Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = reagent calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1577 KiB  
Article
Determination of Acidity of Edible Oils for Renewable Fuels Using Experimental and Digitally Blended Mid-Infrared Spectra
by Collin G. White, Ayuba Fasasi, Chanda Swalley and Barry K. Lavine
J. Exp. Theor. Anal. 2025, 3(3), 20; https://doi.org/10.3390/jeta3030020 - 28 Jul 2025
Viewed by 120
Abstract
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages [...] Read more.
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages of renewables, specifically reduced emissions of greenhouse gases. An important property of the feedstock that is crucial for the conversion of edible oils to renewable fuels is the total acid number (TAN), as even a small increase in TAN for the feedstock can lead to corrosion of the catalyst in the refining process. Currently, the TAN is determined by potentiometric titration, which is time-consuming, expensive, and requires the preparation of reagents. As part of an effort to promote the use of renewable fuels, a partial least squares regression method with orthogonal signal correction to remove spectral information related to the sample background was developed to determine the TAN from the mid-infrared (IR) spectra of the feedstock. Digitally blended mid-IR spectral data were generated to fill in regions of the PLS calibration where there were very few samples. By combining experimental and digitally blended mid-IR spectral data to ensure adequate sample representation in all regions of the spectra–property calibration and better understand the spectra–property relationship through the identification of sample outliers in the original data that can be difficult to detect because of swamping, a PLS regression model for TAN (R2 = 0.992, cross-validated root mean square error = 0.468, and bias = 0.0036) has been developed from 118 experimental and digitally blended mid-IR spectra of commercial feedstock. Thus, feedstock whose TAN value is too high for refining can be flagged using the proposed mid-IR method, which is faster and easier to use than the current titrimetric method. Full article
Show Figures

Figure 1

34 pages, 2648 KiB  
Review
Microfluidic Sensors for Micropollutant Detection in Environmental Matrices: Recent Advances and Prospects
by Mohamed A. A. Abdelhamid, Mi-Ran Ki, Hyo Jik Yoon and Seung Pil Pack
Biosensors 2025, 15(8), 474; https://doi.org/10.3390/bios15080474 - 22 Jul 2025
Viewed by 341
Abstract
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic [...] Read more.
The widespread and persistent occurrence of micropollutants—such as pesticides, pharmaceuticals, heavy metals, personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS)—has emerged as a critical environmental and public health concern, necessitating the development of highly sensitive, selective, and field-deployable detection technologies. Microfluidic sensors, including biosensors, have gained prominence as versatile and transformative tools for real-time environmental monitoring, enabling precise and rapid detection of trace-level contaminants in complex environmental matrices. Their miniaturized design, low reagent consumption, and compatibility with portable and smartphone-assisted platforms make them particularly suited for on-site applications. Recent breakthroughs in nanomaterials, synthetic recognition elements (e.g., aptamers and molecularly imprinted polymers), and enzyme-free detection strategies have significantly enhanced the performance of these biosensors in terms of sensitivity, specificity, and multiplexing capabilities. Moreover, the integration of artificial intelligence (AI) and machine learning algorithms into microfluidic platforms has opened new frontiers in data analysis, enabling automated signal processing, anomaly detection, and adaptive calibration for improved diagnostic accuracy and reliability. This review presents a comprehensive overview of cutting-edge microfluidic sensor technologies for micropollutant detection, emphasizing fabrication strategies, sensing mechanisms, and their application across diverse pollutant categories. We also address current challenges, such as device robustness, scalability, and potential signal interference, while highlighting emerging solutions including biodegradable substrates, modular integration, and AI-driven interpretive frameworks. Collectively, these innovations underscore the potential of microfluidic sensors to redefine environmental diagnostics and advance sustainable pollution monitoring and management strategies. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

20 pages, 2562 KiB  
Article
Application of Fourier Transform Near-Infrared Spectroscopy and Chemometrics for Quantitative Analysis of Milk of Lime (MOL) Used in the Sugar Industry
by Radosław Michał Gruska, Alina Kunicka-Styczyńska and Magdalena Molska
Molecules 2025, 30(11), 2308; https://doi.org/10.3390/molecules30112308 - 24 May 2025
Viewed by 671
Abstract
Milk of lime (MOL), a suspension of calcium oxide and calcium hydroxide, is vital in the purification of sugar beet and cane juices. This study evaluates the application of Fourier Transform Near-Infrared (FT-NIR) spectroscopy combined with chemometric models—Partial Least Squares (PLS) and Principal [...] Read more.
Milk of lime (MOL), a suspension of calcium oxide and calcium hydroxide, is vital in the purification of sugar beet and cane juices. This study evaluates the application of Fourier Transform Near-Infrared (FT-NIR) spectroscopy combined with chemometric models—Partial Least Squares (PLS) and Principal Component Regression (PCR)—for rapid, non-destructive assessment of key MOL parameters: density, total lime content, calcium oxide availability, and sucrose content. Ninety samples were analyzed using both wet chemistry and FT-NIR. The predictive performance was assessed using the coefficient of determination (R2). High predictive accuracy was observed for density (PLS: R2 = 0.8274; PCR: R2 = 0.8795) and calcium oxide availability (PLS: R2 = 0.9035; PCR: R2 = 0.9115). Total lime content showed moderate accuracy (PLS: R2 = 0.7748; PCR: R2 = 0.7983), while sucrose content exhibited low predictive power (PLS: R2 = 0.2312; PCR: R2 = 0.3747). The weak performance was noted for %CaO (PLS: R2 = 0.4893; PCR: R2 = 0.2409), likely due to spectral overlap and matrix complexity. Despite these challenges, FT-NIR remains a viable, reagent-free method for monitoring MOL, with the potential to enhance process control in the sugar industry. Future work should focus on refining calibration strategies and addressing spectral interferences to improve predictive accuracy for complex matrices. Full article
(This article belongs to the Special Issue Vibrational Spectroscopy and Imaging for Chemical Application)
Show Figures

Figure 1

23 pages, 2993 KiB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Viewed by 649
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

17 pages, 5360 KiB  
Article
A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification
by Sangeeta Palekar, Sharayu Kalambe, Jayu Kalambe, Madhusudan B. Kulkarni and Manish Bhaiyya
Biosensors 2025, 15(3), 192; https://doi.org/10.3390/bios15030192 - 18 Mar 2025
Cited by 2 | Viewed by 816
Abstract
Detecting kidney function biomarkers is critical for the early diagnosis of kidney diseases and monitoring treatment efficacy. In this work, a portable, 3D-printed colorimetric sensor platform was developed to detect key kidney biomarkers: uric acid, creatinine, and albumin. The platform features a 3D-printed [...] Read more.
Detecting kidney function biomarkers is critical for the early diagnosis of kidney diseases and monitoring treatment efficacy. In this work, a portable, 3D-printed colorimetric sensor platform was developed to detect key kidney biomarkers: uric acid, creatinine, and albumin. The platform features a 3D-printed enclosure with integrated diffused LED lighting to ensure a controlled environment for image acquisition. A disposable 3D-printed flow cell holds samples, ensuring precision and minimizing contamination. The sensor relies on colorimetric analysis, where a reagent reacts with blood serum to produce a color shift proportional to the biomarker concentration. Using a smartphone, the color change is captured, and RGB values are normalized to calculate concentrations based on the Beer-Lambert Law. The system adapts to variations in smartphones, reagent brands, and lighting conditions through an adaptive calibration algorithm, ensuring flexibility and accuracy. The sensor demonstrated good linear detection ranges for uric acid (1–30 mg/dL), creatinine (0.1–20 mg/dL), and albumin (0.1–8 g/dL), with detection limits of 1.15 mg/dL, 0.15 mg/dL, and 0.11 g/dL, respectively. These results correlated well with commercial biochemistry analyzers. Additionally, an Android application was developed to handle image processing and database management, providing a user-friendly interface for real-time blood analysis. This portable, cost-effective platform shows significant potential for point-of-care diagnostics and remote health monitoring. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

4 pages, 165 KiB  
Technical Note
Seventh ISNS Reference Preparation for Neonatal Screening for Thyroid Stimulating Hormone, Phenylalanine, and 17α-Hydroxyprogesterone in Blood Spots
by Peter C. J. I. Schielen, Dianne Webster, J. Gerard Loeber and James R. Bonham
Int. J. Neonatal Screen. 2025, 11(1), 13; https://doi.org/10.3390/ijns11010013 - 9 Feb 2025
Viewed by 875
Abstract
The International Society for Neonatal Screening (ISNS) has supported the standardization of the measurement of key biochemical markers for the neonatal screening of diseases: thyroid-stimulating hormone (TSH) for congenital hypothyroidism, phenylalanine (PHE) for phenylketonuria, and 17α-hydroxyprogesterone (17OHP) for congenital adrenal hyperplasia. These diseases [...] Read more.
The International Society for Neonatal Screening (ISNS) has supported the standardization of the measurement of key biochemical markers for the neonatal screening of diseases: thyroid-stimulating hormone (TSH) for congenital hypothyroidism, phenylalanine (PHE) for phenylketonuria, and 17α-hydroxyprogesterone (17OHP) for congenital adrenal hyperplasia. These diseases are commonly a part of neonatal screening panels worldwide. The ISNS provides a series of secondary reference materials to the manufacturers of neonatal screening reagents to assist in the production of calibration materials for kits. This technical note describes the manufacture of the seventh combined dried blood spot reference preparation for neonatal screening (RPNS) for these analytes. Full article
17 pages, 888 KiB  
Article
New High-Throughput Method for Aluminum Content Determination in Vaccine Formulations
by Lorenzo Di Meola, Daniela Pasqui, Chiara Tigli, Stephen Luckham, Silvio Colomba, Marilena Paludi, Maxime Denis, Angelo Palmese, Daniela Stranges, Agnese Marcelli, Alessio Moriconi, Malte Meppen and Carlo Pergola
Vaccines 2025, 13(2), 105; https://doi.org/10.3390/vaccines13020105 - 22 Jan 2025
Cited by 1 | Viewed by 1233
Abstract
Objective: This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested [...] Read more.
Objective: This manuscript describes an innovative, non-destructive, high-throughput method for the quantification of aluminum hydroxide in aluminum-adjuvanted vaccines, eliminating the need of reagents and providing real-time results. The method is based on a spectrophotometric principle, and several model proteins were studied and tested with the aim to simulate the behavior of aluminum-adjuvanted antigens. Methods: As a proof of concept, the MenB vaccine was used, and the titration of aluminum hydroxide (AH) with ethylenediaminetetraacetic acid (EDTA) was used as an orthogonal reference, as it is one of the current release methods for the content determination of aluminum-hydroxide-adjuvanted vaccine drug products (DPs). The factors influencing the spectrophotometric analysis, such as different plate 96/well containers, variation in the sedimentation of the suspension due to component addition errors during formulation, and batch-to-batch variation were studied to assess the method’s robustness. Five concentration levels (ranging from 2.0 to 4.0 mg/mL AH) with two different batches of aluminum hydroxide were each measured with independent preparations performed by three different operators, for a total of four sessions/operator and 20 formulations/session. An in-depth statistical study was carried out with generated data to assess the precision (in terms of intermediate precision and repeatability), accuracy, linearity, and specificity of the method. Results: The novel spectrophotometric method and the official release one (potentiometric) yielded comparable results, demonstrating the potential of this new method as a release test for AH-adjuvanted products. A simple calibration curve enabled the measurement of samples in a 96-well plate in just a few minutes. Conclusions: We developed a novel method for Aluminum concentration determination in Aluminum-containing pharmaceutical products, like alum-adjuvanted vaccines. This method is fast, completely automatable, and as precise and accurate as already-in-place release methods. Full article
Show Figures

Figure 1

15 pages, 2216 KiB  
Article
Improved Voltammetric Procedure for Chloride Determination in Highly Acidic Media
by Rafał Maciąg, Wojciech Hyk, Tomasz Ratajczyk and Mikołaj Donten
Materials 2025, 18(1), 136; https://doi.org/10.3390/ma18010136 - 31 Dec 2024
Viewed by 995
Abstract
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs. normal hydrogen electrode [...] Read more.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs. normal hydrogen electrode (NHE), the efficient oxidation of Cl ion occurs at very positive electrode potentials, usually higher than +1.7 V vs. NHE. It is possible to observe this phenomenon only at noble-metal or inert carbon electrodes. Many other solutes, usually organic compounds, are often oxidized at this potential. This is the reason why the determination of Cl content directly from an increase in the oxidation current is not reliable and could lead to overestimated values. However, gaseous chlorine, generated at a positive potential dissolve in the analyzed solution, could be reduced in the reverse scan of a cyclic voltammetric curve. Optimization of the experimental procedure using statistical tools enables the development of an improved method for the direct quantification of chloride ions in acid copper electroplating baths. Under the proposed experimental conditions, the calibration curve (Cl2 voltammetric reduction current vs. chloride ions concentration) is represented by the linear model for the concentration of chlorides ranging from 10 to 200 mg/dm3. The developed method for analyzing chloride ions in an acid sulfate electroplating copper bath has many unique properties. It is fast; the time of a single analysis is less than 20 min. In automatic mode, it can be repeated up to 50 times a day. The method does not require processing of the sample of the analyzed bath before measurement. As a result, no additional chemical reagents are used, and the test sample can be returned to the plating bath. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

16 pages, 4300 KiB  
Article
A Simple Green Method for the Determination of Hydrogen Peroxide and Fe(III)/Fe(II) Species Based on Monitoring the Decolorization Process of Polymethine Dye Using an Optical Immersion Probe
by Arina Skok, Yaroslav Bazel and Maksym Fizer
Chemosensors 2024, 12(12), 270; https://doi.org/10.3390/chemosensors12120270 - 19 Dec 2024
Cited by 1 | Viewed by 1013
Abstract
We have found that the dye 1,3,3-trimethyl-2-((1′E,3′E,5′E)-5’-(1″,3″,3″-trimethylindol-(2′E)-ylidene)-penta-1″,3″-dien-1″-yl)-3H-indol-1-ium (DTMI-5) can be successfully used for the simple green determination of H2O2 and Fe(III)/Fe(II) species. The dye is characterized by a successful combination of spectral, protolytic, and redox properties, [...] Read more.
We have found that the dye 1,3,3-trimethyl-2-((1′E,3′E,5′E)-5’-(1″,3″,3″-trimethylindol-(2′E)-ylidene)-penta-1″,3″-dien-1″-yl)-3H-indol-1-ium (DTMI-5) can be successfully used for the simple green determination of H2O2 and Fe(III)/Fe(II) species. The dye is characterized by a successful combination of spectral, protolytic, and redox properties, and the process of its decolorization in the Fenton reaction is monitored using an optical immersion probe. Theoretical calculations of the reactive sites in the DTMI-5 molecule under free radical attack reveal that the methine groups of the penta-1′,3′-dien-1′-yl linker serve as the primary reactive centers in Fe3+ or Fenton-type oxidation conditions. Density functional theory (DFT) calculations indicate that the redox potentials of the examined structures range from 0.34 to 1.65 eV. The experimentally observed broad peak at 340–360 nm, which appears after the interaction of DTMI-5 with the Fenton reagent, is attributed to the formation of aldehyde-type oxidation products, whose theoretical CIS(D) absorption maxima were 358.1 and 337.4 nm. The influence of various factors on the course of the reaction was experimentally investigated. The most important analytical characteristics of the methods, such as linearity intervals of calibration graphs, precision, LOD and LOQ values, selectivity coefficients, etc., were determined. The developed methods were applied to model and real samples (water, oxidation emulsion, and fertilizer). Full article
Show Figures

Graphical abstract

17 pages, 3111 KiB  
Article
Novel Spectrophotometric Method for Robust Detection of Trace Copper and Cobalt in High-Concentration Zinc Solution
by Fengbo Zhou, Bo Wu and Jianhua Zhou
Molecules 2024, 29(23), 5765; https://doi.org/10.3390/molecules29235765 - 6 Dec 2024
Viewed by 883
Abstract
In the purification process of zinc hydrometallurgy, the spectra of copper and cobalt seriously overlap in the whole band and are interfered with by the spectra of zinc and nickel, which seriously affects the detection results of copper and cobalt in zinc solutions. [...] Read more.
In the purification process of zinc hydrometallurgy, the spectra of copper and cobalt seriously overlap in the whole band and are interfered with by the spectra of zinc and nickel, which seriously affects the detection results of copper and cobalt in zinc solutions. Aiming to address the problems of low resolution, serious overlap, and narrow characteristic wavelengths, a novel spectrophotometric method for the robust detection of trace copper and cobalt is proposed. First, the Haar, Db4, Coif3, and Sym3 wavelets are used to carry out the second-order continuous wavelet transform on the spectral signals of copper and cobalt, which improves the resolution of copper and cobalt and eliminates the background interference caused by matrix zinc signals and reagents. Then, the information ratio and separation degree are defined as optimization indexes, a multi-objective optimization model is established with the wavelet decomposition scale as a variable, and the non-inferior solution of multi-objective optimization is solved by the state transition algorithm. Finally, the optimal second-derivative spectra combined with the fine zero-crossing technique are used to establish calibration curves at zero-crossing points for the simultaneous detection of copper and cobalt. The experimental results show that the detection performance of the proposed method is far superior to the partial least squares and Kalman filtering methods. The RMSEPs of copper and cobalt are 0.098 and 0.063, the correlation coefficients are 0.9953 and 0.9971, and the average relative errors of copper and cobalt are 3.77% and 2.85%, making this method suitable for the simultaneous detection of trace copper and cobalt in high-concentration zinc solutions. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia)
Show Figures

Graphical abstract

11 pages, 4423 KiB  
Article
Proposal of a Rapid Detection System Using Image Analysis for ELISA with an Autonomous Centrifugal Microfluidic System
by Shunya Okamoto, Yuto Mori, Shota Nakamura, Yusuke Kanai, Yoshiaki Ukita, Moeto Nagai and Takayuki Shibata
Micromachines 2024, 15(11), 1387; https://doi.org/10.3390/mi15111387 - 16 Nov 2024
Cited by 1 | Viewed by 1190
Abstract
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be [...] Read more.
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be used to quantify the color development reaction on a TMB (3,3′,5,5′-tetramethylbenzidine) substrate. In a conventional ELISA, reaction stopping reagents are required at the end of the TMB reaction. In contrast, the developed image analysis method can analyze color in the color-developing reaction without a reaction stopping reagent. This contributes to a reduction in total assay time. The microfluidic devices used in this study could execute reagent control for ELISAs by steady rotation. In the demonstration of the assay and image analysis, a calibration curve for mouse IgG detection was successfully prepared, and it was confirmed that the image analysis method had the same performance as the conventional analysis method. Moreover, the changes in the amount of color over time confirmed that a calibration curve equal to the endpoint analysis was obtained within 2 min from the start of the TMB reaction. As the assay time before the TMB reaction was approximately 7.5 min, the developed ELISA system could detect TMB in just 10 min. In conventional methods using a plate reader, the assay required a time of 90 min for manual handling using microwell plates, and in the case of using automatic microfluidic devices, 30 min were required. The time of 10 min realized by this proposed method is equal to the time required for detection in an immunochromatographic assay with a lateral flow assay; therefore, it is expected that ELISAs can be performed sufficiently to adapt to POCT. Full article
(This article belongs to the Section B4: Point-of-Care Devices)
Show Figures

Figure 1

14 pages, 5654 KiB  
Article
Paper-Based Microfluidic Analytical Device Patterned by Label Printer for Point-of-Care Blood Glucose and Hematocrit Detection Using 3D-Printed Smartphone Cassette
by Zong-Xiao Cai, Ming-Zhang Jiang, Ya-Ju Chuang and Ju-Nan Kuo
Sensors 2024, 24(15), 4792; https://doi.org/10.3390/s24154792 - 24 Jul 2024
Cited by 5 | Viewed by 2414
Abstract
This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic paper-based analytical device (μPAD) for plasma separation, filtration, and reaction functions and a 3D-printed cassette for hematocrit [...] Read more.
This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic paper-based analytical device (μPAD) for plasma separation, filtration, and reaction functions and a 3D-printed cassette for hematocrit and blood glucose detection using a smartphone. The origami μPAD is patterned using a cost-effective label printing technique instead of the conventional wax printing method. The 3D-printed cassette incorporates an array of LED lights, which mitigates the effects of intensity variations in the ambient light and hence improves the accuracy of the blood glucose and hematocrit concentration measurements. The hematocrit concentration is determined quantitatively by measuring the distance of plasma wicking along the upper layer of the origami μPAD, which is pretreated with sodium chloride and Tween 20 to induce dehydration and aggregation of the red blood cells. The filtered plasma also penetrates to the lower layer of the origami μPAD, where it reacts with embedded colorimetric assay reagents to produce a yellowish-brown complex. A color image of the reaction complex is captured using a smartphone inserted into the 3D-printed cassette. The image is analyzed using self-written RGB software to quantify the blood glucose concentration. The calibration results indicate that the proposed detection platform provides an accurate assessment of the blood glucose level over the range of 45–630 mg/dL (R2 = 0.9958). The practical feasibility of the proposed platform is demonstrated by measuring the blood glucose and hematocrit concentrations in 13 human whole blood samples. Taking the measurements obtained from commercial glucose and hematocrit meters as a benchmark, the proposed system has a differential of no more than 6.4% for blood glucose detection and 9.1% for hematocrit detection. Overall, the results confirm that the proposed μPAD is a promising solution for cost-effective and reliable POC health monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidics-Integrated Optical Biosensors)
Show Figures

Figure 1

22 pages, 3109 KiB  
Article
Determination of Fluorine by Ion-Selective Electrode and High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry with Respect to Animal Feed Safety
by Zofia Kowalewska, Karolina Goluch, Waldemar Korol, Rafał Olchowski and Ryszard Dobrowolski
Materials 2024, 17(12), 2812; https://doi.org/10.3390/ma17122812 - 9 Jun 2024
Cited by 1 | Viewed by 1857
Abstract
Fluorine, depending on its concentration and chemical form, is essential or toxic to humans and animals. Therefore, it is crucial to be able to determine it reliably. In this study, fluorine was determined in animal feed after extraction with HCl (gastric juice simulation). [...] Read more.
Fluorine, depending on its concentration and chemical form, is essential or toxic to humans and animals. Therefore, it is crucial to be able to determine it reliably. In this study, fluorine was determined in animal feed after extraction with HCl (gastric juice simulation). The standard potentiometric method with a fluoride-selective electrode (ISE) and newly developed high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GFMAS) method was applied. Feed samples turned out to be a challenge for HR-CS GFMAS. Chemical interferences (formation of competing molecules, CaF, GaCl, and GaP, instead of the target GaF molecule) and spectral effects (including a phosphorous molecule spectrum and atomic lines) were identified. An additional difficulty was caused by reagent contamination with F and memory effects. Difficulties were eliminated/reduced. The quality of ISE analysis was multi-directionally verified (including comprehensive proficiency testing). A risk of inaccuracy at low F concentration, where the calibration relationship is nonlinear, was investigated. The results of both methods were consistent, which confirms the accuracy of the methods and informs that the extracted fluorine is in fluoride form. The results of extensive ISE tests conducted in Poland in 2021–2023 have shown that, in most cases, the fluoride content is significantly lower than the threshold values. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

9 pages, 2907 KiB  
Article
Determination of Low Concentrations of Mercury Based on the Electrodeposition Time
by Kenshin Takemura, Wataru Iwasaki, Nobutomo Morita, Shinya Ohmagari, Yasunori Takaki, Hitomi Fukaura and Kazuya Kikunaga
Nanomaterials 2024, 14(11), 981; https://doi.org/10.3390/nano14110981 - 5 Jun 2024
Cited by 1 | Viewed by 1880
Abstract
Soil plays a crucial role in human health through its impact on food and habitation. However, it often contains toxic heavy metals, with mercury being particularly hazardous when methylated. Currently, high-sensitivity, rapid detection of mercury is achievable only through electrochemical measurements. These measurements [...] Read more.
Soil plays a crucial role in human health through its impact on food and habitation. However, it often contains toxic heavy metals, with mercury being particularly hazardous when methylated. Currently, high-sensitivity, rapid detection of mercury is achievable only through electrochemical measurements. These measurements require pretreatment of the soil sample and the preparation of a calibration curve tailored to the sample’s condition. In this study, we developed a method to determine the environmental standard value of mercury content in soil by significantly reducing the pretreatment process. Our approach involves analyzing current peaks from electrodeposition times using specific electrodes and solvent settings. This method demonstrates low error rates under low concentration conditions and can detect mercury levels as low as 0.5 ppb in soil leachate and reagent dilution series. This research facilitates the determination of low mercury concentrations in solutions containing various soil micro-compounds without the need for calibration curves. Full article
(This article belongs to the Special Issue Nanomaterials: Electrochemistry and Electro-Analytical Application)
Show Figures

Graphical abstract

14 pages, 1913 KiB  
Article
Analysing the Potency of a Seasonal Influenza Vaccine Using Reference Antisera from Heterologous Strains
by Christine Wadey and Steven Rockman
Vaccines 2024, 12(6), 596; https://doi.org/10.3390/vaccines12060596 - 30 May 2024
Viewed by 1239
Abstract
The potency of inactivated seasonal influenza vaccine is harmonised by establishing the haemagglutinin (HA) content using the compendial single radial diffusion (SRD) method. SRD reagents (antigens and antisera) are prepared, calibrated and distributed by regulatory agencies as standards for potency testing, following the [...] Read more.
The potency of inactivated seasonal influenza vaccine is harmonised by establishing the haemagglutinin (HA) content using the compendial single radial diffusion (SRD) method. SRD reagents (antigens and antisera) are prepared, calibrated and distributed by regulatory agencies as standards for potency testing, following the biannual World Health Organization (WHO) announcements of the virus strains suitable for inclusion in the vaccine. The generation of a homologous hyperimmune sheep antiserum constrains the time to vaccine release. This study tests the application of heterologous antisera to determine the potency of influenza vaccine compared to that of a standard homologous antiserum. The results indicate that the selected heterologous sheep antisera directed to seasonal H1N1, H3N2 or B Victoria virus strains can be used to determine the accurate potency of inactivated seasonal influenza vaccines. Individually selected antisera could be useful for two to fourteen seasons. A limitation to the heterologous antiserum approach is the diversity of each individual serum, indicating that the empirical determination of a specific serum is required. This application has the potential to enable the earlier availability of a seasonal vaccine and reduce animal usage. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

Back to TopTop