Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = reactive power assignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1663 KB  
Article
Neuromechanical Effects of Eccentric–Reactive Training on Explosiveness, Asymmetry, and Stretch-Shortening in Elite Table Tennis Players
by Kinga Wiktoria Łosińska, Artur Gołaś, Florentyna Tyrała, Monika Szot and Adam Maszczyk
Biomechanics 2025, 5(4), 84; https://doi.org/10.3390/biomechanics5040084 - 16 Oct 2025
Viewed by 139
Abstract
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to [...] Read more.
Background/Objectives: This study examined the effects of a six-week eccentric–reactive training program on neuromechanical markers of lateral explosiveness, asymmetry, and stretch-shortening cycle (SSC) efficiency in elite male youth table tennis players. Fourteen national-level athletes (mean age = 16.6 years) were assigned to either an experimental group (EG, n = 7) or a control group (CG, n = 7). EG performed flywheel squats and lateral depth jumps three times per week, while CG maintained regular training. Pre- and post-intervention testing included countermovement jumps, reactive strength index (RSI_DJ), force asymmetry, time-to-stabilization, SSC efficiency, and energy transfer ratio (ETR), measured via force plates, EMG, and inertial sensors. Methods: Multi-dimensional statistical analysis revealed coordinated improvements in explosive power and movement efficiency following eccentric training that were not visible when examining individual measures separately. Athletes in the training group showed enhanced neuromechanical control and developed more efficient movement patterns compared to controls. The analysis successfully identified distinct performance profiles and demonstrated that the training program improved explosive characteristics in elite table tennis players. Results: Univariate ANOVAs showed no significant Group × Time effects for RSI_DJ, ETR, or SSC_Eff, although RSI_DJ displayed a moderate effect size in EG (d = 0.47, 95% CI [0.12, 0.82], p = 0.043). In contrast, MANOVA confirmed a significant multivariate Group × Time interaction (p = 0.013), demonstrating integrated neuromechanical adaptations. Regression analysis indicated lower baseline CMJ and RSI_DJ predicted greater RSI improvements. Conclusions: In conclusion, eccentric–reactive training promoted multidimensional neuromechanical adaptations in elite racket sport athletes, supporting the use of integrated monitoring and targeted eccentric loading to enhance lateral explosiveness and efficiency. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

18 pages, 1632 KB  
Article
Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
by Mariola Gepfert, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz and Adam Zając
J. Funct. Morphol. Kinesiol. 2025, 10(3), 304; https://doi.org/10.3390/jfmk10030304 - 5 Aug 2025
Viewed by 1583
Abstract
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to [...] Read more.
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to either an experimental group (n = 15), which supplemented their regular badminton training with plyometric exercises, or a control group (n = 15), which continued standard technical training. Performance assessments included squat jump (SJ), countermovement jump (CMJ), single-leg jumps, sprint tests (5 m, 10 m), lateral movements, musculotendinous stiffness, and RSI measurements. Results: The experimental group showed statistically significant improvements in jump height, power output, stiffness, and 10 m sprint and lateral slide-step performance (p < 0.05), with large effect sizes. No significant changes were observed in the control group. Single-leg jump improvements suggested potential benefits for addressing lower-limb asymmetries. Conclusions: An 8-week plyometric intervention significantly enhanced lower-limb explosive performance and multidirectional movement capabilities in young badminton players. These findings support the integration of targeted plyometric training into regular training programs to optimize physical performance, improve movement efficiency, and potentially reduce injury risk in high-intensity racket sports. Full article
Show Figures

Figure 1

31 pages, 3684 KB  
Article
A Distributed Cooperative Anti-Windup Algorithm Improving Voltage Profile in Distribution Systems with DERs’ Reactive Power Saturation
by Giovanni Mercurio Casolino, Giuseppe Fusco and Mario Russo
Energies 2025, 18(13), 3540; https://doi.org/10.3390/en18133540 - 4 Jul 2025
Viewed by 422
Abstract
This paper proposes a Distributed Cooperative Algorithm (DCA) that solves the windup problem caused by the saturation of the Distributed Energy Resource (DER) PI-based control unit. If the reference reactive current output by the PI exceeds the maximum reactive power capacity of the [...] Read more.
This paper proposes a Distributed Cooperative Algorithm (DCA) that solves the windup problem caused by the saturation of the Distributed Energy Resource (DER) PI-based control unit. If the reference reactive current output by the PI exceeds the maximum reactive power capacity of the DER, the control unit saturates, preventing the optimal voltage regulation at the connection node of the Active Distribution Network (ADN). Instead of relying on a centralized solution, we proposed a cooperative approach in which each DER’s control unit takes part in the DCA. If a control unit saturates, the voltage regulation error is not null, and the algorithm is activated to assign a share of this error to all DERs’ control units according to a weighted average principle. Subsequently, the algorithm determines the control unit’s new value of the voltage setpoint, desaturating the DER and enhancing the voltage profile. The proposed DCA is independent of the design of the control unit, does not require parameter tuning, exchanges only the regulation error at a low sampling rate, handles multiple saturations, and has limited communication requirements. The effectiveness of the proposed DCA is validated through numerical simulations of an ADN composed of two IEEE 13-bus Test Feeders. Full article
Show Figures

Figure 1

15 pages, 1619 KB  
Article
The Antioxidant Power of Bergamot Polyphenolic Fraction Gold Potentiates the Effects of L-Citrulline in Athlete Performance and Vasodilation in a Pilot Study
by Rocco Mollace, Roberta Macrì, Maria Serra, Giovanna Ritorto, Sara Ussia, Federica Scarano, Antonio Cardamone, Vincenzo Musolino, Anna Rita Coppoletta, Micaela Gliozzi, Giuseppe Scipione, Cristina Carresi, Kateryna Pozharova, Carolina Muscoli, Francesco Barillà, Maurizio Volterrani and Vincenzo Mollace
Nutrients 2025, 17(7), 1106; https://doi.org/10.3390/nu17071106 - 21 Mar 2025
Viewed by 2210
Abstract
Background: The dietary supplement citrulline might increase nitric oxide levels, leading to vasodilation and improved blood flow, potentially benefiting athletes’ aerobic exercise performance. However, rapid oxidative impairment of the L-arginine/nitric oxide (NO) pathway limits these effects. This is countered by Bergamot Polyphenolic Fraction [...] Read more.
Background: The dietary supplement citrulline might increase nitric oxide levels, leading to vasodilation and improved blood flow, potentially benefiting athletes’ aerobic exercise performance. However, rapid oxidative impairment of the L-arginine/nitric oxide (NO) pathway limits these effects. This is countered by Bergamot Polyphenolic Fraction Gold® (BPFG), a strong natural antioxidant. To investigate L-citrulline + BPFG supplementation’s effects, we performed a randomized, double-blind, placebo-controlled pilot trial on athletic performance and blood flow in trained athletes (cyclists). Methods: Random assignment of 90 male athletes resulted in nine different groups: placebo for Group 1, BPFG at 500 and 1000 mg daily for Groups 2 and 3, L-citrulline at 1000 and 2000 mg/daily for Groups 4 and 5, and the combination product of BPFG plus citrulline (N.O. Max) for Groups 6–9. Baseline and 3-month pre- and post-exercise biochemical, reactive vasodilation (RHI), and maximal oxygen consumption measurements were taken for all subjects. Results: Three months of the combination of BPFG and L-citrulline (N.O. Max) produced a significant synergistic effect, markedly increasing NO (p < 0.001 vs. placebo) release and RHI (p < 0.001 vs. placebo). Cardiorespiratory fitness improved significantly with the BPFG and L-citrulline combination, resulting in substantially higher VO2 max, VT1, VT2, and peak power and a significantly lower heart rate (p < 0.01 vs. placebo). No harmful adverse effects were observed. Conclusions: N.O. Max supplementation, providing beneficial effects on the antioxidant state and preserving the vascular endothelium might be a supplementation strategy to improve athletic performance and potentiate results. Given the small sample size, this study serves as a pilot, and further research is needed to validate these findings on a larger scale. Full article
Show Figures

Figure 1

29 pages, 2500 KB  
Article
Impact of a Saccharomyces cerevisiae Fermentation Product Supplemented from 20 Days Before Dry-Off Through 60 Days of Lactation on the Metabolic Adaptation of Dairy Cows to the Peripartum Phase
by Matteo Mezzetti, Alessandro Maria Zontini, Andrea Minuti, Ilkyu Yoon and Erminio Trevisi
Animals 2025, 15(4), 480; https://doi.org/10.3390/ani15040480 - 8 Feb 2025
Viewed by 1551
Abstract
Sixty Holstein cows were enrolled at −76 days from calving (DFC) and classified based on the daily SCC during the previous week from an automated milking system. The separation thresholds for low (L, n = 46) and high (H, n = 14) classifications [...] Read more.
Sixty Holstein cows were enrolled at −76 days from calving (DFC) and classified based on the daily SCC during the previous week from an automated milking system. The separation thresholds for low (L, n = 46) and high (H, n = 14) classifications were 100 K/mL for primiparous and 200 K/mL for multiparous cows. Cows were then assigned to two homogeneous groups to receive diets supplemented with 19 g/d of a Saccharomyces cerevisiae fermentation product (TRT; NutriTek, Diamond V, Cedar Rapids, IA, USA) or without supplementation (CTR) until 60 DFC. Cows were dried off at −56 DFC and monitored for disease incidence, milk yield and composition, plasma metabolic profile, and whole blood count from −76 to 60 DFC. Data were analyzed utilizing ANOVA and mixed models for repeated measures. During the dry period, TRT cows had greater plasma thiol and albumin compared to CTR. TRT-L cows had greater plasma protein and globulin than CTR-L. TRT-H cows had heightened hematocrit; reduced plasma globulin and haptoglobin; and higher albumin, albumin to globulin ratio, and thiol than CTR-H. TRT-H cows had greater concentrations of leukocytes and lymphocytes and lower plasma protein and ceruloplasmin at −54 DFC; lower reactive oxygen species to ferric ion-reducing antioxidant power ratios at −44 DFC; and greater concentrations of lymphocytes and plasma gamma glutamyl transferase at −7 DFC than CTR-H. After calving, TRT cows had a lower incidence of mastitis and higher butterfat, as well as greater plasma haptoglobin and aspartate amino transferase (AST) and reduced Mg compared to CTR. TRT cows had lower SCC between 1 and 7 DFC and a greater ECM between 41 and 60 DFC compared to CTR. TRT-H cows had lower SCC between 1 and 7 DFC and greater hemoglobin and plasma AST than CTR-H. Ameliorated immune system functions due to Saccharomyces cerevisiae fermentation product administration lowered the SCC in TRT-H cows and prevented the onset of new intramammary infections across both L and H SCC groups, supporting the improved productive performance of dairy cows. Full article
(This article belongs to the Collection Nutraceuticals and Animal Physiology: Performance and Welfare)
Show Figures

Figure 1

20 pages, 4890 KB  
Article
Effect of 10-Week Plyometric Training on Anaerobic Performance and Biomechanical Properties of the Muscles in Football Players: Randomized Controlled Trial
by Filip Matuszczyk, Robert Trybulski, Kamil Gałęziok, Gracjan Olaniszyn, Artur Terbalyan and Michal Wilk
Appl. Sci. 2025, 15(3), 1451; https://doi.org/10.3390/app15031451 - 31 Jan 2025
Cited by 1 | Viewed by 6581
Abstract
This study investigated the effects of a 10-week plyometric training program on sprint performance, reactive power, and biomechanical muscle properties in soccer players. Twenty soccer players were randomly assigned to an experimental group (n = 10) or a control group (n [...] Read more.
This study investigated the effects of a 10-week plyometric training program on sprint performance, reactive power, and biomechanical muscle properties in soccer players. Twenty soccer players were randomly assigned to an experimental group (n = 10) or a control group (n = 10). Both groups maintained their regular weekly training, with the experimental group performing additional plyometric sessions twice weekly. Pre- and post-intervention assessments included 5 m and 30 m sprint times, Reactive Strength Index (RSI), and biomechanical properties (tension, stiffness, elasticity) of the rectus femoris (RF) and vastus lateralis (VL). The experimental group demonstrated significant improvements in 5 m (p < 0.01; ES = 1.44) and 30 m (p < 0.01; ES = 1.11) sprint times and RSI (p < 0.05; ES = 0.87). No significant changes were observed in muscle tension, stiffness, or elasticity at the group level. However, correlations indicated that higher baseline elasticity in the VL was linked to greater 5 m sprint improvements, while changes in RF elasticity were negatively associated with 5 m sprint gains. These findings suggest that plyometric training effectively enhances short-distance sprint performance and reactive power in soccer players. Although group-level biomechanical properties did not change significantly, individual variability in muscle elasticity may modulate training outcomes, supporting the integration of plyometric exercises into soccer training regimens. Full article
(This article belongs to the Special Issue Advances in Sport Physiology, Nutrition, and Metabolism)
Show Figures

Figure 1

28 pages, 2522 KB  
Article
Impact of Impedances and Solar Inverter Grid Controls in Electric Distribution Line with Grid Voltage and Frequency Instability
by Thunchanok Kaewnukultorn and Steven Hegedus
Energies 2024, 17(21), 5503; https://doi.org/10.3390/en17215503 - 4 Nov 2024
Cited by 5 | Viewed by 2311
Abstract
The penetration of solar energy into centralized electric grids has increased significantly during the last decade. Although the electricity from photovoltaics (PVs) can deliver clean and cost-effective energy, the intermittent nature of the sunlight can lead to challenges with electric grid stability. Smart [...] Read more.
The penetration of solar energy into centralized electric grids has increased significantly during the last decade. Although the electricity from photovoltaics (PVs) can deliver clean and cost-effective energy, the intermittent nature of the sunlight can lead to challenges with electric grid stability. Smart inverter-based resources (IBRs) can be used to mitigate the impact of such high penetration of renewable energy, as well as to support grid reliability by improving the voltage and frequency stability with embedded control functions such as Volt-VAR, Volt–Watt, and Frequency–Watt. In this work, the results of an extensive experimental study of possible interactions between the unstable grid and two residential-scale inverters from different brands under different active and reactive power controls are presented. Two impedance circuits were installed between Power Hardware-in-the-loop (P-HIL) equipment to represent the impedance in an electric distribution line. Grid voltage and frequency were varied between extreme values outside of the normal range to test the response of the two inverters operating under different controls. The key findings highlighted that different inverters that have met the same requirements of IEEE 1547-2018 responded to grid instabilities differently. Therefore, commissioning tests to ensure inverter performance are crucial. In addition to the grid control, the residential PV installed capacity and physical distances between PV homes and the substation, which impacted the distribution wiring impedance which we characterized by the ratio of the reactive to real impedance (X/R), should be considered when assigning the grid-supporting control setpoints to smart inverters. A higher X/R of 3.5 allowed for more effective control to alleviate both voltage and frequency stability. The elimination of deadband in an aggressive Volt-VAR control also enhanced the ability to control voltage during extreme fluctuation. The analysis of sudden spikes in the grid responses to a large frequency drop showed that a shallow slope of 1.5 kW/Hz in the droop control resulted in a >65% lower sudden reactive power overshoot amplitude than a steeper slope of 2.8 kW/Hz. Full article
Show Figures

Figure 1

13 pages, 995 KB  
Article
The Synergistic Effect of Intradialytic Concurrent Training and Melatonin Supplementation on Oxidative Stress and Inflammation in Hemodialysis Patients: A Double-Blind Randomized Controlled Trial
by Houssem Marzougui, Imen Ben Dhia, Ines Mezghani, Rami Maaloul, Salma Toumi, Khawla Kammoun, Mohamed Nejib Chaabouni, Fatma Ayadi, Mohamed Ben Hmida, Mouna Turki and Omar Hammouda
Antioxidants 2024, 13(11), 1290; https://doi.org/10.3390/antiox13111290 - 25 Oct 2024
Cited by 2 | Viewed by 1953
Abstract
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), [...] Read more.
Background: This study aimed to investigate the effects of intradialytic concurrent (resistance–endurance) training combined with melatonin (MEL) supplementation on oxidative stress, inflammation, and cellular damage in hemodialysis (HD) patients. Methods: Thirty-two HD patients were randomly assigned to three groups: Exercise (EX)-MEL, EX-Placebo (PLA), and Control (C)-PLA. Participants in the EX-MEL and EX-PLA groups underwent 12 weeks of concurrent training. Before nocturnal sleep, they ingested either 3 mg of MEL (EX-MEL) or a placebo (EX-PLA and C-PLA). Blood samples were collected at baseline and after 12 weeks of intervention to assess lipid peroxidation [malondialdehyde (MDA)], antioxidant biomarkers [ferric-reducing antioxidant power (FRAP), reduced glutathione (GSH), total thiol (THIOL)], total bilirubin (TBIL), uric acid (UA), biomarkers of muscle and liver damage [aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), creatine kinase (CK), lactate dehydrogenase (LDH), and Gamma-glutamyltransferase (Gamma-GT)], and inflammation [C-reactive protein (CRP)]. Results: EX-MEL demonstrated a decrease in MDA (p < 0.05) and CRP (p < 0.05), and an increase in FRAP (p < 0.05) pre- and post-training. Both EX-MEL and EX-PLA showed an increase in GSH (p < 0.001, and p < 0.05, respectively) and THIOL (p < 0.01, and p < 0.05, respectively) pre- and post-training. No significant changes were observed in TBIL, UA, ASAT, ALAT, CK, LDH, or Gamma-GT pre- and post-training across all groups. Conclusion: Concurrent training combined with MEL supplementation enhances oxidant–antioxidant balance and reduces inflammation in HD patients more effectively than intradialytic concurrent training alone. Full article
Show Figures

Figure 1

42 pages, 16821 KB  
Article
Butterfly Effect in Cytarabine: Combined NMR-NQR Experiment, Solid-State Computational Modeling, Quantitative Structure-Property Relationships and Molecular Docking Study
by Jolanta Natalia Latosińska, Magdalena Latosińska, Janez Seliger, Veselko Žagar and Tomaž Apih
Pharmaceuticals 2024, 17(4), 445; https://doi.org/10.3390/ph17040445 - 29 Mar 2024
Cited by 4 | Viewed by 5396
Abstract
Cytarabine (Ara-C) is a synthetic isomer of cytidine that differs from cytidine and deoxycytidine only in the sugar. The use of arabinose instead of deoxyribose hinders the formation of phosphodiester linkages between pentoses, preventing the DNA chain from elongation and interrupting the DNA [...] Read more.
Cytarabine (Ara-C) is a synthetic isomer of cytidine that differs from cytidine and deoxycytidine only in the sugar. The use of arabinose instead of deoxyribose hinders the formation of phosphodiester linkages between pentoses, preventing the DNA chain from elongation and interrupting the DNA synthesis. The minor structural alteration (the inversion of hydroxyl at the 2′ positions of the sugar) leads to change of the biological activity from anti-depressant and DNA/RNA block builder to powerful anti-cancer. Our study aimed to determine the molecular nature of this phenomenon. Three 1H-14N NMR-NQR experimental techniques, followed by solid-state computational modelling (Quantum Theory of Atoms in Molecules, Reduced Density Gradient and 3D Hirshfeld surfaces), Quantitative Structure–Property Relationships, Spackman’s Hirshfeld surfaces and Molecular Docking were used. Multifaceted analysis—combining experiments, computational modeling and molecular docking—provides deep insight into three-dimensional packing at the atomic and molecular levels, but is challenging. A spectrum with nine lines indicating the existence of three chemically inequivalent nitrogen sites in the Ara-C molecule was recorded, and the lines were assigned to them. The influence of the structural alteration on the NQR parameters was modeled in the solid (GGA/RPBE). For the comprehensive description of the nature of these interactions several factors were considered, including relative reactivity and the involvement of heavy atoms in various non-covalent interactions. The binding modes in the solid state and complex with dCK were investigated using the novel approaches: radial plots, heatmaps and root-mean-square deviation of the binding mode. We identified the intramolecular OH···O hydrogen bond as the key factor responsible for forcing the glycone conformation and strengthening NH···O bonds with Gln97, Asp133 and Ara128, and stacking with Phe137. The titular butterfly effect is associated with both the inversion and the presence of this intramolecular hydrogen bond. Our study elucidates the differences in the binding modes of Ara-C and cytidine, which should guide the design of more potent anti-cancer and anti-viral analogues. Full article
Show Figures

Graphical abstract

24 pages, 4860 KB  
Article
Enhanced Density Peak-Based Power Grid Reactive Voltage Partitioning
by Xingye Deng, Canwei Liu, Hualiang Liu, Lei Chen, Yuyan Guo and Heding Zhen
Energies 2023, 16(17), 6125; https://doi.org/10.3390/en16176125 - 22 Aug 2023
Cited by 2 | Viewed by 1689
Abstract
Clustering-based reactive voltage partitioning is successful in reducing grid cascading faults, by using clustering methods to categorize different power-consuming entities in the power grid into distinct regions. In reality, each power-consuming entity has different electrical characteristics. Additionally, due to the irregular and uneven [...] Read more.
Clustering-based reactive voltage partitioning is successful in reducing grid cascading faults, by using clustering methods to categorize different power-consuming entities in the power grid into distinct regions. In reality, each power-consuming entity has different electrical characteristics. Additionally, due to the irregular and uneven distribution of the population, the distribution of electricity consumption is also irregular and uneven. However, the existing method neglects the electrical difference among each entity and the irregular and uneven density distribution of electricity consumption, resulting in poor accuracy and adaptability of these methods. To address these problems, an enhanced density peak model-based power grid reactive voltage partitioning method is proposed in this paper, called EDPVP. First, the power grid is modeled as a weighted reactive network to consider entity electrical differences. Second, the novel local density and density following distance are designed to enhance the density peak model to address the problem that the traditional density peak model cannot adapt to weighted networks. Finally, the enhanced density peak model is further equipped with an optimized cluster centers selection strategy and an updated remaining node assignment strategy, to better identify irregular and uneven density distribution of electricity consumption, and to achieve fast and accurate reactive voltage partition. Experiments on two real power grids demonstrate the effectiveness of the EDPVP. Full article
(This article belongs to the Special Issue Voltage Stability Analysis in Power Systems II)
Show Figures

Figure 1

27 pages, 1381 KB  
Article
Flow Table Saturation Attack against Dynamic Timeout Mechanisms in SDN
by Yi Shen, Chunming Wu, Dezhang Kong and Qiumei Cheng
Appl. Sci. 2023, 13(12), 7210; https://doi.org/10.3390/app13127210 - 16 Jun 2023
Cited by 11 | Viewed by 3102
Abstract
Software-defined networking (SDN) enables dynamic management and flexible network control by employing reactive rule installation. Due to high power consumption and cost, current OpenFlow switches only support a limited number of flow rules, which is a major limitation for deploying massive fine-grained policies. [...] Read more.
Software-defined networking (SDN) enables dynamic management and flexible network control by employing reactive rule installation. Due to high power consumption and cost, current OpenFlow switches only support a limited number of flow rules, which is a major limitation for deploying massive fine-grained policies. This bottleneck can be exploited by attackers to launch saturation attacks to overflow the flow table. Moreover, flow table overflow can occur in the absence of malicious attackers. To cope with this, researchers have developed many proposals to relieve the load under benign conditions. Among them, the dynamic timeout mechanism is one of the most effective solutions. We notice that when the SDN controller adopts dynamic timeouts, existing flow table saturation attacks can fail, or even expose the attackers, due to inaccurate inferring results. In this paper, we extract the common features of dynamic timeout strategies and propose an advanced flow table saturation attack. We explore the definition of flow rule lifetime and use a timing-based side-channel to infer the timeout of flow rules. Moreover, we leverage the dynamic timeout mechanisms to proactively interfere with the decision of timeout values and perform an attack. We conduct extensive experiments in various settings to demonstrate its effectiveness. We also notice that some replacement strategies work differently when the controller assigns dynamic timeouts. The experiment results show that the attack can incur significant network performance degradation and carry out the attack in a stealthy manner. Full article
Show Figures

Figure 1

32 pages, 12513 KB  
Article
Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks
by Sunday Adeleke Salimon, Gafari Abiola Adepoju, Isaiah Gbadegesin Adebayo, Harun Or Rashid Howlader, Samson Oladayo Ayanlade and Oludamilare Bode Adewuyi
Energies 2023, 16(4), 1943; https://doi.org/10.3390/en16041943 - 15 Feb 2023
Cited by 29 | Viewed by 4398
Abstract
The Distributed Generator types have different combinations of real and reactive power characteristics, which can affect the total power loss and the voltage support/control of the radial distribution networks (RDNs) in different ways. This paper investigates the impact of DG’s penetration level (PL) [...] Read more.
The Distributed Generator types have different combinations of real and reactive power characteristics, which can affect the total power loss and the voltage support/control of the radial distribution networks (RDNs) in different ways. This paper investigates the impact of DG’s penetration level (PL) on the power loss and voltage profile of RDNs based on different DG types. The DG types are modeled depending on the real and reactive power they inject. The voltage profiles obtained under various circumstances were fairly compared using the voltage profile index (VPI), which assigns a single value to describe how well the voltages match the ideal voltage. Two novel effective power voltage stability indices were developed to select the most sensitive candidate buses for DG penetration. To assess the influence of the DG PL on the power loss and voltage profile, the sizes of the DG types were gradually raised on these candidate buses by 1% of the total load demand of the RDN. The method was applied to the IEEE 33-bus and 69-bus RDNs. A PL of 45–76% is achieved on the IEEE 33-bus and 48–55% penetration on the IEEE 69-bus without an increase in power loss. The VPI was improved with increasing PL of DG compared to the base case scenario. Full article
Show Figures

Figure 1

13 pages, 2522 KB  
Article
Oxidative Stress Response’s Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures
by Clément Leveque, Simona Mrakic-Sposta, Pierre Lafère, Alessandra Vezzoli, Peter Germonpré, Alexandre Beer, Stéphane Mievis, Fabio Virgili, Kate Lambrechts, Sigrid Theunissen, François Guerrero and Costantino Balestra
Int. J. Mol. Sci. 2023, 24(1), 664; https://doi.org/10.3390/ijms24010664 - 30 Dec 2022
Cited by 17 | Viewed by 3501
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for [...] Read more.
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial “permissive oxidation” followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen. Full article
(This article belongs to the Special Issue Oxygen Variations)
Show Figures

Figure 1

17 pages, 1976 KB  
Article
Effects of Home-Based Electrical Stimulation on Plasma Cytokines Profile, Redox Biomarkers, and Metalloproteinases in the Heart Failure with Reduced Ejection Fraction: A Randomized Trial
by Marianne Lucena da Silva, Ivo Vieira de Sousa Neto, Alexandra C. G. B. de Lima, Fabrício Barin, Otávio de Toledo Nóbrega, Rita de Cássia Marqueti, Graziella F. B. Cipriano, João Luiz Quagliotti Durigan, Eduardo Antônio Ferreira, Martim Bottaro, Ross Arena, Larry P. Cahalin, José Alberto Neder and Gerson Cipriano Junior
J. Cardiovasc. Dev. Dis. 2022, 9(12), 463; https://doi.org/10.3390/jcdd9120463 - 15 Dec 2022
Viewed by 2665
Abstract
Background: Low-frequency electrical stimulation (LFES) is an adjuvant method for heart failure (HF) patients with restrictions to start an exercise. However, the impact on molecular changes in circulating is unknown. We investigated the effects of 10 weeks of home-based LFES on plasma cytokines [...] Read more.
Background: Low-frequency electrical stimulation (LFES) is an adjuvant method for heart failure (HF) patients with restrictions to start an exercise. However, the impact on molecular changes in circulating is unknown. We investigated the effects of 10 weeks of home-based LFES on plasma cytokines profile, redox biomarkers, metalloproteinases (MMPs) activity, and exercise performance in HF patients. Methods: Twenty-four HF patients (52.45 ± 9.15 years) with reduced ejection fraction (HFrEF) (EF < 40%), were randomly assigned to a home-based LFES or sham protocol. Plasma cytokines profile was assessed through interleukins, interferon-gamma, and tumor necrosis factor levels. Oxidative stress was evaluated through ferric reducing antioxidant power, thiobarbituric acid-reactive substances, and inducible nitric oxide synthase. The MMPs activity were analyzed by zymography. Cardiorespiratory capacity and muscle strength were evaluated by cardiopulmonary test and isokinetic. Results: LFES was able to increase the active-MMP2 activity post compared to pre-training (0.057 to 0.163, p = 0.0001), while it decreased the active-MMP9 (0.135 to 0.093, p = 0.02). However, it did not elicit changes in cytokines, redox biomarkers, or exercise performance (p > 0.05). Conclusion: LFES protocol is a promising intervention to modulate MMPs activity in HFrEF patients, although with limited functional effects. These preliminary responses may help the muscle to adapt to future mechanical demands dynamically. Full article
(This article belongs to the Special Issue Therapeutic Strategies for Heart Failure)
Show Figures

Figure 1

24 pages, 3526 KB  
Article
A Critical Analysis of Modeling Aspects of D-STATCOMs for Optimal Reactive Power Compensation in Power Distribution Networks
by Subrat Kumar Dash, Sivkumar Mishra and Almoataz Y. Abdelaziz
Energies 2022, 15(19), 6908; https://doi.org/10.3390/en15196908 - 21 Sep 2022
Cited by 15 | Viewed by 2254
Abstract
Distribution static compensators (D-STATCOMs) can enhance the technical performance of the power distribution network by providing rapid and continuous reactive power support to the connected bus. Accurate modeling and efficient utilization of D-STATCOMs can maximize their utility. In this regard, this article offers [...] Read more.
Distribution static compensators (D-STATCOMs) can enhance the technical performance of the power distribution network by providing rapid and continuous reactive power support to the connected bus. Accurate modeling and efficient utilization of D-STATCOMs can maximize their utility. In this regard, this article offers a novel current-injection-based D-STATCOM model under the power control mode of operation for the reactive power compensation of the power distribution network. The versatility of the proposed D-STATCOM model is demonstrated by combining it with two of the most established distribution load flow techniques, viz., the forward–backward sweep load flow and the BIBC–BCBV-matrix-based direct load flow. Further, the allocation of the proposed D-STATCOM model is carried out under a multiobjective mathematical formulation consisting of various technical and economic indices such as the active power loss reduction index, voltage variation minimization index, voltage stability improvement index and annual expenditure index. A novel parameter-free metaheuristic algorithm, namely a student-psychology-based optimization algorithm, is proposed to determine the optimal assignment of the different number of D-STATCOM units under the multiobjective framework. The proposed allocation scheme is implemented on a standard 33-bus test system and on a practical 51-bus rural distribution feeder. The obtained results demonstrate that the proposed D-STATCOM model can be efficiently integrated into the distribution load flow algorithms. The student-psychology-based optimization algorithm is found to be robust and efficient in solving the optimal allocation of D-STATCOMs as it yields minimum power loss compared to other established approaches for 33-bus PDNs. Further, the economic analysis carried out in this work can guide network operators in deciding on the number of D-STATCOMs to be augmented depending on the investment costs and the resulting savings. Full article
Show Figures

Graphical abstract

Back to TopTop