A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Material Used
2.2. Device Design of Smartphone Based Blood Parameter Sensing Platform
2.3. Flow Cell Fabrication
2.4. Sample Preparation Protocol
2.5. Adaptive Calibration Protocol for Device Stability
2.5.1. Initial Water Testing
2.5.2. Blank Sample Testing to Establish a Baseline
2.5.3. Standard Solution Testing to Create a Calibration Curve
2.5.4. Calculating the Concentration of Unknown Samples
2.5.5. Ensuring Device Independence and Flexibility
2.6. Data Acquisition and Processing Using Smartphone
2.6.1. Image Acquisition and Preprocessing
2.6.2. Relating Light Intensity to RGB Values
2.6.3. Image Normalization and Absorbance Measurement
2.7. Android Application Development
3. Results and Discussion
3.1. Sensing of Kidney Biomarker Using Developed Smartphone Based Platform
3.2. Adaptive Caliberation and Operational Flexibility
3.3. Repeatability Analysis
3.4. Validation of the Developed Colorimetric Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bommer, J. Prevalence and socio-economic aspects of chronic kidney disease. Nephrol. Dial. Transplant. 2002, 17 (Suppl. S11), 8–12. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Mahmood, R.T.; Javaid, M.; Mehr, A.P.; Shah, A.; Noorulamin, M.; Ul Amin, N.; Mahmood, T.; Asad, M.J.; Zafar, M.; Mehmood Raja, A. Evaluating Urea and Creatinine Levels in Chronic Renal Failure Pre and Post Dialysis: A Prospective Study. J. Cardiovasc. Dis. 2014, 2, 1–4. [Google Scholar]
- Pandya, D.; Nagrajappa, A.K.; Ravi, K.S. Assessment and correlation of urea and creatinine levels in saliva and serum of patients with chronic kidney disease, diabetes and hypertension—A research study. J. Clin. Diagn. Res. 2016, 10, ZC58–ZC62. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Kim, S.B.; Wu, Y.; Ostojich, D.; Park, S.H.; Wang, X.; Weng, Z.; Li, R.; Bandodkar, A.J.; et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 2019, 19, 1545–1555. [Google Scholar] [CrossRef]
- Kapoor, S.; Goel, V. Design and Interfacing of the Optical Assembly for Automated Analyzer. Int. J. Sci. Res. 2013, 2, 2319–7064. [Google Scholar]
- Fang, C.; Li, H.; Yan, J.; Guo, H.; Yifeng, T. Progress of the Electrochemiluminescence Biosensing Strategy for Clinical Diagnosis with Luminol as the Sensing Probe. ChemElectroChem 2017, 4, 1587–1593. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Pattnaik, P.K.; Goel, S. Portable Electrochemiluminescence Platform with Laser-Induced Graphene-Based U-Shaped Bipolar Electrode for Selective Sensing of Various Analytes. IEEE Trans. Electron Devices 2021, 68, 2447–2454. [Google Scholar] [CrossRef]
- Choi, S.; Choi, E.Y.; Kim, D.J.; Kim, J.H.; Kim, T.S.; Oh, S.W. A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I). Clin. Chim. Acta 2004, 339, 147–156. [Google Scholar] [CrossRef]
- Palekar, S.D.; Kalambe, J. Development of an Optical Detection-Based Universal Biochemical Blood Analysis Platform. IEEE Sens. J. 2021, 21, 22434–22441. [Google Scholar] [CrossRef]
- Taneja, S.R.; Gupta, R.C.; Kumar, J.; Thariyan, K.K.; Verma, S. Design and Development of Microcontroller-Based Clinical Chemistry Analyser for Measurement of Various Blood Biochemistry Parameters. J. Autom. Methods Manag. Chem. 2005, 2005, 223–229. [Google Scholar] [CrossRef]
- Niculescu, M.Ş.; Florescu, A.; Paşca, S. Automated portable biochemistry analyzer based on image acquisition. Rev. Roum. Des Sci. Tech. Ser. Electrotech. Energetique 2020, 65, 271–276. [Google Scholar]
- Palekar, S.; Kalambe, J.; Patrikar, R.M. Biochemical Blood Sensing platform with CMOS Image Sensor and Software-based Wavelength Filter. IEEE Sens. J. 2022, 22, 21753–21760. [Google Scholar] [CrossRef]
- Palekar, S.; Kalambe, J.; Patrikar, R.M. IoT enabled microfluidics-based biochemistry analyzer based on colorimetric detection techniques. Chem. Pap. 2023, 77, 2935–2945. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, J. Blood Cholesterol Monitoring with Smartphone as Miniaturized Electrochemical Analyzer for Cardiovascular Disease Prevention. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 784–790. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.; Guo, J.; Ma, X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens. Bioelectron. 2018, 110, 78–88. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Liu, L.; Wang, W.; Zhang, W.; Song, D.; Wang, X.; Su, R. A dual-signal sensing platform based on nanosheet materials for ratiometric fluorescence and colorimetric detection of enzyme activities in human blood. Sens. Actuators B Chem. 2021, 346, 130531. [Google Scholar] [CrossRef]
- Chunta, S.; Jarujamrus, P.; Prakobkij, A.; Khongwichit, S.; Ditcharoen, N.; Pencharee, S.; Amatatongchai, M. Point-of-care blood tests using a smartphone-based colorimetric analyzer for health check-up. Microchimica Acta 2024, 191, 402. [Google Scholar] [CrossRef]
- Palekar, S.; Kalambe, J.; Patrikar, R.M. Machine-Learning-Assisted Blood Parameter Sensing Platform for Rapid Next Generation Biomedical and Healthcare Applications. ECS J. Solid State Sci. Technol. 2024, 13, 27004. [Google Scholar] [CrossRef]
- Phuadraksa, T.; Chittrakanwong, J.; Tullayaprayouch, K.; Onsirisakul, N.; Wichit, S.; Yainoy, S. Engineering of bifunctional enzymes with uricase and peroxidase activities for simple and rapid quantification of uric acid in biological samples. Catalysts 2020, 10, 428. [Google Scholar] [CrossRef]
- Tarim, E.A.; Tekin, H.C. Colorimetric detection of serum creatinine on a miniaturized platform using hue-saturation-value space analysis. Sci. Rep. 2024, 14, 19441. [Google Scholar] [CrossRef] [PubMed]
- Penickova, S.; Benyaich, S.; Ambar, I.; Cotton, F. Reliability of albumin bromocresol green colorimetric method and clinical impact. Scand. J. Clin. Lab. Investig. 2024, 84, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Peng, C.H. Assessment and influencing factors analysis of bromocresol green colorimetry for serum albumin. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] 2022, 56, 1112–1117. [Google Scholar] [CrossRef]
Preparation Protocol | Blank | Standard | Test Sample |
---|---|---|---|
Reagent | 500 µL | 500 µL | 500 µL |
Standard | -- | 5 µL | -- |
Test Sample | -- | -- | 5 µL |
Inference | No concentration of targeted analyte, used for baseline | Known concentration of targeted analyte, used for calibration | Unknown concentration of targeted analyte, to be determined |
Actual Uric Acid Concentration mg/dL | Different Smartphone, Chemical Brand, and Lighting Conditions (n = 5) | Average Variation % | ||
---|---|---|---|---|
Samsung | One Plus | Motorola | ||
Erba | Trace | Proton | ||
Morning | Afternoon | Evening | ||
2 | 2.16 | 2.05 | 2.19 | 6.67 |
4 | 4.17 | 4.28 | 3.8 | 5.42 |
8 | 8.27 | 7.31 | 7.41 | 6.46 |
12 | 11.03 | 11.14 | 11.85 | 5.50 |
20 | 20.85 | 20.41 | 20.81 | 3.45 |
Test | Analyzer | Results | ||||
---|---|---|---|---|---|---|
Uric acid (mg/dL) | Commercial | 4.15 | 8.23 | 2.01 | 5.25 | 1.24 |
Developed | 4.72 | 8.49 | 2.29 | 5.88 | 1.51 | |
Creatinine (mg/dL) | Commercial | 1.23 | 1.41 | 2.52 | 3.18 | 3.56 |
Developed | 1.20 | 1.37 | 2.48 | 3.11 | 3.41 | |
Albumin (g/dL) | Commercial | 5.2 | 8 | 2 | 4.2 | 6.1 |
Developed | 5 | 7.3 | 1.8 | 4 | 5.9 |
Sample | Baseline Concentration (mg/dL) | Spiked Concentration (mg/dL) | Measured Concentration (mg/dL) | Recovery (%) |
---|---|---|---|---|
S1 | 2.01 | 2.00 | 3.95 | 97.5 |
S2 | 4.15 | 4.00 | 8.05 | 98.0 |
S3 | 5.25 | 3.00 | 8.12 | 95.8 |
S4 | 8.23 | 2.50 | 10.64 | 96.4 |
S5 | 1.24 | 1.50 | 2.72 | 98.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palekar, S.; Kalambe, S.; Kalambe, J.; Kulkarni, M.B.; Bhaiyya, M. A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification. Biosensors 2025, 15, 192. https://doi.org/10.3390/bios15030192
Palekar S, Kalambe S, Kalambe J, Kulkarni MB, Bhaiyya M. A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification. Biosensors. 2025; 15(3):192. https://doi.org/10.3390/bios15030192
Chicago/Turabian StylePalekar, Sangeeta, Sharayu Kalambe, Jayu Kalambe, Madhusudan B. Kulkarni, and Manish Bhaiyya. 2025. "A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification" Biosensors 15, no. 3: 192. https://doi.org/10.3390/bios15030192
APA StylePalekar, S., Kalambe, S., Kalambe, J., Kulkarni, M. B., & Bhaiyya, M. (2025). A Portable Smartphone-Based 3D-Printed Biosensing Platform for Kidney Function Biomarker Quantification. Biosensors, 15(3), 192. https://doi.org/10.3390/bios15030192