Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (739)

Search Parameters:
Keywords = reactive dyeing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4332 KiB  
Article
Powerful Tribocatalytic Degradation of Methyl Orange Solutions with Concentrations as High as 100 mg/L by BaTiO3 Nanoparticles
by Mingzhang Zhu, Zeren Zhou, Yanhong Gu, Lina Bing, Yuqin Xie, Zhenjiang Shen and Wanping Chen
Nanomaterials 2025, 15(14), 1135; https://doi.org/10.3390/nano15141135 - 21 Jul 2025
Viewed by 119
Abstract
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high [...] Read more.
In sharp contrast to photocatalysis and other prevalent catalytic technologies, tribocatalysis has emerged as a promising technology to degrade high-concentration organic dyes in recent years. In this study, BaTiO3 (BTO) nanoparticles were challenged to degrade methyl orange (MO) solutions with unprecedentedly high concentrations through magnetic stirring. With BTO nanoparticles and home-made PTFE magnetic rotary disks in 50 mg/L MO solutions, 10 h of magnetic stirring resulted in 91.4% and 98.1% degradations in an as-received glass beaker and in a beaker with a PTFE disk coated on its bottom, respectively. Even for 100 mg/L MO solutions, nearly complete degradation was achieved by magnetic-stirring-stimulated BTO nanoparticles in beakers with the following four kinds of bottom: 97.3% degradation in 30 h for a glass bottom, 97.4% degradation in 20 h for a PTFE coating, 97.9% degradation in 42 h for a Ti coating, and 97.4% degradation in 74 h for an Al2O3 coating. Electron paramagnetic resonance (EPR) analyses revealed that the generation of reactive oxygen species (ROS) by magnetic-stirring-stimulated BTO nanoparticles is dramatically affected by the bottom material of beakers. These findings suggest an appealing prospect for BTO nanoparticles to utilize mechanical energy for sustainable water remediation. Full article
Show Figures

Graphical abstract

22 pages, 3155 KiB  
Article
Cascade Reactions of Indigo with an Allenylic Reactant
by Dyah U. C. Rahayu, Christopher Richardson, John B. Bremner and Paul A. Keller
Molecules 2025, 30(14), 2899; https://doi.org/10.3390/molecules30142899 - 8 Jul 2025
Viewed by 528
Abstract
The base-enabled reaction of buta-2,3-dien-1-yl methanesulfonate with the readily available and cheap dye indigo resulted in the convenient one-pot synthesis of benzoindolonaphthyridinedione and benzoazepinopyridoindolediones, with the latter representing two novel heterocyclic scaffolds. Despite the low yields, the allenylic alkylation of indigo significantly contributes [...] Read more.
The base-enabled reaction of buta-2,3-dien-1-yl methanesulfonate with the readily available and cheap dye indigo resulted in the convenient one-pot synthesis of benzoindolonaphthyridinedione and benzoazepinopyridoindolediones, with the latter representing two novel heterocyclic scaffolds. Despite the low yields, the allenylic alkylation of indigo significantly contributes to the new chemistry of this compound, providing new mechanistic insights and reactivity boundaries. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

27 pages, 2654 KiB  
Review
Bioactive Compound-Fortified Nanomedicine in the Modulation of Reactive Oxygen Species and Enhancement of the Wound Healing Process: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Nitin Ade, Aarati Budar, Anil Kumar Singh, Deepanjan Datta, Supachoke Mangmool, Sudarshan Singh and Chuda Chittasupho
Pharmaceutics 2025, 17(7), 855; https://doi.org/10.3390/pharmaceutics17070855 - 30 Jun 2025
Viewed by 530
Abstract
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound [...] Read more.
Wound healing is a complex biological process that involves the regulation of reactive oxygen species (ROS), which play a critical role in cellular signaling and tissue repair. While the dual nature of ROS means that maintaining controlled levels is essential for effective wound healing, excessive ROS production can hinder the recovery process. Bioactive compounds represent promising therapeutic candidates enriched with polyphenols, which are known for their high therapeutic properties and minimal adverse effects, and are thus highlighted as promising therapeutic candidates for wound healing due to their antioxidant properties. However, their clinical application is often limited due to challenges such as poor solubility and low bioavailability. To overcome this, the encapsulation of these compounds into nanocarriers has been proposed, which enhances their stability, facilitates targeted delivery, and allows for controlled release. The present review highlights emerging innovations in nanomedicine-based drug delivery of natural antioxidants for precise modulation of ROS in wound healing. Moreover, the review elaborates briefly on various in vitro and in vivo studies that assessed the ROS levels using different fluorescent dyes. By modulating ROS levels and improving the local microenvironment at wound sites, these bioactive-nanomedicine formulations can significantly accelerate the healing process of wounds. The review concludes by advocating for further research into optimizing these nano-formulations to maximize their potential in clinical settings, thereby improving therapeutic strategies for wound care and regeneration. Full article
(This article belongs to the Special Issue Biomaterials: Pharmaceutical Applications)
Show Figures

Figure 1

15 pages, 1834 KiB  
Article
Metal-Free Graphene/Conjugated Microporous Polymer Mott–Schottky Heterojunctions: A Design Strategy for High-Efficiency, Durable Photocatalysts
by Selsabil Chikhi, Sander Dekyvere, Shuai Li, Chih-Ming Kao and Francis Verpoort
Catalysts 2025, 15(7), 609; https://doi.org/10.3390/catal15070609 - 20 Jun 2025
Viewed by 414
Abstract
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a [...] Read more.
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a Mott–Schottky heterojunction and integrating graphene sheets with a near-zero bandgap into the CMP-1 framework, resulting in a non-covalent graphene/CMP (GCMP) heterojunction composite. GCMP serves two main functions: physical adsorption and photocatalytic absorption that uses visible light energy to trigger and degrade the organic dye. GCMP effectively degraded four dyes with both anionic and cationic properties (Rhodamine B; Nile Blue; Congo Red; and Orange II), demonstrating stable recyclability without losing its effectiveness. When exposed to visible light, GCMP generates reactive oxygen species (ROS), primarily singlet oxygen (1O2), and superoxide radicals (O2), degrading the dye molecules. These findings highlight GCMP’s potential for real-world applications, offering a metal-free, cost-effective, and environmentally friendly solution for wastewater treatment. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 436
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

18 pages, 2508 KiB  
Article
Influence of Ionic Strength and Temperature on the Adsorption of Reactive Black 5 Dye by Activated Carbon: Kinetics, Mechanisms and Thermodynamics
by Mario Cetina, Petra Mihovilović, Ana Pešić and Branka Vojnović
Molecules 2025, 30(12), 2593; https://doi.org/10.3390/molecules30122593 - 14 Jun 2025
Viewed by 418
Abstract
The aim of this work was to investigate the influence of ionic strength and temperature on the adsorption of Reactive Black 5 dye on commercial powdered activated carbon. Adsorption experiments were performed at 45 °C with the addition of NaCl (c0 [...] Read more.
The aim of this work was to investigate the influence of ionic strength and temperature on the adsorption of Reactive Black 5 dye on commercial powdered activated carbon. Adsorption experiments were performed at 45 °C with the addition of NaCl (c0 = 0.01, 0.05, 0.10 and 1.00 M) and Na2SO4 (c0 = 0.01 M). The results were compared with those obtained for both salts (c0 = 0.01 M) at three additional temperatures: 25, 35 and 55 °C. For all adsorption experiments, kinetic and thermodynamic studies were performed. This research showed that the addition of NaCl, even in the concentration of only c0 = 0.01 M, significantly enhanced dye adsorption and that higher NaCl concentration resulted in higher adsorption capacity. In addition, slightly higher adsorption was observed when Na2SO4 was added to the dye solution at the same concentration as NaCl, as well as at a higher temperature, regardless of the salt added to the dye solution. It was also shown that adsorption is kinetically controlled, assuming a pseudo-second-order model, and that intraparticle diffusion is not the only process that influences the adsorption rate. Finally, calculated thermodynamic parameter values for both salts (c0 = 0.01 M) indicate that adsorption was a spontaneous endothermic process. Full article
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Evofosfamide Enhances Sensitivity of Breast Cancer Cells to Apoptosis and Natural-Killer-Cell-Mediated Cytotoxicity Under Hypoxic Conditions
by Shubhankar Das, Goutham Hassan Venkatesh, Walid Shaaban Moustafa Elsayed, Raefa Abou Khouzam, Ayda Shah Mahmood, Husam Hussein Nawafleh, Nagwa Ahmed Zeinelabdin, Rania Faouzi Zaarour and Salem Chouaib
Cancers 2025, 17(12), 1988; https://doi.org/10.3390/cancers17121988 - 14 Jun 2025
Viewed by 544
Abstract
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, [...] Read more.
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, to sensitize breast cancer cells to cell death. Evofosfamide is converted into bromo-isophosphoramide mustard, a potent DNA cross-linking agent that is expected to enhance the killing of cancer cells under hypoxic conditions, where these cells typically exhibit resistance. Methods: Representative breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with Evofosfamide under normoxia and hypoxia. Changes in cell viability and the mechanism of cell death were measured using neutral red dye uptake, Annexin-FITC/propidium iodide staining, and Western blot analysis of markers—PARP1 and caspase 3/7. We tested Evofosfamide’s ability to counteract hypoxic suppression of type I Interferon signaling genes using quantitative PCR (qPCR), as well as its capacity to trigger natural killer (NK)-cell-mediated cytotoxicity. Results: Evofosfamide enhanced cell killing in both MCF-7 and MDA-MB-231 cells under hypoxic conditions compared to normoxic conditions. Cell killing was accompanied by increased cellular reactive oxygen species (ROS), diminished mitochondrial membrane potential, and induction of apoptosis, as demonstrated by the fragmentation or laddering of genomic DNA, the activation of caspase 3/7, and the cleavage of PARP. qPCR analysis revealed that Evofosfamide was capable of restoring type I interferon signaling in hypoxic breast cancer cells, leading to the subsequent cytolytic activity of NK cells against the tumor cells. Conclusions: Thus, conditioning the breast cancer cells with Evofosfamide resulted in enhanced cell killing under hypoxia, further underscoring its potential as a sensitizer to target hypoxia-driven tumors. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

16 pages, 3834 KiB  
Article
Green Synthesis of TiO2-CeO2 Nanocomposites Using Plant Extracts for Efficient Organic Dye Photodegradation
by Dinh Quang Ho, Van Duy Lai, Quynh Anh Nguyen, D. Duc Nguyen and Duong Duc La
Catalysts 2025, 15(6), 583; https://doi.org/10.3390/catal15060583 - 12 Jun 2025
Viewed by 1046
Abstract
The growing presence of hazardous organic pollutants in wastewater poses severe environmental and health risks, necessitating sustainable and efficient treatment solutions. Traditional remediation methods have limitations, highlighting the need for innovative approaches. A green synthesis method was developed to produce TiO2-CeO [...] Read more.
The growing presence of hazardous organic pollutants in wastewater poses severe environmental and health risks, necessitating sustainable and efficient treatment solutions. Traditional remediation methods have limitations, highlighting the need for innovative approaches. A green synthesis method was developed to produce TiO2-CeO2 nanocomposites using Cleistocalyx operculatus leaf extract. The photocatalytic efficiency of the synthesized nanocomposites was evaluated under simulated sunlight by degrading Methylene Blue (MB) dye. Various compositions were tested to determine the optimal performance. The 0.1% TiO2-CeO2 nanocomposite achieved the highest degradation efficiency (95.06% in 150 min) with a reaction rate constant (k) of 18.5 × 10−2 min−1, outperforming commercial TiO2 (P25, 74.85%, k ≈ 3.7 × 10−2 min−1). Additionally, the material maintained excellent stability over eight consecutive cycles with only a slight decrease in efficiency from 95.85% to 93.28%. The enhanced photocatalytic activity is attributed to the synergistic effects of CeO2 incorporation, which enhances charge separation, extends visible light absorption, and promotes reactive oxygen species (ROS) generation. These findings highlight the potential of green-synthesized TiO2-CeO2 nanocomposites as a cost-effective and sustainable solution for wastewater treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

22 pages, 8453 KiB  
Article
Harnessing BiOI/V2O5 Nanocomposites: Advanced Bifunctional Catalysts for Visible-Light Driven Environmental Remediation and Antibacterial Activity
by Anil Pandey, Narayan Gyawali, Devendra Shrestha, Insup Lee, Santu Shrestha, Subas Acharya, Pujan Nepal, Binod Gaire, Vince Fualo, Sabita Devi Sharma and Jae Ryang Hahn
Molecules 2025, 30(12), 2500; https://doi.org/10.3390/molecules30122500 - 6 Jun 2025
Viewed by 1735
Abstract
Efficient photocatalysts based on composite materials are essential for addressing environmental pollution and enhancing water purification. This study presents a novel BiOI/V2O5 nanocomposite (BVNC) with a flower-like layered structure, synthesized via a low-temperature solvothermal process followed by high-pressure annealing for [...] Read more.
Efficient photocatalysts based on composite materials are essential for addressing environmental pollution and enhancing water purification. This study presents a novel BiOI/V2O5 nanocomposite (BVNC) with a flower-like layered structure, synthesized via a low-temperature solvothermal process followed by high-pressure annealing for visible light (VL)-driven dye degradation and antibacterial activities. Compared to individual BiOI nanoparticles (BOINP) and V2O5 nanoparticles (VONP), under VL, the BVNC demonstrated significantly enhanced photocatalytic and antibacterial activity. The best-performing BVNC achieved a remarkable methylene blue degradation efficiency of 95.7% within 140 min, with a rate constant value 439% and 430% of those of BOINP and VONP, respectively. Additionally, BVNC exhibited high photocatalytic efficiencies for rhodamine 6G (94.0%), methyl orange (90.4%), and bisphenol A (69.5%) over 160 min, highlighting the superior performance of the composite materials for cationic and anionic dyes. Furthermore, BVNC established outstanding antibacterial capability against Staphylococcus aureus and Escherichia coli, demonstrating zones of inhibition of 12.24 and 11.62 mm, respectively. The improved catalytic and antibacterial capability is ascribed to the presence of a robust p-n heterojunction between BOINP and VONP, which broadens the photo-absorption range, reduces bandgap energy, and facilitates the significant separation of excitons and faster release of reactive oxygen species. Full article
(This article belongs to the Special Issue Advances in Composite Photocatalysts)
Show Figures

Graphical abstract

25 pages, 3398 KiB  
Article
Adsorptive Removal of Reactive Black 5 by Longan Peel-Derived Activated Carbon: Kinetics, Isotherms, Thermodynamics, and Modeling
by Nguyen Thi Hong Hoa, Ngo Thi Quynh, Vinh Dinh Nguyen, Thi Nguyet Nguyen, Bui Quoc Huy, Nguyen Thi Thanh, Hoang Thi Loan, Nguyen Thi Quynh Hoa and Nguyen Trong Nghia
Water 2025, 17(11), 1678; https://doi.org/10.3390/w17111678 - 1 Jun 2025
Viewed by 610
Abstract
The present study deals with the fabrication of activated carbon from longan peels (LPAC) using a phosphoric acid (H3PO4) activation method and an evaluation of LPAC’s capability for the adsorption of Reactive Black 5 (RB5) dye from aqueous solutions. [...] Read more.
The present study deals with the fabrication of activated carbon from longan peels (LPAC) using a phosphoric acid (H3PO4) activation method and an evaluation of LPAC’s capability for the adsorption of Reactive Black 5 (RB5) dye from aqueous solutions. The synthesized LPAC was characterized using XRD, SEM, FT-IR, and EDX, confirming a porous, carbon-rich structure with the dominant elemental composition of carbon (85.21%) and oxygen (12.43%), and a surface area of 1202.38 m2/g. Batch adsorption experiments revealed that optimal performance was achieved at pH 3.0, with equilibrium reached after 240 min. The experimental data were well fitted to the Elovich model p, suggesting a heterogeneous adsorption process with diffusion limitations. The intraparticle diffusion model further supported a multi-stage mechanism involving both film diffusion and intraparticle transport. Isotherm studies conducted at varying temperatures (293–323 K) showed a maximum adsorption capacity exceeding 370 mg/g. The adsorption data fit best with the Freundlich (R2 = 0.962) and Temkin (R2 = 0.970) models, indicating multilayer adsorption on a heterogeneous surface. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic, with ΔG° values ranging from −23.15 to −26.88 kJ/mol, ΔH° = 14.23 kJ/mol, and ΔS° = 0.127 kJ/mol×K, consistent with physisorption as the dominant mechanism. Predictive modeling using an artificial neural network (ANN) achieved superior accuracy (R2 = 0.989 for RRE; R2 = 0.991 for q) compared to multiple linear regression (MLR). Calculation from ANN indicated that pH and contact time were the most influential factors for RB5 removal efficiency, while initial dye concentration and temperature were most critical for adsorption capacity. Furthermore, LPAC demonstrated excellent reusability, retaining over 83% removal efficiency after five adsorption–desorption cycles. These findings confirm that LPAC is an efficient and renewable adsorbent for the treatment of RB5 dye in wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

12 pages, 1433 KiB  
Article
Outstanding Adsorption of Reactive Red 2 and Reactive Blue 19 Dyes on MIL-101 (Cr): Novel Physicochemical Analysis of Underlying Mechanism Through Statistical Physics Modeling
by Lotfi Sellaoui, Nour Sghaier and Alessandro Erto
Water 2025, 17(11), 1665; https://doi.org/10.3390/w17111665 - 30 May 2025
Viewed by 406
Abstract
An outstanding adsorbent, such as the metal–organic framework (MOF) MIL-101 (Cr), was employed to study the adsorption of two dyes, namely reactive red 2 (RR2) and reactive blue 19 (RB19). Experimental adsorption data were retrieved at T = 25, 35 and 45 °C [...] Read more.
An outstanding adsorbent, such as the metal–organic framework (MOF) MIL-101 (Cr), was employed to study the adsorption of two dyes, namely reactive red 2 (RR2) and reactive blue 19 (RB19). Experimental adsorption data were retrieved at T = 25, 35 and 45 °C and analyzed to define the adsorption mechanism of these dyes. A modeling approach based on a double-layer model derived from statistical physics was used. The maximum adsorption capacity (MAC) was found to be 875, 954 and 1002 mg/g for RR2 and 971, 1093 and 1148 mg/g for RB19, at T = 25, 35 and 45 °C, respectively. These values indicate that MIL-101 (Cr) exhibits outstanding performance in removing potential water pollutants such as the RR2 and RB19 dyes. The possible orientations of the RR2 and RB19 dyes upon adsorption were determined by analyzing the number of dye molecules bound per MIL-101 (Cr) active sites during the adsorption process. It was found that the RR2 dye was removed via a mixed parallel and non-parallel orientation on MIL-101 (Cr), while RB19 was removed via an inclined orientation at higher temperatures. The adsorption mechanism suggested that MIL-101 (Cr) site density was reduced due to an exothermic effect, which decreases the number of active sites participating in dye adsorption, even though the reduction in water adsorption may be attributed to the overall endothermic behavior. From the adsorption energy (AE) and the chemical structure of MIL-101 (Cr) and both dyes, it was concluded that hydrogen bonds, Van der Waals forces and π-π stacking are involved in the dye removal process. This research provides new physical insights into the adsorption mechanism of two relevant dyes on an outstanding adsorbent such as the MIL-101 (Cr) MOF. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 974 KiB  
Article
Synthetic and Natural Red Food Dyes Affect Oxidative Metabolism and the Redox State in the Nauplii of Brine Shrimp Artemia franciscana
by Gianluca Fasciolo, Gaetana Napolitano, Maria Teresa Muscari Tomajoli, Eugenio Geremia, Adriana Petito, Carlos Gravato, Andreia C. M. Rodrigues, Ana L. Patrício Silva, Chiara Maria Motta, Claudio Agnisola and Paola Venditti
Antioxidants 2025, 14(6), 634; https://doi.org/10.3390/antiox14060634 - 25 May 2025
Viewed by 601
Abstract
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. [...] Read more.
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. In this study, we exposed Artemia franciscana cysts for 48 h to three different red dyes: E124 (synthetic), E120 (animal-based) or Vegan red (plant-based) and evaluated the oxidative metabolism and redox status in the hatched nauplii. Only E120 and VEG increased oxygen consumption. E124 and VEG increased mitochondrial Complex I activity, while all dyes enhanced the activity of Complex III. The levels of reactive oxygen species (ROS) and NADPH oxidase activity were increased by all red dyes. E120 and E124 increased antioxidant enzyme activity to a greater extent than VEG. Additionally, only E120 and E124 increased total antioxidant capacity. Nevertheless, E124 exposure induced redox imbalance (increased lipid and protein oxidative damage). Our data, as a whole, allow us to conclude that red dyes can influence the oxidative capacity and redox state of Artemia franciscana nauplii with more harmful effects in the presence of E124, thus drawing attention to their potentially severe influence on aquatic life. Full article
(This article belongs to the Special Issue Role of Mitochondria and ROS in Health and Disease)
Show Figures

Graphical abstract

18 pages, 671 KiB  
Review
Evaluating the Efficacy of Rose Bengal as a Photosensitizer in Antimicrobial Photodynamic Therapy Against Candida albicans: A Systematic Review
by Jakub Fiegler-Rudol, Barbara Lipka, Katarzyna Kapłon, Magdalena Moś, Dariusz Skaba, Aleksandra Kawczyk-Krupka and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(11), 5034; https://doi.org/10.3390/ijms26115034 - 23 May 2025
Viewed by 693
Abstract
Candida albicans is a significant pathogen in various fungal infections, including oral candidiasis and denture stomatitis. As antifungal resistance rises globally, there is an urgent need for alternative treatment strategies. Antimicrobial photodynamic therapy (aPDT), utilizing a photosensitizer and light to produce reactive oxygen [...] Read more.
Candida albicans is a significant pathogen in various fungal infections, including oral candidiasis and denture stomatitis. As antifungal resistance rises globally, there is an urgent need for alternative treatment strategies. Antimicrobial photodynamic therapy (aPDT), utilizing a photosensitizer and light to produce reactive oxygen species (ROS), has emerged as a promising approach. Rose Bengal (RB), a xanthene dye, exhibits a high singlet oxygen quantum yield, making it a candidate for aPDT. However, its efficacy in C. albicans treatment has been inconsistent, particularly against biofilm-associated infections, which are more resistant to conventional therapies. This systematic review evaluates the efficacy of Rose Bengal-mediated aPDT in combating C. albicans infections by synthesizing data from studies conducted over the past decade. We focus on the effectiveness of RB across different experimental conditions, including planktonic and biofilm forms of C. albicans. The review also explores the synergy between RB and other agents, such as potassium iodide, and compares the outcomes of RB-mediated aPDT to other photosensitizers and conventional antifungal treatments. Despite its potential, RB-aPDT shows variable effectiveness due to differences in experimental protocols, such as the photosensitizer concentration, incubation times, and light parameters. The review identifies the key limitations, such as RB’s poor biofilm penetration and high dark toxicity at elevated concentrations, which hinder its clinical applicability. The combination of RB with potassium iodide enhances its antifungal efficacy, suggesting that further optimization could improve its clinical potential. Overall, while Rose Bengal-mediated aPDT holds promise as a novel antifungal treatment, further research is needed to standardize protocols, enhance delivery systems, and validate its efficacy in vivo and clinical settings. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection, 2nd Edition)
Show Figures

Figure 1

25 pages, 8331 KiB  
Article
Aqueous Cymbopogon citratus Extract Mediated Silver Nanoparticles: Part II. Dye Degradation Studies
by Himabindu Kurra, Aditya Velidandi, Ninian Prem Prashanth Pabbathi and Vikram Godishala
Eng 2025, 6(5), 102; https://doi.org/10.3390/eng6050102 - 19 May 2025
Viewed by 424
Abstract
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, [...] Read more.
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, such as rhodamine B, methyl red, methyl orange, methylene blue, eosin yellow, and Eriochrome black T, in the presence of sodium borohydride. Optimization studies employing a one-factor-at-a-time approach revealed the critical influence of AgNPs and reductant concentration, temperature, and pH. Kinetic analysis confirmed pseudo-first-order degradation behavior. Reactive species scavenging experiments established that hydroxyl radicals and holes played dominant roles in the degradation mechanism. Notably, the AgNPs retained catalytic activity across eight reuse cycles with negligible performance loss, demonstrating strong potential for repeated application. Comparative analysis with data from the literature highlights the superior performance of C. citratus-derived AgNPs in terms of reaction rate and efficiency. This work underscores the value of plant-extract-mediated AgNPs synthesis not only for its environmental compatibility but also for its catalytic effectiveness. The study advances the practical applicability of green nanotechnology in wastewater remediation and supports its integration into sustainable industrial practices. Full article
Show Figures

Figure 1

11 pages, 1581 KiB  
Article
Catalytic Degradation of Organic Dyes Induced by Tribo-Electrification Between Insulating Films
by Junhao Li and Xuefeng Xu
Materials 2025, 18(10), 2327; https://doi.org/10.3390/ma18102327 - 16 May 2025
Cited by 1 | Viewed by 457
Abstract
In this study, a contact–separation triboelectric catalytic device was designed and constructed to systematically investigate the underlying degradation mechanism. The device enabled precise control of the contact–separation process between frictional surfaces. Polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) films were selected as the triboelectric [...] Read more.
In this study, a contact–separation triboelectric catalytic device was designed and constructed to systematically investigate the underlying degradation mechanism. The device enabled precise control of the contact–separation process between frictional surfaces. Polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) films were selected as the triboelectric pair, and methylene blue (MB) was used as the model organic pollutant. Experimental results demonstrated that the contact–separation process in an aqueous environment effectively promotes the degradation of organic dyes. For an MB solution with an initial concentration of 5 mg/L, a degradation efficiency of 40.34% was achieved within 3 h. Moreover, the device exhibited excellent repeatability and stability, with no significant decline in performance after 15 h of continuous operation. Control experiments confirmed that the degradation originates specifically from the contact–separation interaction between the PTFE and PET surfaces. Free radical quenching experiments identified superoxide radicals (·O2) and hydroxyl radicals (·OH) as the primary reactive species responsible for degradation. Based on these findings, a microscopic mechanism is proposed: during contact, triboelectric charging generates electrons (e) and holes (h+) on the surfaces; upon separation, these charges interact with the solution—e reduce dissolved oxygen to form ·O2, while h+ oxidize hydroxide ions (OH) to produce ·OH. The combined action of ·O2 and ·OH ultimately results in the efficient degradation of MB. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

Back to TopTop