Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (618)

Search Parameters:
Keywords = readout system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1140 KiB  
Review
Eyes Wide Open: Assessing Early Visual Behavior in Zebrafish Larvae
by Michela Giacich, Maria Marchese, Devid Damiani, Filippo Maria Santorelli and Valentina Naef
Biology 2025, 14(8), 934; https://doi.org/10.3390/biology14080934 - 24 Jul 2025
Abstract
Early diagnosis is critical for the effective management of neurodegenerative disorders, and retinal alterations have emerged as promising early biomarkers due to the retina’s close developmental and functional link to the brain. The zebrafish (Danio rerio), with its rapid development, transparent embryos, and [...] Read more.
Early diagnosis is critical for the effective management of neurodegenerative disorders, and retinal alterations have emerged as promising early biomarkers due to the retina’s close developmental and functional link to the brain. The zebrafish (Danio rerio), with its rapid development, transparent embryos, and evolutionarily conserved visual system, represents a powerful and versatile model for studying retinal degeneration. This review discusses a range of behavioral assays—including visual adaptation, motion detection, and color discrimination—that are employed to evaluate retinal function in zebrafish. These methods enable the detection of subtle visual deficits that may precede overt anatomical damage, providing a non-invasive, efficient strategy for early diagnosis and high-throughput drug screening. Importantly, these behavioral tests also serve as sensitive functional readouts to evaluate the efficacy of pharmacological treatments over time. Compared to traditional murine models, zebrafish offer advantages such as lower maintenance costs, faster development, optical transparency for live imaging, and ethical benefits due to reduced use of higher vertebrates. However, variability in experimental protocols highlights the need for standardization to ensure reliability and reproducibility. Full article
Show Figures

Graphical abstract

12 pages, 1307 KiB  
Article
Reverse Transcription Loop-Mediated Isothermal Amplification Assay Using Samples Directly: Point-of-Care Detection of Severe Fever with Thrombocytopenia Syndrome Virus
by Marla Anggita, Kyoko Hayashida, Miyuka Nishizato, Hiroshi Shimoda and Daisuke Hayasaka
Zoonotic Dis. 2025, 5(3), 19; https://doi.org/10.3390/zoonoticdis5030019 - 11 Jul 2025
Viewed by 183
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by the SFTS virus (SFTSV). A rapid and cost-effective point-of-care testing detection system is important for the early diagnosis of SFTS. Herein, we developed a ready-to-use dried reverse transcription loop-mediated isothermal [...] Read more.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by the SFTS virus (SFTSV). A rapid and cost-effective point-of-care testing detection system is important for the early diagnosis of SFTS. Herein, we developed a ready-to-use dried reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the direct detection of SFTSV in clinical samples. The assay enables simple, RNA-extraction-free detection using heat-treated serum or plasma, followed by a 30 min incubation at 65 °C. The results are visually interpreted through the color emitted, which can be observed under LED light. The established assay demonstrated detection sensitivity for SFTSV at 104 copies/µL and was effective in identifying infections in cats. Despite being less sensitive than real-time RT-PCR, this dried RT-LAMP method offers a rapid, cost-effective alternative suitable for point-of-care use, particularly in remote or resource-limited settings. The simplified workflow and visual readout make it a practical tool for the early detection and daily surveillance of SFTSV in animals. Full article
Show Figures

Figure 1

18 pages, 5006 KiB  
Article
Time-Domain ADC and Security Co-Design for SiP-Based Wireless SAW Sensor Readers
by Zhen Mao, Bing Li, Linning Peng and Jinghe Wei
Sensors 2025, 25(14), 4308; https://doi.org/10.3390/s25144308 - 10 Jul 2025
Viewed by 236
Abstract
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive [...] Read more.
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive electronics, and IoT applications, its potential for revolutionizing SAW sensor interrogator design remains underexplored. This paper presents a novel architecture that synergistically combines time-domain ADC design with SiP-based miniaturization to achieve unprecedented simplification of SAW sensor readout systems. The proposed time-domain ADC incorporates an innovative delay chain calibration methodology that integrates physical unclonable function (PUF) principles during time-to-digital converter (TDC) characterization, enabling the simultaneous generation of unique system IDs. The experimental results demonstrate that the integrated security mechanism provides variable-length bit entropy for device authentication, and has a reliability of 97.56 and uniqueness of 49.43, with 53.28 uniformity, effectively addressing vulnerability concerns in distributed sensor networks. The proposed SiP is especially suitable for space-constrained IoT applications requiring robust physical-layer security. This work advances the state-of-the-art wireless sensor interfaces by demonstrating how time-domain signal processing and advanced packaging technologies can be co-optimized to address performance and security challenges in next-generation sensor systems. Full article
Show Figures

Figure 1

13 pages, 4900 KiB  
Article
Comparative Noise Analysis of Readout Circuit in Hemispherical Resonator Gyroscope
by Zhihao Yu, Libin Zeng, Changda Xing, Lituo Shang, Xiuyue Yan and Jingyu Li
Micromachines 2025, 16(7), 802; https://doi.org/10.3390/mi16070802 - 9 Jul 2025
Viewed by 250
Abstract
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model [...] Read more.
In high-precision Hemispherical Resonator Gyroscope (HRG) control systems, readout circuit noise critically determines resonator displacement detection precision. Addressing noise issues, this paper compares the noise characteristics and contribution mechanisms of the Transimpedance Amplifier (TIA) and Charge-Sensitive Amplifier (CSA). By establishing a noise model and analyzing circuit bandwidth, the dominant role of feedback resistor thermal noise in the TIA is revealed. These analyses further demonstrate the significant suppression of high-frequency noise by the CSA capacitive feedback network. Simulation and experimental results demonstrate that the measured noise of the TIA and CSA is consistent with the theoretical model. The TIA output noise is 25.8 μVrms, with feedback resistor thermal noise accounting for 99.8%, while CSA output noise is reduced to 13.2 μVrms, a reduction of 48.8%. Near resonant frequency, the equivalent displacement noise of the CSA is 1.69×1014m/Hz, a reduction of 86.7% compared to the TIA’s 1.27×1013m/Hz, indicating the CSA is more suitable for high-precision applications. This research provides theoretical guidance and technical references for the topological selection and parameter design of HRG readout circuits. Full article
Show Figures

Figure 1

13 pages, 944 KiB  
Review
An In Vitro Approach to Prime or Boost Human Antigen-Specific CD8+ T Cell Responses: Applications to Vaccine Studies
by Hoang Oanh Nguyen, Mariela P. Cabral-Piccin, Victor Appay and Laura Papagno
Vaccines 2025, 13(7), 729; https://doi.org/10.3390/vaccines13070729 - 4 Jul 2025
Cited by 1 | Viewed by 542
Abstract
Although vaccine development has primarily focused on inducing neutralizing antibodies, increasing evidence supports an important role of CD8+ T cell responses in vaccine effectiveness. Routine assays, which are mainly based on antibody titers, may therefore not accurately reflect the full immune response [...] Read more.
Although vaccine development has primarily focused on inducing neutralizing antibodies, increasing evidence supports an important role of CD8+ T cell responses in vaccine effectiveness. Routine assays, which are mainly based on antibody titers, may therefore not accurately reflect the full immune response elicited by vaccination. Assessing antigen-specific T cell responses upon vaccination poses several challenges. A common issue in studying T cells specific to a vaccine antigen is their low frequency in circulation, which can limit their ex vivo analysis. Moreover, the use of human cell-based models is crucial for studying and optimizing the induction of T cell responses to design effective vaccines. We developed an innovative in vitro approach of human CD8+ T cell priming, based on the rapid mobilization of dendritic cells (DCs) directly from unfractionated peripheral blood mononuclear cells (PBMCs). This simple and original method allows for side-by-side comparisons of multiple test parameters in a standardized system, providing both quantitative and qualitative readouts of primed antigen-specific CD8+ T cells. Here, we discuss the genesis of this approach and its versatile applications, including monitoring antigen-specific T cell responses, evaluating an individual’s T cell priming capacity, and conducting preclinical studies on potential adjuvants and vaccine candidates. Full article
(This article belongs to the Special Issue Analysis of Vaccine-Induced Adaptive Immune Responses)
Show Figures

Figure 1

40 pages, 7036 KiB  
Review
Bioluminescence in Clinical and Point-of-Care Testing
by Sherwin Reyes, Raymarcos Rodriguez, Emre Dikici, Sylvia Daunert and Sapna Deo
Biosensors 2025, 15(7), 422; https://doi.org/10.3390/bios15070422 - 2 Jul 2025
Viewed by 393
Abstract
Point-of-care testing (POCT) offers a transformative approach to diagnostics by enabling rapid and accurate results at or near the site of patient care. This is especially valuable in critical care, emergency settings, and resource-limited areas. However, one major limitation of POCT remains its [...] Read more.
Point-of-care testing (POCT) offers a transformative approach to diagnostics by enabling rapid and accurate results at or near the site of patient care. This is especially valuable in critical care, emergency settings, and resource-limited areas. However, one major limitation of POCT remains its analytical sensitivity, particularly in detecting low concentrations of analytes. To address this, various innovations are being explored, including advanced sensors, signal amplification, and sensitive labels. Among these, bioluminescent proteins have gained attention for their high sensitivity, fast readout, minimal background interference, and simplified instrumentation. Bioluminescence—light emission from biochemical reactions—presents an ideal platform for enhancing POCT sensitivity. In parallel, metal–organic frameworks (MOFs), especially structures like ZIF-8, are emerging as valuable materials in biosensing. Their high porosity, tunable surface properties, and ability to host biomolecules make them excellent candidates for improving analyte capture and signal transduction. When integrated with bioluminescent systems, MOFs can stabilize proteins, concentrate targets, and enhance overall assay performance. This review highlights the role of bioluminescent proteins in medical diagnostics and their application in POCT platforms. We also discuss the potential synergy between MOFs and bioluminescence to overcome current sensitivity limitations. Finally, we examine existing challenges and strategies to optimize these technologies for robust, field-deployable diagnostic tools. By leveraging both the natural sensitivity of bioluminescence and the structural advantages of MOFs, next-generation POCT systems can achieve superior performance, driving forward diagnostic accessibility and patient care outcomes. Full article
Show Figures

Figure 1

30 pages, 23810 KiB  
Article
A Systematic Parametric Campaign to Benchmark Event Cameras in Computer Vision Tasks
by Dario Cazzato, Graziano Renaldi and Flavio Bono
Electronics 2025, 14(13), 2603; https://doi.org/10.3390/electronics14132603 - 27 Jun 2025
Viewed by 272
Abstract
The dynamic vision sensor (DVS), or event camera, is emerging as a successful sensing solution for many application fields. While state-of-the-art datasets for event-based vision are well-structured and suitable for the designed goals, they often rely on simulated data or are recorded in [...] Read more.
The dynamic vision sensor (DVS), or event camera, is emerging as a successful sensing solution for many application fields. While state-of-the-art datasets for event-based vision are well-structured and suitable for the designed goals, they often rely on simulated data or are recorded in loosely controlled conditions, thereby making it challenging to understand the sensor response to varying camera parameters and illumination conditions. To address this knowledge gap, this work introduces the JRC INVISIONS Neuromorphic Sensors Parametric Tests dataset, an extensive collection of event-based data specifically acquired in controlled scenarios that systematically vary bias settings and environmental factors, enabling rigorous evaluation of sensor performance, robustness, and artifacts under realistic conditions that existing datasets lack. The dataset is composed of 2156 scenes recorded with two different off-the-shelf event cameras, eventually paired with a frame camera across three different controlled scenarios: moving targets, mechanical vibrations, and rotation speed estimation; the inclusion of ground truth enables the evaluation of standard computer vision tasks. The proposed manuscript is complemented by an experimental analysis of sensor performance under varying speeds and illumination, event statistics, and acquisition artifacts such as event loss and motion-induced distortions due to line-based readout. The dataset is publicly available and, to the best of our knowledge, represents the first dataset of its kind in the literature, providing a valuable resource for the research community to advance the development of event-based vision systems and applications. Full article
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Viewed by 277
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
A 209 ps Shutter-Time CMOS Image Sensor for Ultra-Fast Diagnosis
by Houzhi Cai, Zhaoyang Xie, Youlin Ma and Lijuan Xiang
Sensors 2025, 25(12), 3835; https://doi.org/10.3390/s25123835 - 19 Jun 2025
Viewed by 380
Abstract
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image [...] Read more.
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image sensor that can be seamlessly integrated with an electronic pulse broadening system can provide a viable alternative to the microchannel plate detector. This paper introduces the design of an 8 × 8 pixel-array ultrashort shutter-time single-framing CMOS image sensor, which leverages silicon epitaxial processing and a 0.18 μm standard CMOS process. The focus of this study is on the photodiode and the readout pixel-array circuit. The photodiode, designed using the silicon epitaxial process, achieves a quantum efficiency exceeding 30% in the visible light band at a bias voltage of 1.8 V, with a temporal resolution greater than 200 ps for visible light. The readout pixel-array circuit, which is based on the 0.18 μm standard CMOS process, incorporates 5T structure pixel units, voltage-controlled delayers, clock trees, and row-column decoding and scanning circuits. Simulations of the pixel circuit demonstrate an optimal temporal resolution of 60 ps. Under the shutter condition with the best temporal resolution, the maximum output swing of the pixel circuit is 448 mV, and the output noise is 77.47 μV, resulting in a dynamic range of 75.2 dB for the pixel circuit; the small-signal responsivity is 1.93 × 10−7 V/e, and the full-well capacity is 2.3 Me. The maximum power consumption of the 8 × 8 pixel-array and its control circuits is 0.35 mW. Considering both the photodiode and the pixel circuit, the proposed CMOS image sensor achieves a temporal resolution better than 209 ps. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

15 pages, 5363 KiB  
Article
Compact and Handheld SiPM-Based Gamma Camera for Radio-Guided Surgery and Medical Imaging
by Fabio Acerbi, Aramis Raiola, Cyril Alispach, Hossein Arabi, Habib Zaidi, Alberto Gola and Domenico Della Volpe
Instruments 2025, 9(2), 14; https://doi.org/10.3390/instruments9020014 - 15 Jun 2025
Viewed by 540
Abstract
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, [...] Read more.
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, the lesion has to be identified precisely, in terms of position and extension. In such a context, going beyond the current one-point probes, introducing portable but high-resolution cameras, handholdable by the surgeon, would be highly beneficial. We developed and tested a novel compact, low-power, handheld gamma camera for radio-guided surgery. This is based on a particular position-sensitive Silicon Photomultiplier (SiPM) technology—the FBK linearly graded SiPM (LG-SiPM). Within the camera, the photodetector is made up of a 3 × 3 array of 10 × 10 mm2 SiPM chips having a total area of more than 30 × 30 mm2. This is coupled with a pixelated scintillator and a parallel-hole collimator. With the LG-SiPM technology, it is possible to significantly reduce the number of readout channels to just eight, simplifying the complexity and lowering the power consumption of the readout electronics while still preserving a good position resolution. The novel gamma camera is light (weight), and it is made to be a fully stand-alone system, therefore featuring wireless communication, battery power, and wireless recharge capabilities. We designed, simulated (electrically), and tested (functionally) the first prototypes of the novel gamma camera. We characterized the intrinsic position resolution (tested with pulsed light) as being ~200 µm, and the sensitivity and resolution when detecting gamma rays from Tc-99m source measured between 134 and 481 cps/MBq and as good as 1.4–1.9 mm, respectively. Full article
Show Figures

Figure 1

23 pages, 6801 KiB  
Article
A Graph Isomorphic Network with Attention Mechanism for Intelligent Fault Diagnosis of Axial Piston Pump
by Kai Li, Bofan Wu, Shiqi Xia and Xianshi Jia
Appl. Sci. 2025, 15(12), 6586; https://doi.org/10.3390/app15126586 - 11 Jun 2025
Viewed by 294
Abstract
Axial piston pumps play a vital role in fluid power systems, which are widely employed in diverse fields such as aerospace, ocean engineering, and rail transit. It is essential to accurately diagnose faults in these pumps since their reliable operation hinges on it. [...] Read more.
Axial piston pumps play a vital role in fluid power systems, which are widely employed in diverse fields such as aerospace, ocean engineering, and rail transit. It is essential to accurately diagnose faults in these pumps since their reliable operation hinges on it. A graph isomorphic network with a spatio-temporal attention mechanism (GIN-ST) is proposed in this paper for fault diagnosis of hydraulic axial piston pumps; GIN-AM addresses the problem of traditional intelligent fault diagnosis methods being limited to nonlinear mapping and transformation in Euclidean space. Initially, the weighted graphs are constructed from a univariate time series through K-nearest neighbor graph methods. Subsequently, a spatio-temporal attention-based module used to learn the graph representation of piston pump faults is presented, where a novel READOUT function and Transformer encoder provide spatial and temporal interpretability, respectively. Finally, the proposed (GIN-ST) model is compared against other intelligent fault diagnosis methods, and the superiority of the proposed method is proven. Full article
Show Figures

Figure 1

16 pages, 3141 KiB  
Article
SRC and ERK Regulate the Turnover of Cytoskeletal Keratin Filaments
by Marcin Moch and Rudolf E. Leube
Int. J. Mol. Sci. 2025, 26(12), 5476; https://doi.org/10.3390/ijms26125476 - 7 Jun 2025
Viewed by 479
Abstract
Epithelial differentiation and function are tightly coupled to the keratin intermediate filament cytoskeleton. Keratin filaments are unique among the cytoskeletal filament systems in terms of biochemical properties, diversity and turnover mechanisms supporting epithelial plasticity in response to a multitude of environmental cues. Epidermal [...] Read more.
Epithelial differentiation and function are tightly coupled to the keratin intermediate filament cytoskeleton. Keratin filaments are unique among the cytoskeletal filament systems in terms of biochemical properties, diversity and turnover mechanisms supporting epithelial plasticity in response to a multitude of environmental cues. Epidermal growth factor (EGF) is such a cue. It is not only intricately intertwined with epithelial physiology but also modulates keratin filament network organization by increasing keratin filament turnover. The involved EGF receptor (EGFR)-dependent intracellular signaling cascades, however, have not been identified to date. We therefore tested the effect of selective inhibitors of downstream effectors of the EGFR on keratin filament turnover using quantitative fluorescence recovery after photobleaching experiments as readouts. We find that SRC and ERK kinases are involved in the regulation of keratin filament turnover, whereas PI3K/AKT and FAK have little or no effect. The identification of SRC and ERK as major keratin filament regulators extends beyond EGF signaling since they are also activated by other signals and stresses. Our data unveil a mechanism that allows modification of the properties of keratin filaments at very high temporal and spatial acuity. Full article
Show Figures

Figure 1

18 pages, 7173 KiB  
Article
Design Considerations of an Analog Voltage Mode Readout Circuit for the CMOS-SOI-MEMS Gas Sensor Dubbed GMOS
by Efraim-Lavi Bukshish, Sharon Bar-Lev, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 658; https://doi.org/10.3390/mi16060658 - 30 May 2025
Viewed by 433
Abstract
Modern gas sensor technology is becoming an important part of our lives. Hence, there has been considerable effort over the past 25 years towards the goal of creating low-cost gas sensors by employing modern microelectronics technology to manufacture both the sensing element and [...] Read more.
Modern gas sensor technology is becoming an important part of our lives. Hence, there has been considerable effort over the past 25 years towards the goal of creating low-cost gas sensors by employing modern microelectronics technology to manufacture both the sensing element and the signal conditioning circuitry on single silicon chips. CMOS sensors based on CMOS-SOI-MEMS technology seemed to be a good candidate for the monolithic approach. In this study, we critically review this approach. We show the advantages of chiplet-based designs for gas sensors that are based on CMOS-SOI-MEMS technology, dubbed GMOSs. The design of a monolithic GMOS system based on the voltage mode reading of a GMOS transistor connected in a three-terminal configuration is presented and validated for the first time. This study led to the understanding that a chiplet-like design should be preferred since the sensor and the readout circuitry of traditional gas sensors exhibit conflicting technological requirements. The innovation of this work is both in the readout design that it posits and in the resulting paradigm shift. Full article
Show Figures

Figure 1

15 pages, 3162 KiB  
Article
Dual-Mode Microfluidic Workstation for Rapid Detection of Multiple Mycotoxins on Chip
by Binfeng Yin, Shiyu Zeng, Jun Liu, Rashid Muhammad, Zhuoao Jiang, Gang Tan and Qi Yang
Foods 2025, 14(11), 1928; https://doi.org/10.3390/foods14111928 - 29 May 2025
Cited by 1 | Viewed by 455
Abstract
The assurance of food safety requires sensitive monitoring of multiple mycotoxins due to their severe impacts on the food industry and high health risks posed to consumers. Herein, we proposed a chemiluminescent/colorimetric dual-signal readout microfluidic method, incorporating a streptavidin-biotin-alkaline phosphatase (SA-Biotin-ALP) signal amplification [...] Read more.
The assurance of food safety requires sensitive monitoring of multiple mycotoxins due to their severe impacts on the food industry and high health risks posed to consumers. Herein, we proposed a chemiluminescent/colorimetric dual-signal readout microfluidic method, incorporating a streptavidin-biotin-alkaline phosphatase (SA-Biotin-ALP) signal amplification system for the highly sensitive detection of Deoxynivalenol (DON), Ochratoxin A (OTA), and Aflatoxin B1 (AFB1). The indirect competitive enzyme-linked immunoassay (ic-ELISA) was integrated into microfluidic chip, resulting in sensitive detection ranges of DON in the range of 4–128 ng/mL, 2–64 ng/mL for OTA, and 0.2–6.4 ng/mL for AFB1, with the limit of detection (LOD) being 2.636 ng/mL, 1.492 ng/mL, and 0.131 ng/mL, respectively. Recovery rates in beer samples ranged from 91.93% to 109.31%. Furthermore, a dual-mode microfluidic workstation (DMMW) was developed to facilitate rapid, automated detection for these mycotoxins, simplifying the detection procedure, enhancing the detection efficiency, and reducing the requirement for specialized personnel, thus confirming significant potential for the rapid detection of mycotoxins in complex matrices such as beer. Full article
Show Figures

Figure 1

16 pages, 2003 KiB  
Article
Feasibility of an App-Assisted and Home-Based Video Version of the Timed Up and Go Test for Patients with Parkinson Disease: vTUG
by Marcus Grobe-Einsler, Anna Gerdes, Tim Feige, Vivian Maas, Clare Matthews, Alejandro Mendoza García, Laia Comas Fages, Elin Haf Davies, Thomas Klockgether and Björn H. Falkenburger
J. Clin. Med. 2025, 14(11), 3769; https://doi.org/10.3390/jcm14113769 - 28 May 2025
Viewed by 443
Abstract
Background: Parkinson Disease (PD) is a progressive neurodegenerative disorder. Current therapeutic trials investigate treatments that can potentially modify the disease course. Testing their efficiency requires outcome assessments that are relevant to patients’ daily lives, which include gait and balance. Home-based examinations may [...] Read more.
Background: Parkinson Disease (PD) is a progressive neurodegenerative disorder. Current therapeutic trials investigate treatments that can potentially modify the disease course. Testing their efficiency requires outcome assessments that are relevant to patients’ daily lives, which include gait and balance. Home-based examinations may enhance patient compliance and, in addition, produce more reliable results by assessing patients more regularly in their familiar surroundings. Objective: The objective of this pilot study was to assess the feasibility of a home-based outcome assessment designed to video record the Timed up and Go (vTUG) test via a study-specific smartphone app for patients with PD. Methods: 28 patients were recruited and asked to perform at home each week a set of three consecutive vTUG tests, over a period of 12 weeks using an app. The videos were subjected to a manual review to ascertain the durations of the individual vTUG phases, as well as to identify any errors or deviations in the setup that might have influenced the result. To evaluate the usability and user-friendliness of the vTUG and app, the System Usability Scale (SUS) and User Experience Questionnaire (UEQ) were administered to patients at the study end. Results: 19 patients completed the 12-week study, 17 of which recorded 10 videos or more. A total of 706 vTUGs with complete timings were recorded. Random Forest Regression yielded “time to walk up” as the most important segment of the vTUG for predicting the total time. Variance of vTUG total time was significantly higher between weeks than it was between the three consecutive vTUGs at one time point [F(254,23) = 6.50, p < 0.001]. The correlation between vTUG total time and UPDRS III total score was weak (r = 0.24). The correlation between vTUG and a derived gait subscore (UPDRS III items 9–13) was moderate (r = 0.59). A linear mixed-effects model revealed a significant effect of patient-reported motion status on vTUG total time. Including additional variables such as UPDRS III gait subscore, footwear and chairs used further improved the model fit. Conclusions: Assessment of gait and balance by home-based vTUG is feasible. Factors influencing the read-out were identified and could be better controlled for future use and longitudinal trials. Full article
Show Figures

Figure 1

Back to TopTop