Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,117)

Search Parameters:
Keywords = reactivity ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 (registering DOI) - 2 Aug 2025
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
17 pages, 4098 KiB  
Article
The Influence of the Annealing Process on the Mechanical Properties of Chromium Nitride Thin Films
by Elena Chițanu, Iulian Iordache, Mirela Maria Codescu, Virgil Emanuel Marinescu, Gabriela Beatrice Sbârcea, Delia Pătroi, Leila Zevri and Alexandra Cristiana Nadolu
Materials 2025, 18(15), 3605; https://doi.org/10.3390/ma18153605 (registering DOI) - 31 Jul 2025
Abstract
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent [...] Read more.
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent wear resistance, and strong corrosion resistance. In this study, a fabrication process for CrN-based thin films was developed by combining reactive direct current magnetron sputtering (dcMS) with post-deposition annealing in air. CrN coatings were deposited by reactive dcMS using different argon-nitrogen (Ar:N2) gas ratios (4:1, 3:1, 2:1, and 1:1), followed by annealing at 550 °C for 1.5 h in ambient air. XRD and EDS analysis revealed that this treatment results in the formation of a composite phase comprising CrN and Cr2O3. The resulting coating exhibited favorable mechanical and tribological properties, including a maximum hardness of 12 GPa, a low wear coefficient of 0.254 and a specific wear rate of 7.05 × 10−6 mm3/N·m, making it a strong candidate for advanced protective coating applications. Full article
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 190
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

28 pages, 1184 KiB  
Review
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection
by Giorgia Cianci, Gloria Maini, Matteo Ferraresi, Giulia Pezzi, Daria Bortolotti, Sabrina Rizzo, Silvia Beltrami and Giovanna Schiuma
Pathogens 2025, 14(8), 747; https://doi.org/10.3390/pathogens14080747 - 30 Jul 2025
Viewed by 242
Abstract
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as [...] Read more.
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as a critical regulator of host immunity and viral pathogenesis. This review examines the complex interactions between polyomaviruses, the immune system, and intestinal microbiota, emphasizing the role of short-chain fatty acids (SCFAs) in modulating antiviral responses. We explore how dysbiosis may facilitate viral replication, reactivation, and immune escape and also consider how polyomavirus infection can, in turn, alter microbial composition. Particular attention is given to the Firmicutes/Bacteroidetes ratio as a potential biomarker of infection risk and immune status. Therapeutic strategies targeting the microbiota, including prebiotics, probiotics, and fecal microbiota transplantation (FMT), are discussed as innovative adjuncts to immune-based therapies. Understanding these tri-directional interactions may offer new avenues for mitigating disease severity and improving patient outcomes during viral reactivation. Full article
Show Figures

Figure 1

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 123
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

10 pages, 269 KiB  
Article
Similarities and Differences Between Patients Diagnosed with ANCA-Associated Vasculitis Who Are Positive and Negative for ANCA: University Clinic Practice and Expertise
by Giedre Dereseviciene, Jolanta Dadoniene and Dalia Miltiniene
Medicina 2025, 61(8), 1369; https://doi.org/10.3390/medicina61081369 - 29 Jul 2025
Viewed by 94
Abstract
Background and objective. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects small- to medium-sized vessels and is characterized by the production of ANCAs. The ANCA-negative term is used if the patient otherwise fulfills the definition for AAV but has negative results on serologic testing [...] Read more.
Background and objective. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects small- to medium-sized vessels and is characterized by the production of ANCAs. The ANCA-negative term is used if the patient otherwise fulfills the definition for AAV but has negative results on serologic testing for ANCAs. The objective of this study was to compare ANCA-positive and -negative vasculitis patients and to evaluate the main differences possibly related to the presence of ANCAs. Material and methods. A cross-sectional study of 73 patients treated at the tertiary Rheumatology Centre of University Hospital from the 1 January, 2001, to the 31August, 2023, with diagnoses of AAV was carried out. Clinical characteristics and laboratory data were collected at the onset or at the first year of the disease. Results. Forty-eight (65.8%) patients were ANCA-positive, while twenty-five (34.3%) were ANCA-negative. Distribution by gender was similar in both groups, with a female–male ratio of 2:1. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were elevated for all AAV patients, but values were higher in the ANCA-positive patients’ group. The median hemoglobin was 106 g/L in the seropositive group and 127 g/L in the seronegative group. A higher prevalence of kidney involvement (60.4%) with elevated serum creatinine level (93.5 µmol/L) was observed in the ANCA-positive group compared with 24% and 70 µmol/l in the ANCA-negative group (p < 0.05). Neurological involvement was more frequently found in the ANCA-positive patient group, too: 29.2% compared to 20%. Among patients with ANCA-negative vasculitis, 88% had pulmonary; 92% ear, nose, throat (ENT); 48% joint; and 28% skin presentation. In comparison, involvement of these organs was less common in the ANCA-positive patients’ group, at 79.2%, 60.4%, 31.3%, and 25 %, respectively. Conclusions. ANCA-positive patients appear to be in a more difficult clinical situation in terms of organ involvement and laboratory changes. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases: 2nd Edition)
13 pages, 309 KiB  
Article
Sex Disparities Among Lithuanian Ischemic Stroke Patients According to Laboratory Findings; Comorbidities, Including COVID-19; Acute In-Hospital Complications; and Outcomes
by Erika Jasukaitienė, Šarūnas Augustis, Lolita Šileikienė, Abdonas Tamošiūnas, Dalia Lukšienė, Gintarė Šakalytė, Diana Žaliaduonytė, Karolina Marcinkevičienė, Daina Krančiukaitė-Butylkinienė and Ričardas Radišauskas
Medicina 2025, 61(8), 1367; https://doi.org/10.3390/medicina61081367 - 28 Jul 2025
Viewed by 148
Abstract
Background and Objectives: Ischemic stroke (IS) is a critical health issue, affecting individuals of all ages, sexes, and backgrounds. Mounting evidence suggests that sex indeed could play some distinct role in shaping the incidence, outcomes, and treatment of IS. In the context [...] Read more.
Background and Objectives: Ischemic stroke (IS) is a critical health issue, affecting individuals of all ages, sexes, and backgrounds. Mounting evidence suggests that sex indeed could play some distinct role in shaping the incidence, outcomes, and treatment of IS. In the context of the COVID-19 pandemic, contradictory findings from previous studies that also addressed sex differences in cerebrovascular diseases demonstrate the need for further focused research. This study aimed to evaluate the sex discrepancies in the clinical presentation of IS and its outcomes in patients admitted to Kaunas Hospital of the Lithuanian University of Health Sciences (LUHS), Lithuania. Materials and Methods: This is a retrospective record-based single-center study. All the study patients—727 men and 1082 women—enrolled between 1 January 2020, and 27 February 2022; suffered from acute IS; and had absolute contraindications against interventional IS treatment. These patients received a conservative non-interventional IS treatment at the neurological department of the LUHS’s Kaunas Hospital. The sociodemographic data; laboratory findings; comorbidities, including COVID-19; in-hospital complications; and outcome factors were obtained from the patients’ medical records and evaluated by deploying appropriate statistical tests. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by the Cox proportional hazards regression for in-hospital lethality. Results: The mean age of IS patients was significantly higher in women compared to men (p < 0.001), as was the proportion of in-hospital deaths (19.10% and 15.36%, respectively; p < 0.05). The mean total number of in-hospital complications was again significantly higher in the group of women compared to men (p < 0.05). The prevalence of COVID-19 was higher in men compared to women (p < 0.05). COVID-19 diagnosis (HR = 1.53; p = 0.02) and acute in-hospital pulmonary complications (HR = 1.91; p = 0.008) significantly increased the risk of in-hospital lethality in men. The risk of in-hospital lethality was significantly higher in women with comorbid diabetes mellitus type 2 (DM) compared to those with comorbid isolated arterial hypertension (AH) (HR = 2.25, p = 0.007). Increased C-reactive protein elevated the risk of in-hospital lethality by more than twice in both men and women (HR = 2.46; p < 0.001 and HR = 2.28; p < 0.001, respectively). Conclusions: The following differences between men and women with IS were determined: Acute in-hospital pulmonary complications, including COVID-19, significantly increased the risk of in-hospital lethality in the male group, but not in women. However, women suffering from DM had a significantly increased risk of in-hospital lethality compared with those women IS patients with AH or chronic ischemic heart disease (IHD). Increased C-reactive protein was associated with an elevated risk of in-hospital lethality both in male and female groups. Full article
(This article belongs to the Section Epidemiology & Public Health)
20 pages, 1716 KiB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 327
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

16 pages, 1638 KiB  
Systematic Review
Effect of Intermittent Fasting on Anthropometric Measurements, Metabolic Profile, and Hormones in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis
by Yazan Ranneh, Mohammed Hamsho, Wijdan Shkorfu, Merve Terzi and Abdulmannan Fadel
Nutrients 2025, 17(15), 2436; https://doi.org/10.3390/nu17152436 - 25 Jul 2025
Viewed by 292
Abstract
Background: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder characterized by excess body weight, hyperandrogenism, hyperglycemia, and insulin resistance often resulting in hirsutism and infertility. Dietary strategies have been shown to ameliorate metabolic disturbances, hormonal imbalances, and inflammation associated with PCOS. Recent [...] Read more.
Background: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder characterized by excess body weight, hyperandrogenism, hyperglycemia, and insulin resistance often resulting in hirsutism and infertility. Dietary strategies have been shown to ameliorate metabolic disturbances, hormonal imbalances, and inflammation associated with PCOS. Recent evidence indicates that intermittent fasting (IF) could effectively enhance health outcomes and regulate circadian rhythm; however, its impact on PCOS remain unclear. Objective: Therefore, this systematic review and meta-analysis aims to examine the effect of IF on women diagnosed with PCOS. Methods: Comprehensive research was conducted across three major databases including PubMed, Scopus, and Web of Science without date restrictions. Meta-analysis was performed using Cochrane Review Manager Version 5.4 software. Results: Five studies fulfilled the inclusion criteria. IF significantly reduced body weight (MD = −4.25 kg, 95% CI: −7.71, −0.79; p = 0.02), BMI (MD = −2.05 kg/m2, 95% CI: −3.26, −0.85; p = 0.0008), fasting blood glucose (FBG; MD = −2.86 mg/dL, 95% CI: −4.83, −0.89; p = 0.004), fasting blood insulin (FBI; MD = −3.17 μU/mL, 95% CI: −5.18, −1.16; p = 0.002), insulin resistance (HOMA-IR; MD = −0.94, 95% CI: −1.39, −0.50; p < 0.0001), triglycerides (TG; MD = −40.71 mg/dL, 95% CI: −61.53, −19.90; p = 0.0001), dehydroepiandrosterone sulfate (DHEA-S; MD = −33.21 μg/dL, 95% CI: −57.29, −9.13; p = 0.007), free androgen index (FAI; MD = −1.61%, 95% CI: −2.76, −0.45; p = 0.006), and C-reactive protein (CRP; MD = −2.00 mg/L, 95% CI: −3.15, −0.85; p = 0.006), while increasing sex hormone-binding globulin (SHBG; SMD = 0.50, 95% CI: 0.22, 0.77; p = 0.004). No significant changes were observed in waist-to-hip ratio (WHR), total cholesterol (TC), LDL, HDL, total testosterone (TT), or anti-Mullerian hormone (AMH). Conclusions: IF represents a promising strategy for improving weight and metabolic, hormonal, and inflammatory profiles in women with PCOS. However, the existing evidence remains preliminary, necessitating further robust studies to substantiate these findings. Full article
(This article belongs to the Special Issue Nutrition and Female Reproduction: Benefits for Women or Offspring)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 172
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

10 pages, 217 KiB  
Article
Systemic Effects of Enzymatic Necrosectomy in Minor Burn Wounds Using NexoBrid®
by David Breidung, Moritz Billner, Felix Ortner, Philipp von Imhoff, Simonas Lapinskas, Konrad Karcz, Sarina Delavari and Denis Ehrl
J. Pers. Med. 2025, 15(8), 330; https://doi.org/10.3390/jpm15080330 - 25 Jul 2025
Viewed by 213
Abstract
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and [...] Read more.
Background/Objectives: Enzymatic debridement with NexoBrid® is an effective alternative to surgical debridement in burn care, but its potential systemic effects remain unclear. In the context of personalized burn care, understanding individual patient responses to topical agents is essential to optimize outcomes and minimize risks. This study aimed to characterize laboratory and clinical parameter changes following NexoBrid® application in patients with small burn injuries (≤10% TBSA). Methods: We retrospectively analyzed 75 burn patients treated with NexoBrid® to evaluate changes in systemic inflammatory markers, coagulation parameters, and clinical parameters before and after enzymatic debridement. Results: Statistically significant increases in body temperature (p = 0.018), decreases in hemoglobin (p < 0.001), and increases in C-reactive protein (CRP) levels (p < 0.001) were observed, suggesting mild systemic inflammatory changes. However, leukocyte counts did not change significantly (p = 0.927), and body temperature remained within the normothermic range, indicating that these changes were not clinically significant. A significant decrease in the prothrombin time ratio (% of normal; p = 0.002) was also observed, suggesting potential impacts on coagulation. Importantly, while body temperature was slightly higher in patients with a higher degree of BSA exposure within the ≤10% TBSA cohort (p = 0.036), the extent of NexoBrid® application did not correlate with other inflammatory markers. Conclusions: These findings suggest that measurable systemic changes can occur following NexoBrid® application in small burns, particularly affecting inflammatory and coagulation parameters. These observations contribute to the understanding of treatment-related responses and may help inform clinical decision-making. Full article
(This article belongs to the Special Issue Plastic Surgery: New Perspectives and Innovative Techniques)
17 pages, 6395 KiB  
Article
Fe–P Alloy Production from High-Phosphorus Oolitic Iron Ore via Efficient Pre-Reduction and Smelting Separation
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(8), 778; https://doi.org/10.3390/min15080778 - 24 Jul 2025
Viewed by 186
Abstract
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or [...] Read more.
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or wear-resistant cast iron, indicating promising application prospects. Using oolitic magnetite concentrate (52.06% Fe, 0.37% P) as feedstock, optimized conditions including pre-reduction at 1050 °C for 2 h with C/Fe mass ratio of 2, followed by smelting separation at 1550 °C for 20 min with 5% coke, produced a metallic phase containing 99.24% Fe and 0.73% P. Iron and phosphorus recoveries reached 99.73% and 99.15%, respectively. EPMA microanalysis confirmed spatial correlation between iron and phosphorus in the metallic phase, with undetectable phosphorus signals in vitreous slag. This evidence suggests preferential phosphorus enrichment through interfacial mass transfer along the pathway of the slag phase to the metal interface and finally the iron matrix, forming homogeneous Fe–P solid solutions. The phosphorus migration mechanism involves sequential stages: apatite lattice decomposition liberates reactive P2O5 under SiO2/Al2O3 influence; slag–iron interfacial co-reduction generates Fe3P intermediates; Fe3P incorporation into the iron matrix establishes stable solid solutions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 328
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

20 pages, 1924 KiB  
Article
Olive Tree (Olea europaea) Pruning: Chemical Composition and Valorization of Wastes Through Liquefaction
by Idalina Domingos, Miguel Ferreira, José Ferreira and Bruno Esteves
Sustainability 2025, 17(15), 6739; https://doi.org/10.3390/su17156739 - 24 Jul 2025
Viewed by 296
Abstract
Olive tree branches (OB) and leaves (OL) from the Viseu region (Portugal) were studied for their chemical composition and liquefaction behavior using polyalcohols. Chemical analysis revealed that OL contained higher ash content (4.08%) and extractives, indicating more bioactive compounds, while OB had greater [...] Read more.
Olive tree branches (OB) and leaves (OL) from the Viseu region (Portugal) were studied for their chemical composition and liquefaction behavior using polyalcohols. Chemical analysis revealed that OL contained higher ash content (4.08%) and extractives, indicating more bioactive compounds, while OB had greater α-cellulose (30.47%) and hemicellulose (27.88%). Lignin content was higher in OL (21.64%) than OB (16.40%). Liquefaction experiments showed that increasing the temperature from 140 °C to 180 °C improved conversion, with OB showing a larger increase (52.5% to 80.9%) compared to OL (66% to 72%). OB reached peak conversion faster, and the optimal particle size for OB was 40–60 mesh, while OL performed better at finer sizes. OL benefited more from higher solvent ratios, whereas OB achieved high conversion with less solvent. FTIR analysis confirmed that acid-catalyzed liquefaction breaks down lignocellulosic structures, depolymerizes cellulose and hemicellulose, and modifies lignin, forming hydroxyl, aliphatic, and carbonyl groups. These changes reflect progressive biomass degradation and the incorporation of polyalcohol components, converting solid biomass into a reactive, polyol-rich liquid. The study highlights the distinct chemical and processing characteristics of olive branches and leaves, informing their potential industrial applications. Full article
Show Figures

Figure 1

Back to TopTop