Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,231)

Search Parameters:
Keywords = reactive composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3396 KB  
Article
Influence of Wood Chemical Composition on Liquefaction Efficiency and Polyurethane Foam Properties: A Study of Red Angico and Mahogany
by Emilly Silva, Luísa Cruz-Lopes, Idalina Domingos, Fabricio Gonçalves, Bruna da Silva Cruz, Michelângelo Fassarela, Antônio Thiago de Almeida and Bruno Esteves
Materials 2026, 19(2), 417; https://doi.org/10.3390/ma19020417 - 21 Jan 2026
Abstract
Biomass liquefaction is a thermochemical process that converts lignocellulosic materials into reactive liquid intermediates, enabling the production of bio-based polyols as a sustainable alternative to petroleum-derived chemicals. This study investigates the liquefaction of two lignocellulosic biomasses, Red Angico (Anadenanthera colubrina) and [...] Read more.
Biomass liquefaction is a thermochemical process that converts lignocellulosic materials into reactive liquid intermediates, enabling the production of bio-based polyols as a sustainable alternative to petroleum-derived chemicals. This study investigates the liquefaction of two lignocellulosic biomasses, Red Angico (Anadenanthera colubrina) and Mahogany (Swietenia macrophylla), using a glycerol–ethylene glycol polyalcohol system, chosen for its renewable origin and high solvating efficiency. The resulting polyols were used to produce polyurethane (PU) foams, and their properties were evaluated in relation to biomass composition. The chemical composition of each biomass significantly influenced its liquefaction behavior and polyol characteristics. Mahogany achieved higher liquefaction efficiency, whereas Red Angico polyols generated PU foams with superior mechanical performance, highlighting the influence of species-specific chemistry. Water content and isocyanate index were found to modulate foam structure and compressive strength. This work demonstrates how tailored liquefaction strategies using polyalcohol systems can optimize bio-based PU foam properties, providing a sustainable route for high-performance polymer materials. Full article
Show Figures

Figure 1

22 pages, 8427 KB  
Article
Mitochondrial Targeting by Elamipretide Improves Myocardial Bioenergetics Without Translating into Functional Benefits in HFpEF
by Antje Schauer, Daniela Jahn, Beatrice Vahle, Peggy Barthel, Anita Männel, Gunar Fabig, Axel Linke, Volker Adams and Antje Augstein
Int. J. Mol. Sci. 2026, 27(2), 1060; https://doi.org/10.3390/ijms27021060 - 21 Jan 2026
Abstract
Mitochondrial dysfunction contributes to impaired myocardial energetics and performance in heart failure with preserved ejection fraction (HFpEF). Elamipretide (Ela) enhances mitochondrial bioenergetics in preclinical models, yet its relevance in HFpEF remains unclear. This study examined the effects of Ela on cardiac mitochondrial function, [...] Read more.
Mitochondrial dysfunction contributes to impaired myocardial energetics and performance in heart failure with preserved ejection fraction (HFpEF). Elamipretide (Ela) enhances mitochondrial bioenergetics in preclinical models, yet its relevance in HFpEF remains unclear. This study examined the effects of Ela on cardiac mitochondrial function, structure, and cardiovascular performance in a rodent HFpEF model. Female obese ZSF1 rats received vehicle or Ela for 12 weeks, with age-matched lean rats as controls. Cardiac function and hemodynamics were assessed by echocardiography and pressure–volume analysis. Mitochondrial respiration was measured in permeabilized fibers and ultrastructure evaluated by transmission electron microscopy. Molecular and histological analyses included cardiolipin lipidomics and mRNA/protein profiling of hypertrophic, fibrotic, and inflammatory markers. Ela modestly improved complex I and II respiration, whereas mitochondrial ultrastructure, cardiolipin composition, and tafazzin expression were unchanged. Diastolic dysfunction persisted, reflected by unchanged E/é, ventricular stiffness factor β, and titin phosphorylation. Compared to untreated HFpEF, systolic performance showed a mild decline, with small reductions in LV ejection fraction and end-systolic elastance. Accordingly, cardiac remodeling, including hypertrophy, fibrosis, and inflammatory activation, remained unaltered. Vascular stiffness slightly increased, while carotid reactivity and morphology were preserved. In conclusion, despite enhanced mitochondrial respiration following Ela treatment, no functional or structural benefits were observed in experimental HFpEF, suggesting limited therapeutic efficacy once HFpEF is established. Full article
(This article belongs to the Special Issue Heart Failure: From Pathogenesis to Innovative Treatments)
Show Figures

Figure 1

19 pages, 1263 KB  
Article
Possibility of Using Concrete Construction Demolition Waste in the Geopolymer Precursor Composition
by Mateusz Sitarz, Cornelius Ngunjiri Ngandu, Gábor Mucsi and Izabela Hager
Appl. Sci. 2026, 16(2), 1050; https://doi.org/10.3390/app16021050 - 20 Jan 2026
Abstract
The construction sector faces the dual challenge of reducing energy consumption and mitigating the environmental burden of construction and demolition waste (CDW). Geopolymers offer a low-carbon alternative to Portland cement, yet their performance depends strongly on precursor composition. This study presents an extensive [...] Read more.
The construction sector faces the dual challenge of reducing energy consumption and mitigating the environmental burden of construction and demolition waste (CDW). Geopolymers offer a low-carbon alternative to Portland cement, yet their performance depends strongly on precursor composition. This study presents an extensive investigation of precursor chemistry, mechanical performance and phase composition, focusing on the partial substitution of ground granulated blast furnace slag (GGBFS) with mechanically activated CDW powder (15% and 30% by weight) alongside fly ash (FA). The oxide composition, amorphous content and particle size distribution were analyzed, using XRF, XRD and laser diffraction to evaluate the reactivity. Mortar samples were subsequently synthesized and tested for compressive and flexural strength, ultrasonic pulse velocity, density and porosity. The results demonstrate that while mechanically activated CDW incorporation decreases early strength compared with GGBFS-rich systems, compressive strengths above 45 MPa were attained at 28 days, with continuous improvement to >69 MPa for aged composites. The relationship between precursor chemistry, precursor sizes and mechanical performance highlights the feasibility of CDW valorization in geopolymer binders, contributing to energy efficiency, circular economy strategies and sustainable construction materials. Full article
20 pages, 10816 KB  
Article
Numerical and Performance Optimization Research on Biphase Transport in PEMFC Flow Channels Based on LBM-VOF
by Zhe Li, Runyuan Zheng, Chengyan Wang, Lin Li, Yuanshen Xie and Dapeng Tan
Processes 2026, 14(2), 360; https://doi.org/10.3390/pr14020360 - 20 Jan 2026
Abstract
Proton exchange membrane fuel cells (PEMFC) are recognized as promising next-generation energy technology. Yet, their performance is critically limited by inefficient gas transport and water management in conventional flow channels. Current rectangular gas channels (GC) restrict reactive gas penetration into the gas diffusion [...] Read more.
Proton exchange membrane fuel cells (PEMFC) are recognized as promising next-generation energy technology. Yet, their performance is critically limited by inefficient gas transport and water management in conventional flow channels. Current rectangular gas channels (GC) restrict reactive gas penetration into the gas diffusion layer (GDL) due to insufficient longitudinal convection. At the same time, the complex multiphase interactions at the mesoscale pose challenges for numerical modeling. To address these limitations, this study proposes a novel cathode channel design featuring laterally contracted fin-shaped barrier blocks and develops a mesoscopic multiphase coupled transport model using the lattice Boltzmann method combined with the volume-of-fluid approach (LBM-VOF). Through systematic investigation of multiphase flow interactions across channel geometries and GDL surface wettability effects, we demonstrate that the optimized barrier structure induces bidirectional forced convection, enhancing oxygen transport compared to linear channels. Compared with the traditional straight channel, the optimized composite channel achieves a 60.9% increase in average droplet transport velocity and a 56.9% longer droplet displacement distance, while reducing the GDL surface water saturation by 24.8% under the same inlet conditions. These findings provide critical insights into channel structure optimization for high-efficiency PEMFC, offering a validated numerical framework for multiphysics-coupled fuel cell simulations. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

18 pages, 2250 KB  
Article
Early Peri-Admission Lactate-to-Albumin (LAR), C-Reactive Protein-to-Albumin (CAR), and Procalcitonin-to-Albumin (PAR) Ratios and ICU Mortality in a Tertiary Cardiac ICU
by Krzysztof Żerdziński, Michał Gałuszewski, Julita Janiec, Michał Skrzypek and Łukasz J. Krzych
J. Clin. Med. 2026, 15(2), 826; https://doi.org/10.3390/jcm15020826 - 20 Jan 2026
Abstract
Background/Objectives: Critically ill adults in intensive care units (ICUs) remain at high risk of death, while commonly used severity scores are complex and not always available at admission. We evaluated peri-admission lactate-to-albumin (LAR), C-reactive protein-to-albumin (CAR) and procalcitonin-to-albumin (PAR) ratios at ICU entry [...] Read more.
Background/Objectives: Critically ill adults in intensive care units (ICUs) remain at high risk of death, while commonly used severity scores are complex and not always available at admission. We evaluated peri-admission lactate-to-albumin (LAR), C-reactive protein-to-albumin (CAR) and procalcitonin-to-albumin (PAR) ratios at ICU entry to predict ICU mortality in a cardiovascularly burdened cohort. Methods: We performed a single-centre retrospective observational cohort study in a tertiary cardiac ICU including adult admissions in 2024 with complete peri-admission lactate, C-reactive protein, procalcitonin and albumin. Results: Of 212 ICU admissions, 137 met the inclusion criteria. ICU mortality was 48.9%. Non-survivors had higher composite ratios and lower albumin than survivors. In multivariable models, LAR and CAR, but not PAR, remained independently associated with ICU mortality after adjustment for age, sex, and admission category. Receiver operating characteristic areas under the curve (AUC) were 0.692 for LAR, 0.677 for CAR and 0.625 for PAR. Cut-offs of LAR ≥ 0.106, CAR ≥ 3.18 and PAR ≥ 0.143 identified high-risk subgroups, with odds ratios for death of 6.18, 4.20 and 2.70, respectively, compared with lower-ratio patients, and LAR provided the best overall discrimination. Conclusions: Peri-admission LAR, CAR and PAR derived from routine tests in the ICU are associated with ICU mortality in critically ill adults, with LAR and CAR providing independent prognostic information and LAR showing the best discrimination. These simple composite ratios may complement severity scores for early risk stratification and warrant external validation. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Graphical abstract

18 pages, 2670 KB  
Article
High-Efficient Photocatalytic and Fenton Synergetic Degradation of Organic Pollutants by TiO2-Based Self-Cleaning PES Membrane
by Shiying Hou, Yuting Xue, Wenbin Zhu, Min Zhang and Jianjun Yang
Coatings 2026, 16(1), 125; https://doi.org/10.3390/coatings16010125 - 18 Jan 2026
Viewed by 164
Abstract
In this study, we aimed to develop a high-performance, anti-fouling ultrafiltration membrane by integrating photocatalytic and Fenton-like functions into a polymer matrix, in order to address the critical challenge of membrane fouling and achieve simultaneous separation and degradation of organic pollutants. To this [...] Read more.
In this study, we aimed to develop a high-performance, anti-fouling ultrafiltration membrane by integrating photocatalytic and Fenton-like functions into a polymer matrix, in order to address the critical challenge of membrane fouling and achieve simultaneous separation and degradation of organic pollutants. To this end, a novel Fe-VO-TiO2-embedded polyethersulfone (PES) composite membrane was designed and fabricated using a facile phase inversion method. The key innovation lies in the incorporation of Fe-VO-TiO2 nanoparticles containing abundant bulk-phase single-electron-trapped oxygen vacancies, which not only modulate membrane morphology and hydrophilicity but also enable sustained generation of reactive oxygen species for the pollutant degradation under light irradiation and H2O2. The optimized Fe-VO-TiO2-PES-0.04 membrane exhibited a significantly enhanced pure water flux of 222.6 L·m−2·h−1 (2.2 times higher than the pure PES membrane) while maintaining a high bovine serum albumin (BSA) retention of 93% and an improved hydrophilic surface. More importantly, the membrane demonstrated efficient and stable synergistic Photocatalytic-Fenton activity, achieving 82% degradation of norfloxacin (NOR) and retaining 75% efficiency after eight consecutive cycles. A key finding is the membrane’s Photocatalytic-Fenton-assisted self-cleaning capability, with an 80% flux recovery after methylene blue (MB) fouling, which was attributed to in situ reactive oxygen species (·OH) generation (verified by ESR). This work provides a feasible strategy for designing multifunctional membranes with enhanced antifouling performance and extended service life through built-in catalytic self-cleaning. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

25 pages, 5742 KB  
Article
Functionalization of Photopolymer with Laser-Ablated Copper NPs: A Comprehensive Study of ROS Generation, Antimicrobial Activity and Cytotoxic Profile
by Dmitriy E. Burmistrov, Dmitriy A. Serov, Lev R. Sizov, Maxim E. Astashev, Ekaterina E. Karmanova, Ilya V. Baimler, Alexander V. Simakin, Dmitriy N. Ignatenko, Fatikh M. Yanbaev, Evgeny V. Kuzmin and Sergey V. Gudkov
Polymers 2026, 18(2), 238; https://doi.org/10.3390/polym18020238 - 16 Jan 2026
Viewed by 120
Abstract
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on [...] Read more.
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on a photopolymerizable acrylate resin modified with laser-ablated copper nanoparticles (Cu NPs). The synthesized Cu NPs exhibited a monomodal size distribution with a peak at 47 nm, a high zeta potential of −33 mV, and a spherical morphology. Incorporation of Cu NPs into the polymer matrix via Masked Stereolithography (MSLA) enabled the fabrication of complex structures that maintained high surface quality and optical transparency after polishing. Modification of photopolymer resin with Cu NPs significantly increased the strength of the resulting products and caused dose-dependent formation of reactive oxygen species (ROS). The resulting composite materials exhibited strong antibacterial activity against E. coli. Crucially, despite their potent antimicrobial efficacy, the materials showed no cytotoxicity towards human fibroblast cultures. These results highlight the potential of these composites for a new generation of biomedical applications, such as implantable devices and wound coatings, which combine programmable antimicrobial activity with high biocompatibility. Full article
Show Figures

Figure 1

21 pages, 5367 KB  
Article
Fluorescent Nanoporous Gene Drugs with Fenton-like Catalysis Vector Research
by Yulin Li, Jianjun Pan, Lili Xu, Yan Sun and Tong Li
Nanomaterials 2026, 16(2), 120; https://doi.org/10.3390/nano16020120 - 16 Jan 2026
Viewed by 147
Abstract
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) [...] Read more.
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) and Survivin oligo (siRNA) are loaded to form a ZIF-8@CDs/DOX@siRNA dual loading platform. CDs of 5–10 nm are synthesized by the solvent method and combined with ZIF-8. Electron microscopy shows that the composites are nearly spherical particles of approximately 200 nm, and the surface potential decreases from +36 mV before loading CDs to +25.7 mV after loading. The composite system shows unique advantages: (1) It has Fenton-like catalytic activity, catalyzes H2O2 to generate hydroxyl radicals, and consumes glutathione in the tumor microenvironment. The level of reactive oxygen species (ROS) in the ZIF-8@CDs group is significantly higher than that in the control group. (2) To achieve visual diagnosis and treatment, its fluorescence intensity is superior to that of the traditional Fluorescein isothiocyanate (FITC)-labeled vector; (3) It has a high loading capacity, with the loading amount of small nucleic acids reaching 36.25 μg/mg, and the uptake rate of siRNA by liver cancer cells is relatively ideal. The ZIF-8@CDs/DOX@siRNA dual-loading system is further constructed. Flow cytometry shows that the apoptosis rate of HepG2 cells induced by the ZIF-8@CDs/DOX@siRNA dual-loading system is 49%, which is significantly higher than that of the single-loading system (ZIF-8@CDs/DOX: 34.3%, ZIF-8@CDs@siRNA: 24.2%) and the blank vector (ZIF-8@CDs: 12.6%). The platform provides a new strategy for the integration of tumor diagnosis and treatment through the multi-mechanism synergy of chemical kinetic therapy, gene silencing and chemotherapy. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

15 pages, 280 KB  
Article
Albumin-Based Inflammatory–Nutritional Indices as Novel Biomarkers for Severity Stratification and Re-Hospitalization Risk in Hyperemesis Gravidarum: A Retrospective Case–Control Study
by Gülay Balkaş, Sümeyye Ünsal, Okan Oktar, Mustafa Can Akdogan, Murat Gözüküçük and Yusuf Üstün
Biomedicines 2026, 14(1), 197; https://doi.org/10.3390/biomedicines14010197 - 16 Jan 2026
Viewed by 226
Abstract
Background: The aim of this study was to evaluate the diagnostic and prognostic performance of albumin-based inflammatory–nutritional indices in hyperemesis gravidarum (HG) and to determine their associations with disease severity and risk of re-hospitalization. Methods: This retrospective case–control study included 246 [...] Read more.
Background: The aim of this study was to evaluate the diagnostic and prognostic performance of albumin-based inflammatory–nutritional indices in hyperemesis gravidarum (HG) and to determine their associations with disease severity and risk of re-hospitalization. Methods: This retrospective case–control study included 246 women with HG and 246 gestational-age-matched healthy pregnant controls at 6–16 weeks of gestation. Disease severity was classified as mild, moderate, or severe using the Pregnancy-Unique Quantification of Emesis (24 h scale) (PUQE-24) score. A comprehensive panel of albumin-based inflammatory indices—including C-reactive protein-to-albumin ratio (CAR), fibrinogen-to-albumin ratio (FAR), neutrophil-to-albumin ratio (NAR), leukocyte-to-albumin ratio (LAR), neutrophil percentage-to-albumin ratio (NPAR), monocyte-to-albumin ratio (MAR), hemoglobin–albumin–lymphocyte–platelet (HALP) score, modified HALP (m-HALP) score, prognostic nutritional index (PNI) score, systemic immune-inflammation index-to-albumin (SII/Alb), and systemic inflammatory response index-to-albumin (SIRI/Alb)—was calculated from routine complete blood count and serum biochemistry results obtained at diagnosis. Receiver operating characteristic analysis, along with univariate and multivariate logistic regression models, was performed to evaluate diagnostic performance and identify predictors of severe HG and re-hospitalization. Results: Albumin-based indices exhibited severity-associated alterations, with an overall trend toward worsening immuno-nutritional status across increasing HG severity. Among these, m-HALP score demonstrated the strongest inverse correlations with PUQE-24 score, ketonuria grade, length of hospital stay, and re-hospitalization risk (r = −0.74 to −0.52; all p < 0.001) and achieved the highest discriminative accuracy for both severe HG (AUC 0.864, 95% CI 0.836–0.892, p < 0.001) and re-hospitalization (AUC 0.722, 95% CI 0.675–0.766, p < 0.001). In multivariable analysis, higher HALP, m-HALP, and PNI were independently associated with a lower likelihood of severe HG. For re-hospitalization, higher m-HALP and HALP were independently associated with a lower risk, whereas higher NPAR, higher ketonuria grade, and higher PUQE-24 score were independently associated with an increased risk of re-hospitalization. Conclusions: Albumin-based indices, particularly m-HALP, demonstrated robust diagnostic and prognostic performance in HG compared with conventional biomarkers. These readily available, cost-neutral composite biomarkers enable objective severity stratification and accurate identification of patients at elevated risk of recurrent hospitalization, offering immediate potential to guide personalized, evidence-based clinical management. Full article
(This article belongs to the Special Issue New Insights in Reproductive Health and Disease)
28 pages, 2319 KB  
Article
A Newton–Raphson-Based Optimizer for PI and Feedforward Gain Tuning of Grid-Forming Converter Control in Low-Inertia Wind Energy Systems
by Mona Gafar, Shahenda Sarhan, Ahmed R. Ginidi and Abdullah M. Shaheen
Sustainability 2026, 18(2), 912; https://doi.org/10.3390/su18020912 - 15 Jan 2026
Viewed by 165
Abstract
The increasing penetration of wind energy has led to reduced system inertia and heightened sensitivity to dynamic disturbances in modern power systems. This paper proposes a Newton–Raphson-Based Optimizer (NRBO) for tuning proportional, integral, and feedforward gains of a grid-forming converter applied to a [...] Read more.
The increasing penetration of wind energy has led to reduced system inertia and heightened sensitivity to dynamic disturbances in modern power systems. This paper proposes a Newton–Raphson-Based Optimizer (NRBO) for tuning proportional, integral, and feedforward gains of a grid-forming converter applied to a wind energy conversion system operating in a low-inertia environment. The study considers an aggregated wind farm modeled as a single equivalent DFIG-based wind turbine connected to an infinite bus, with detailed dynamic representations of the converter control loops, synchronous generator dynamics, and network interactions formulated in the dq reference frame. The grid-forming converter operates in a grid-connected mode, regulating voltage and active–reactive power exchange. The NRBO algorithm is employed to optimize a composite objective function defined in terms of voltage deviation and active–reactive power mismatches. Performance is evaluated under two representative scenarios: small-signal disturbances induced by wind torque variations and short-duration symmetrical voltage disturbances of 20 ms. Comparative results demonstrate that NRBO achieves lower objective values, faster transient recovery, and reduced oscillatory behavior compared with Differential Evolution, Particle Swarm Optimization, Philosophical Proposition Optimizer, and Exponential Distribution Optimization. Statistical analyses over multiple independent runs confirm the robustness and consistency of NRBO through significantly reduced performance dispersion. The findings indicate that the proposed optimization framework provides an effective simulation-based approach for enhancing the transient performance of grid-forming wind energy converters in low-inertia systems, with potential relevance for supporting stable operation under increased renewable penetration. Improving the reliability and controllability of wind-dominated power grids enhances the delivery of cost-effective, cleaner, and more resilient energy systems, aiding in expanding sustainable electricity access in alignment with SDG7. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 1954 KB  
Review
Toward Low-Carbon Construction: A Review of Red Mud Utilization in Cementitious Materials and Geopolymers for Sustainability and Cost Benefits
by Zhiping Li
Buildings 2026, 16(2), 362; https://doi.org/10.3390/buildings16020362 - 15 Jan 2026
Viewed by 138
Abstract
Red mud (RM), an industrial byproduct generated during bauxite refining, has accumulated to more than 5 billion tons worldwide, posing serious environmental challenges. In response, substantial research over recent decades has focused on the sustainable utilization of RM, particularly in the field of [...] Read more.
Red mud (RM), an industrial byproduct generated during bauxite refining, has accumulated to more than 5 billion tons worldwide, posing serious environmental challenges. In response, substantial research over recent decades has focused on the sustainable utilization of RM, particularly in the field of construction materials. This review first summarizes the generation process and chemical composition of RM, and then systematically examines its potential applications in the production of artificial aggregates, partial replacement of cementitious materials, and synthesis of geopolymers. Existing studies demonstrate that RM exhibits considerable potential in construction applications: when used as an aggregate, it can reduce concrete porosity, enhance compressive strength, and improve overall mechanical performance. Moreover, RM can partially substitute cement or serve as a geopolymer precursor, contributing to the immobilization of toxic elements such as Pb and Cr while simultaneously improving the mechanical properties of both cementitious systems and geopolymers. The reactivity and performance of RM-based materials can be further enhanced through carbonation curing and other modification techniques. Finally, this review highlights the significant sustainability and economic benefits of RM-based concrete, supported by life-cycle assessment and cost–benefit analyses. Full article
(This article belongs to the Special Issue Research on Energy Efficiency and Low-Carbon Pathways in Buildings)
Show Figures

Figure 1

31 pages, 3317 KB  
Review
Reactive Oxygen Species in Embryo Development: Sources, Impacts, and Implications for In Vitro Culture Systems
by Sajuna Sunuwar and Yun Seok Heo
Life 2026, 16(1), 136; https://doi.org/10.3390/life16010136 - 15 Jan 2026
Viewed by 316
Abstract
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological [...] Read more.
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological conditions increases oxidative stress (OS), impairing gamete quality, embryo viability, and clinical outcomes. This review synthesizes experimental and clinical studies describing the endogenous and exogenous sources of ROS relevant to embryo development in IVF. Endogenous ROS arise from intrinsic metabolic pathways such as oxidative phosphorylation, NADPH oxidase, and xanthine oxidase. Exogenous sources include suboptimal laboratory conditions characterized by factors such as high oxygen tension, temperature shifts, pH instability, light exposure, media composition, osmolarity, and cryopreservation procedures. Elevated ROS disrupt oocyte fertilization, embryonic cleavage, compaction, blastocyst formation, and implantation by inducing DNA fragmentation, lipid peroxidation, mitochondrial dysfunction, and apoptosis. In addition, the review highlights how parental health factors establish the initial redox status of gametes, which influences subsequent embryo development in vitro. While antioxidant supplementation and optimized culture conditions can mitigate oxidative injury, the precise optimal redox environment remains a subject of ongoing research. This review emphasizes that future research should focus on defining specific redox thresholds and developing reliable, non-invasive indicators of embryo oxidative status to improve the success rates of ART. Full article
(This article belongs to the Special Issue Advances in Livestock Breeding, Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 7264 KB  
Article
Study on the Efficiency and Mechanism of a Novel Copper-Based Composite Material Activated by Supramolecular Self-Assembly for Degrading Reactive Red 3BS
by Jiangming Dai, Xinrong Wang, Bo Chen and Liang Chen
Nanomaterials 2026, 16(2), 111; https://doi.org/10.3390/nano16020111 - 15 Jan 2026
Viewed by 237
Abstract
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade [...] Read more.
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade the Reactive Red 3BS dye within a sodium bicarbonate-activated hydrogen peroxide (BAP) system. This material was applied to degrade the Reactive Red 3BS dye using a sodium bicarbonate-activated hydrogen peroxide system. The morphology, crystal structure, and surface chemistry of the material were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Electron paramagnetic resonance (EPR) was employed to identify reactive species generated during the reaction. The effects of dye concentration, H2O2 concentration, MEL-Cu-6HNA dosage, and coexisting substances in water on degradation efficiency were systematically investigated, with active species identified via EPR. This study marks the first application of the supramolecular self-assembled CuO/Cu2O(SO4)2 composite material MEL-Cu-6HNA, prepared via pyrolysis, in a sodium bicarbonate-activated hydrogen peroxide system. It achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS dye. The three-dimensional sulfate framework and dual Cu2+ sites of the material significantly enhanced the degradation efficiency. MEL-Cu-6HNA achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS in a sodium bicarbonate-activated hydrogen peroxide system. The material’s three-dimensional sulfate framework and dual Cu2+ sites significantly enhanced interfacial electron transfer and Cu2+/Cu+ cycling activation capacity. ·OH served as the primary reactive oxygen species (ROS), with SO42−, 1O2, and ·O2 contributing to sustained radical generation. This system achieved 95% decolorization within 30 min, demonstrating outstanding green treatment potential and providing a reliable theoretical basis and practical pathway for efficient, low-energy treatment of dyeing wastewater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

32 pages, 3235 KB  
Article
Towards Cleaner Diesel Engines: Performance and Emission Characteristics of Diesel–Ammonia–Methanol Fuel Blends
by Onur Kocatepe and Güven Gonca
Processes 2026, 14(2), 298; https://doi.org/10.3390/pr14020298 - 14 Jan 2026
Viewed by 151
Abstract
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 ° [...] Read more.
Decarbonization of compression-ignition engines requires evaluation of carbon-free and low-carbon fuel alternatives. Ammonia (NH3) offers zero direct carbon emissions but faces combustion challenges including low flame speed (7 cm/s) and high auto-ignition temperature (657 °C). Methanol provides improved reactivity and bound oxygen content that can enhance ignition characteristics. This computational study investigates diesel–ammonia–methanol ternary fuel blends using validated three-dimensional CFD simulations (ANSYS Forte 2023 R2; ANSYS, Inc., Canonsburg, PA, USA) with merged chemical kinetic mechanisms (247 species, 2431 reactions). The model was validated against experimental in-cylinder pressure data with deviations below 5% on a single-cylinder diesel engine (510 cm3, 17.5:1 compression ratio, 1500 rpm). Ammonia energy ratios were systematically varied (10–50%) with methanol substitution levels (0–90%). Fuel preheating at 530 K was employed for high-alcohol compositions exhibiting ignition failure at standard temperature. Results demonstrate that peak cylinder pressures of 130–145 bar are achievable at 10–30% ammonia with M30K–M60K configurations, comparable to baseline diesel (140 bar). Indicated thermal efficiency reaches 38–42% at 30% ammonia-representing 5–8 percentage point improvements over diesel baseline (31%)-but declines to 30–32% at 50% ammonia due to fundamental combustion limitations. CO2 reductions scale approximately linearly with ammonia content: 35–55% at 30% ammonia and 75–78% at 50% ammonia. NOX emissions demonstrate 30–60% reductions at efficiency-optimal configurations. Multi-objective optimization analysis identifies the A30M60K configuration (30% ammonia, 60% methanol, 530 K preheating) as optimal, achieving 42% thermal efficiency, 58% CO2 reduction, 51% NOX reduction, and 11% power enhancement versus diesel. This configuration occupies the Pareto frontier “knee point” with cross-scenario robustness. Full article
Show Figures

Figure 1

16 pages, 13729 KB  
Article
All-Bamboo Fiber Thermosetting Plastics with Excellent Mechanical Properties, Degradability and High Water Resistance
by Wenjun Zhang, Wenting Ren, Enbo Liu, Chunyan Mou, Jiawei Han, Jing Lv and Dengkang Guo
Polymers 2026, 18(2), 220; https://doi.org/10.3390/polym18020220 - 14 Jan 2026
Viewed by 220
Abstract
Petroleum-based plastics are non-renewable and degrade poorly, persisting in the environment and causing serious ecological pollution, so urgent development of alternatives is needed. In this study, all-bamboo fiber thermosetting plastics (BTPs) were successfully prepared through selective sodium periodate oxidation of bamboo fibers followed [...] Read more.
Petroleum-based plastics are non-renewable and degrade poorly, persisting in the environment and causing serious ecological pollution, so urgent development of alternatives is needed. In this study, all-bamboo fiber thermosetting plastics (BTPs) were successfully prepared through selective sodium periodate oxidation of bamboo fibers followed by hot-pressing. The results demonstrate that the oxidation treatment effectively enhanced fiber reactivity and facilitated the formation of dense composite materials during hot-pressing. Compared with petroleum-based plastics (e.g., PVC), BTPs exhibit outstanding mechanical properties: flexural strength reaches 100.73 MPa, tensile strength reaches 83.31 MPa, while the 72 h water absorption and thickness swelling rates are as low as 5.36% and 4.59%, respectively. This study also reveals the mechanism by which residual lignin affects material microstructure formation through competitive oxidation reactions. Although it imparts initial hydrophobicity, it hinders complete fiber activation, leading to the formation of micro-defects. Furthermore, BTPs can completely degrade in 1% NaOH solution within 24 h, demonstrating excellent degradability. This research provides a new strategy for developing high-performance, degradable all-bamboo-based materials and promotes the value-added utilization of bamboo resources. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop