cases involving SoC estimation and RUL prediction using real-world and benchmark datasets. Experimental results highlight the framework’s adaptability, methodological transparency, and robust predictive performance across various battery chemistries, usage profiles, and degradation conditions. This work contributes to a standardized approach that facilitates the reproducibility, comparability, and practical deployment of ML-based battery analytics. Full article
Show Figures

Figure 1

40 pages, 1540 KiB  
Review
A Survey on Video Big Data Analytics: Architecture, Technologies, and Open Research Challenges
by Thi-Thu-Trang Do, Quyet-Thang Huynh, Kyungbaek Kim and Van-Quyet Nguyen
Appl. Sci. 2025, 15(14), 8089; https://doi.org/10.3390/app15148089 - 21 Jul 2025
Viewed by 227
Abstract
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains [...] Read more.
The exponential growth of video data across domains such as surveillance, transportation, and healthcare has raised critical challenges in scalability, real-time processing, and privacy preservation. While existing studies have addressed individual aspects of Video Big Data Analytics (VBDA), an integrated, up-to-date perspective remains limited. This paper presents a comprehensive survey of system architectures and enabling technologies in VBDA. It categorizes system architectures into four primary types as follows: centralized, cloud-based infrastructures, edge computing, and hybrid cloud–edge. It also analyzes key enabling technologies, including real-time streaming, scalable distributed processing, intelligent AI models, and advanced storage for managing large-scale multimodal video data. In addition, the study provides a functional taxonomy of core video processing tasks, including object detection, anomaly recognition, and semantic retrieval, and maps these tasks to real-world applications. Based on the survey findings, the paper proposes ViMindXAI, a hybrid AI-driven platform that combines edge and cloud orchestration, adaptive storage, and privacy-aware learning to support scalable and trustworthy video analytics. Our analysis in this survey highlights emerging trends such as the shift toward hybrid cloud–edge architectures, the growing importance of explainable AI and federated learning, and the urgent need for secure and efficient video data management. These findings highlight key directions for designing next-generation VBDA platforms that enhance real-time, data-driven decision-making in domains such as public safety, transportation, and healthcare. These platforms facilitate timely insights, rapid response, and regulatory alignment through scalable and explainable analytics. This work provides a robust conceptual foundation for future research on adaptive and efficient decision-support systems in video-intensive environments. Full article
Show Figures

Figure 1

14 pages, 2324 KiB  
Article
Process Optimization for Complex Product Assembly Workshops with AGV Integration via Discrete Event Simulation
by Hailong Song, Shengluo Yang, Shuoxin Yin and Zhigang Xu
Appl. Sci. 2025, 15(14), 8051; https://doi.org/10.3390/app15148051 - 19 Jul 2025
Viewed by 122
Abstract
For complex assembly workshops, optimizing AGV scheduling is critical to enhancing production efficiency and resource utilization. Traditional scheduling methods often rely on fixed priority rules and basic path planning algorithms, which are insufficient to accommodate the dynamic changes in resource availability and task [...] Read more.
For complex assembly workshops, optimizing AGV scheduling is critical to enhancing production efficiency and resource utilization. Traditional scheduling methods often rely on fixed priority rules and basic path planning algorithms, which are insufficient to accommodate the dynamic changes in resource availability and task demands. To overcome these limitations, this study proposes a DES-based optimization approach that dynamically adjusts AGV task allocation and path planning to improve scheduling performance in complex manufacturing environments. By integrating lean production principles with intelligent simulation technologies, a comprehensive simulation model was developed using the Plant Simulation platform. This model simulates the coordination between AGVs and workstations while optimizing workstation layout and material flow. Simulation results demonstrate that the proposed approach significantly improves AGV scheduling efficiency and overall production performance. Notably, workstation utilization increased from below 6% to over 28%, while the work-in-progress rate dropped from 94% to under 74%. This study offers a practical and effective AGV scheduling strategy for complex product assembly workshops, with strong potential for real-world implementation. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

29 pages, 6449 KiB  
Article
New Approach for Detecting Variability in Industrial Assembly Line Balancing Based on Multi-Criteria Analysis
by Youness Hillali, Mourad Zegrari, Najlae Alfathi and Samir Chafik
Automation 2025, 6(3), 33; https://doi.org/10.3390/automation6030033 - 19 Jul 2025
Viewed by 211
Abstract
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer [...] Read more.
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer satisfaction. The research proposes a multi-criteria analysis of statistical methods to determine the fluctuation of parameters affecting the state of balance of an assembly line. A 3D matrix model is suggested to analyze the parameters managing the assembly line. This representation is executed using the MATLAB R2024b tool, and a methodology for finding the variability of parameters affecting balance through statistical approaches is proposed. We observed that changes in parameters such as task times, worker efficiency, or material flow led to significant changes in the line’s overall balance. As a result, static balancing becomes inadequate to deal with the complexities introduced by these highly variable parameters. The novelty of this paper consists of the innovative integration of multi-criteria statistical analysis and 3D matrix modeling to detect parameter variability and optimize assembly line balancing. Conventional static approaches are often unable to capture the process-dynamic aspect of modern manufacturing. This work presents a systematic methodology capable of identifying, quantifying, and moderating the variability of key operating parameters. This methodology, carried out using MATLAB-based simulations, is based on principal component analysis (PCA) and correlation analysis to detect critical factors influencing balancing efficiency. By structuring assembly line parameters in a 3D matrix representation, this research gives a holistic, data-based method for improving decision-making in balancing procedures. The research goes beyond theoretical modeling by applying the approach to a real automotive assembly line, validating its effectiveness and demonstrating its practical applicability in industrial conditions. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

17 pages, 3180 KiB  
Article
Ensemble-Based Correction for Anomalous Diffusion Exponent Estimation in Single-Particle Tracking
by Roman Lavrynenko, Lyudmyla Kirichenko, Sergiy Yakovlev, Sophia Lavrynenko and Nataliya Ryabova
Appl. Sci. 2025, 15(14), 8000; https://doi.org/10.3390/app15148000 - 18 Jul 2025
Viewed by 116
Abstract
The analysis of anomalous diffusion characteristics within single-particle tracking data is a key problem in several applied-science domains, including biosignal processing, bioinformatics, and biotechnology. This task becomes particularly challenging in the presence of short trajectories, localization errors, and non-ergodicity, features that are common [...] Read more.
The analysis of anomalous diffusion characteristics within single-particle tracking data is a key problem in several applied-science domains, including biosignal processing, bioinformatics, and biotechnology. This task becomes particularly challenging in the presence of short trajectories, localization errors, and non-ergodicity, features that are common in real experimental data. To address these limitations, this work proposes an approach that improves the robustness and accuracy of estimating the anomalous diffusion exponent α, even for very short trajectories of up to 10 points. The approach includes an ensemble-based variance estimation of the exponent α, along with a bias correction based on time–ensemble averaged mean squared displacement, which reduces the systematic bias. These components integrate well into neural network architectures and are suitable for analyzing experimental trajectories in biotechnology and bioprocess engineering applications. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 1956 KiB  
Article
Dynamic, Energy-Aware Routing in NoC with Hardware Support
by Lluís Ribas-Xirgo and Antoni Portero
Electronics 2025, 14(14), 2860; https://doi.org/10.3390/electronics14142860 - 17 Jul 2025
Viewed by 109
Abstract
The Network-on-Chip applications’ performance and efficiency depend on task allocation and message routing, which are complex problems. The existing solutions assign priorities to messages in order to regulate their transmission. Unfortunately, this message classification can lead to routings that block the best global [...] Read more.
The Network-on-Chip applications’ performance and efficiency depend on task allocation and message routing, which are complex problems. The existing solutions assign priorities to messages in order to regulate their transmission. Unfortunately, this message classification can lead to routings that block the best global solution. In this work, we propose to use the Hungarian algorithm to dynamically route messages with the minimal cost, i.e., minimizing the communication times while consuming the least energy possible. To meet the real-time constraints coming from requiring results at each flit transmission, we also suggest a hardware version of it, which reduces the processing time by an average of 42.5% with respect to its software implementation. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

17 pages, 10396 KiB  
Article
Feature Selection Based on Three-Dimensional Correlation Graphs
by Adam Dudáš and Aneta Szoliková
AppliedMath 2025, 5(3), 91; https://doi.org/10.3390/appliedmath5030091 - 17 Jul 2025
Viewed by 143
Abstract
The process of feature selection is a critical component of any decision-making system incorporating machine or deep learning models applied to multidimensional data. Feature selection on input data can be performed using a variety of techniques, such as correlation-based methods, wrapper-based methods, or [...] Read more.
The process of feature selection is a critical component of any decision-making system incorporating machine or deep learning models applied to multidimensional data. Feature selection on input data can be performed using a variety of techniques, such as correlation-based methods, wrapper-based methods, or embedded methods. However, many conventionally used approaches do not support backwards interpretability of the selected features, making their application in real-world scenarios impractical and difficult to implement. This work addresses that limitation by proposing a novel correlation-based strategy for feature selection in regression tasks, based on a three-dimensional visualization of correlation analysis results—referred to as three-dimensional correlation graphs. The main objective of this study is the design, implementation, and experimental evaluation of this graphical model through a case study using a multidimensional dataset with 28 attributes. The experiments assess the clarity of the visualizations and their impact on regression model performance, demonstrating that the approach reduces dimensionality while maintaining or improving predictive accuracy, enhances interpretability by uncovering hidden relationships, and achieves better or comparable results to conventional feature selection methods. Full article
Show Figures

Figure 1

20 pages, 3233 KiB  
Article
A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA
by Yongchao Zhang, Wei Xu, Helin Ye and Zhuoyong Shi
Drones 2025, 9(7), 501; https://doi.org/10.3390/drones9070501 - 16 Jul 2025
Viewed by 221
Abstract
The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to [...] Read more.
The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to suboptimal performance. To address this gap, this paper proposes a novel two-stage hierarchical framework that integrates the Grey Wolf Optimizer (GWO) with the Consensus-Based Bundle Algorithm (CBBA). At the strategic level, the GWO determines the optimal number of UAVs by minimizing a comprehensive cost function that balances mission efficiency and operational costs. Subsequently, at the tactical level, the CBBA performs decentralized, real-time task allocation for the optimally sized fleet. We validated our GWO-CBBA framework through extensive simulations against three benchmarks: a standard CBBA with a fixed fleet, a centralized Particle Swarm Optimization (PSO) approach, and a Greedy Heuristic algorithm. The results are compelling: our framework demonstrates superior performance across all key metrics, reducing the overall scheduling cost by 13.2–36.5%, minimizing UAV mileage cost and significantly decreasing total task waiting time. This work provides a robust and efficient solution that effectively balances operational costs with service quality for dynamic multi-UAV scheduling problems. Full article
Show Figures

Figure 1

27 pages, 3503 KiB  
Article
Structure-Aware and Format-Enhanced Transformer for Accident Report Modeling
by Wenhua Zeng, Wenhu Tang, Diping Yuan, Hui Zhang, Pinsheng Duan and Shikun Hu
Appl. Sci. 2025, 15(14), 7928; https://doi.org/10.3390/app15147928 - 16 Jul 2025
Viewed by 165
Abstract
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, [...] Read more.
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, this study proposes SAFE-Transformer, a Structure-Aware and Format-Enhanced Transformer designed for long-document modeling in the emergency safety context. SAFE-Transformer adopts a dual-stream encoding architecture to separately model symbolic section features and heading text, integrates hierarchical depth and format types into positional encodings, and introduces a dynamic gating unit to adaptively fuse headings with paragraph semantics. We evaluate the model on a multi-label accident intelligence classification task using a real-world corpus of 1632 official reports from high-risk industries. Results demonstrate that SAFE-Transformer effectively captures hierarchical semantic structure and outperforms strong long-text baselines. Further analysis reveals an inverted U-shaped performance trend across varying report lengths and highlights the role of attention sparsity and label distribution in long-text modeling. This work offers a practical solution for structurally complex safety documents and provides methodological insights for downstream applications in safety supervision and risk analysis. Full article
(This article belongs to the Special Issue Advances in Smart Construction and Intelligent Buildings)
Show Figures

Figure 1

29 pages, 5825 KiB  
Article
BBSNet: An Intelligent Grading Method for Pork Freshness Based on Few-Shot Learning
by Chao Liu, Jiayu Zhang, Kunjie Chen and Jichao Huang
Foods 2025, 14(14), 2480; https://doi.org/10.3390/foods14142480 - 15 Jul 2025
Viewed by 258
Abstract
Deep learning approaches for pork freshness grading typically require large datasets, which limits their practical application due to the high costs associated with data collection. To address this challenge, we propose BBSNet, a lightweight few-shot learning model designed for accurate freshness classification with [...] Read more.
Deep learning approaches for pork freshness grading typically require large datasets, which limits their practical application due to the high costs associated with data collection. To address this challenge, we propose BBSNet, a lightweight few-shot learning model designed for accurate freshness classification with a limited number of images. BBSNet incorporates a batch channel normalization (BCN) layer to enhance feature distinguishability and employs BiFormer for optimized fine-grained feature extraction. Trained on a dataset of 600 pork images graded by microbial cell concentration, BBSNet achieved an average accuracy of 96.36% in a challenging 5-way 80-shot task. This approach significantly reduces data dependency while maintaining high accuracy, presenting a viable solution for cost-effective real-time pork quality monitoring. This work introduces a novel framework that connects laboratory freshness indicators to industrial applications in data-scarce conditions. Future research will investigate its extension to various food types and optimization for deployment on portable devices. Full article
Show Figures

Figure 1

28 pages, 9133 KiB  
Article
Semantic Segmentation of Corrosion in Cargo Containers Using Deep Learning
by David Ornelas, Daniel Canedo and António J. R. Neves
Sustainability 2025, 17(14), 6480; https://doi.org/10.3390/su17146480 - 15 Jul 2025
Viewed by 220
Abstract
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the [...] Read more.
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the durability of containers and leads to costly repairs. However, identifying this threat is no simple task. Corrosion can take many forms, progress unpredictably, and be influenced by various environmental conditions and container types. In collaboration with the Port of Sines, Portugal, this work explores a potential solution for a real-time computer-vision system, with the aim to improve container inspections using deep-learning algorithms. We propose a system based on the semantic segmentation model, DeepLabv3+, for precise corrosion detection using images provided from the terminal. After preparing the data and annotations, we explored two approaches. First, we leveraged a pre-trained model originally designed for bridge corrosion detection. Second, we fine-tuned a version specifically for cargo container assessment. With a corrosion detection performance of 49%, this work showcases the potential of deep learning to automate inspection processes. It also highlights the importance of generalization and training in real-world scenarios and explores innovative solutions for smart gates and terminals. Full article
Show Figures

Graphical abstract

Back to TopTop