Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = raspberry fruit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7222 KB  
Article
BudCAM: An Edge Computing Camera System for Bud Detection in Muscadine Grapevines
by Chi-En Chiang, Wei-Zhen Liang, Jingqiu Chen, Xin Qiao, Violeta Tsolova, Zonglin Yang and Joseph Oboamah
Agriculture 2025, 15(21), 2220; https://doi.org/10.3390/agriculture15212220 (registering DOI) - 24 Oct 2025
Abstract
Bud break is a critical phenological stage in muscadine grapevines, marking the start of the growing season and the increasing need for irrigation management. Real-time bud detection enables irrigation to match muscadine grape phenology, conserving water and enhancing performance. This study presents BudCAM [...] Read more.
Bud break is a critical phenological stage in muscadine grapevines, marking the start of the growing season and the increasing need for irrigation management. Real-time bud detection enables irrigation to match muscadine grape phenology, conserving water and enhancing performance. This study presents BudCAM , a low-cost, solar-powered, edge computing camera system based on Raspberry Pi 5 and integrated with a LoRa radio board , developed for real-time bud detection. Nine BudCAMs were deployed at Florida A&M University Center for Viticulture and Small Fruit Research from mid-February to mid-March, 2024, monitoring three wine cultivars (A27, noble, and Floriana)with three replicates each. Muscadine grape canopy images were captured every 20 min between 7:00 and 19:00, generating 2656 high-resolution (4656 × 3456 pixels) bud break images as a database for bud detection algorithm development. The dataset was divided into 70% training, 15% validation, and 15% test. YOLOv11 models were trained using two primary strategies: a direct single-stage detector on tiled raw images and a refined two-stage pipeline that first identifies the grapevine cordon. Extensive evaluation of multiple model configurations identified the top performers for both the single-stage (mAP@0.5 = 86.0%) and two-stage (mAP@0.5 = 85.0%) approaches. Further analysis revealed that preserving image scale via tiling was superior to alternative inference strategies like resizing or slicing. Field evaluations conducted during the 2025 growing season demonstrated the system’s effectiveness, with the two-stage model exhibiting superior robustness against environmental interference, particularly lens fogging. A time-series filter smooths the raw daily counts to reveal clear phenological trends for visualization. In its final deployment, the autonomous BudCAM system captures an image, performs on-device inference, and transmits the bud count in under three minutes, demonstrating a complete, field-ready solution for precision vineyard management. Full article
17 pages, 4206 KB  
Article
Aroma Profiling and Sensory Association of Six Raspberry Cultivars Using HS-SPME/GC-MS and OPLS-HDA
by Jovana Ljujić, Boban Anđelković, Ivana Sofrenić, Katarina Simić, Ljubodrag Vujisić, Nevena Batić, Stefan Ivanović and Dejan Gođevac
Foods 2025, 14(21), 3599; https://doi.org/10.3390/foods14213599 - 22 Oct 2025
Abstract
In this study, six club raspberry varieties were examined for their aromatic profiles and sensory qualities, and statistical approaches were used to determine how aroma components affect consumer impressions. Analysis of the aroma’s chemical composition was performed utilizing headspace SPME and GC-MS. MS-DIAL [...] Read more.
In this study, six club raspberry varieties were examined for their aromatic profiles and sensory qualities, and statistical approaches were used to determine how aroma components affect consumer impressions. Analysis of the aroma’s chemical composition was performed utilizing headspace SPME and GC-MS. MS-DIAL -v5.5.250627 software was used to identify components from commercial libraries, after 10 repetitions for each variety, followed by manual verification. A sensory evaluation of fresh fruits, with 55 volunteers, was statistically analyzed and linked to chemical composition using multivariate analysis and the OPLS-HDA classification method, which was employed for the first time. Tula Magic was scored the highest in the sensory evaluation compared to Adelita, Himbo Top, Glen Dee, San Rafael, and Cascade Harvest. 2-Heptanol (fresh, lemongrass-like, herbal, floral, fruity, green), heptanal (fresh, aldehydic, fatty, green, herbal), and 2-methyl-6-hepten-1-ol (oily-green, herbaceous-citrusy) separated Tula Magic from the other varieties assessed. The same components were recognized in OPLS as positive contributors to the flavor score, while terpenoids like trans-β-ionone, α-ionone, and α,β-dihydro-β-ionone, as well as 2-heptanone, scored slightly lower. This suggests that a fine balance between the individual components is key to the overall aroma sensation. Full article
(This article belongs to the Special Issue Innovative Applications of Metabolomics in Food Science)
Show Figures

Figure 1

16 pages, 976 KB  
Article
Immunomodulatory Effect of Raspberry (Rubus idaeus L.) Fruit Extracts on Activated Macrophages and Dysfunctional Vascular Endothelial Cells
by Katarzyna Kowalska, Radosław Dembczyński and Anna Olejnik
Nutrients 2025, 17(20), 3257; https://doi.org/10.3390/nu17203257 - 16 Oct 2025
Viewed by 246
Abstract
Background: Growing evidence highlights the beneficial effects of flavonoids, including anthocyanins, as key components in reducing cardiovascular risk, and emphasizes that incorporating anthocyanin-rich fruits into the daily diet significantly impacts public health. Methods: The effect of bioactive polyphenols from raspberry fruit (RBF) on [...] Read more.
Background: Growing evidence highlights the beneficial effects of flavonoids, including anthocyanins, as key components in reducing cardiovascular risk, and emphasizes that incorporating anthocyanin-rich fruits into the daily diet significantly impacts public health. Methods: The effect of bioactive polyphenols from raspberry fruit (RBF) on molecular pathways in inflammation was studied in activated RAW 264.7 macrophages and their protective potential against endothelial dysfunction was analyzed using TNF-α-induced human umbilical vein endothelial cells (HUVECs). Results: The results have shown that RBF extract, along with its anthocyanin and polyphenol fractions, has a significant anti-inflammatory effect in macrophage cell culture by inhibiting the LPS-induced expression of pro-inflammatory genes, including IL-6, IL-1β, TNF-α, and NF-κB. Moreover, RBF and both fractions have demonstrated a protective effect on endothelial function by decreasing the expression of several inflammation-related genes and adhesion molecules, such as IL-6, IL-1β, VCAM-1, ICAM-1, and SELE, in TNF-α-induced HUVECs. Conclusions: The consumption of RBF and/or polyphenol-rich extracts may help prevent the onset of early atherosclerosis. This is attributed to their ability to improve inflammation status and enhance vascular endothelial function. Given the strong anti-inflammatory properties of RBF, incorporating them into a daily diet could significantly reduce the risk of non-communicable diseases related to inflammation. Full article
Show Figures

Figure 1

19 pages, 5932 KB  
Article
Rubus occidentalis Ethanol Extract Attenuates Neuroinflammation and Cognitive Impairment in Lipopolysaccharide-Stimulated Microglia and Scopolamine-Induced Amnesic Mice
by Ga-Won Kim, Yon-Suk Kim, Tohmina Afroze Bondhon, Rengasamy Balakrishnan, Jun-Hyuk Han, Ji-Wung Kwon, Woo-Jung Kim and Dong-Kug Choi
Pharmaceuticals 2025, 18(10), 1557; https://doi.org/10.3390/ph18101557 - 16 Oct 2025
Viewed by 228
Abstract
Background/Objectives: Neuroinflammatory mechanisms, primarily mediated by activated microglia, play a key role in the progression of conditions such as mild cognitive impairment associated with Alzheimer’s disease. Rubus occidentalis (R. occidentalis), a black-fruited raspberry native to North America, is reported to possess [...] Read more.
Background/Objectives: Neuroinflammatory mechanisms, primarily mediated by activated microglia, play a key role in the progression of conditions such as mild cognitive impairment associated with Alzheimer’s disease. Rubus occidentalis (R. occidentalis), a black-fruited raspberry native to North America, is reported to possess antimicrobial, antidiabetic, and anticancer properties. This study investigated the neuroprotective and anti-neuroinflammatory effects of a 100% ethanol extract from premature R. occidentalis fruits (ROE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a scopolamine-induced amnesic mouse model. Methods: C57BL/6N mice were orally administered ROE (100 or 200 mg/kg/b.w.) and donepezil (DNZ, 5 mg/kg) for 9 days and intraperitoneally injected with scopolamine (2 mg/kg/b.w.) for two days. Spatial learning and cognitive function were assessed using the Y-maze and Morris water maze tests. Protein and mRNA levels were examined both in vitro and in vivo through Western blotting and RT-PCR analysis. Results: In vitro, ROE improved cell viability and reduced nitric oxide overproduction in LPS-stimulated BV-2 cells, attenuated LPS-induced phosphorylation and degradation of IκB-α (thereby limiting NF-κB p65 nuclear translocation), and suppressed phosphorylation of MAPK signaling components. In vivo, ROE administration enhanced spatial learning and memory in scopolamine-treated C57BL/6N mice, increased hippocampal levels of brain-derived neurotrophic factor (BDNF) and phosphorylated CREB, and reduced the expression of iNOS and COX-2. Conclusions: Collectively, these results suggest that ROE possesses neuroprotective properties mediated by inhibition of NF-κB and MAPK signaling, promotion of CREB/BDNF pathways, and amelioration of neuroinflammation and cognitive deficits. Thus, ROE may represent a promising therapeutic candidate for neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Therapeutic Potential of Scopolamine and Its Adverse Effect)
Show Figures

Graphical abstract

19 pages, 936 KB  
Article
Physicochemical, Functional and Nutritional Characteristics of Various Types of Fruit Pomace
by Agata Blicharz-Kania, Anna Pecyna, Beata Zdybel and Dariusz Andrejko
Processes 2025, 13(10), 3182; https://doi.org/10.3390/pr13103182 - 7 Oct 2025
Viewed by 443
Abstract
The aim of this study was to evaluate and compare dried apple (A), chokeberry (C), grape (G), raspberry (R), and red currant (RC) pomace as potential additives to food, beverages, and cosmetics. Their physicochemical properties and nutritional composition were examined. The fruit pomace [...] Read more.
The aim of this study was to evaluate and compare dried apple (A), chokeberry (C), grape (G), raspberry (R), and red currant (RC) pomace as potential additives to food, beverages, and cosmetics. Their physicochemical properties and nutritional composition were examined. The fruit pomace was characterised by significant differences in acidity ranging 1.41 (G) to 7.96 g·100 g−1d.w. (R), water holding capacity (2.36–4.25 g·g−1, C-A), and oil holding capacity (1.86–2.41 g·g−1, C-G). The colour parameters of the pomace differed significantly. The highest lightness L* was recorded for the apple pomace (66.29). Samples RC and R were characterised by the highest redness (32.99; 26.76), while A, G, and R showed high b* values, amounting to 28.54, 22.84, and 20.40 (yellowness), respectively. The highest protein (13.01%), fat (6.82%), and fibre (67.38%) contents were recorded in the redcurrant pomace. The mineral analysis revealed high potassium, phosphorus, and calcium contents in all pomace samples, with the grape and redcurrant pomace containing the highest mineral content. These results highlight the potential of fruit pomace as a sustainable, nutritionally enriching ingredient, primarily for food products, and the potential to reduce food waste. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

19 pages, 3394 KB  
Article
Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar
by Ilaria Orlandella, Kyra Nancie Smith, Elena Belcore, Renato Ferrero, Marco Piras and Silvia Fiore
AgriEngineering 2025, 7(10), 324; https://doi.org/10.3390/agriengineering7100324 - 1 Oct 2025
Viewed by 401
Abstract
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 [...] Read more.
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 and 15 g/L), and after physical activation with CO2 at 900 °C; there was also a treatment with no biochar (unaltered). Visual monitoring was based on data logging twice per week of plants’ height and number of flowers and ripe fruits. Proximal sensing monitoring involved a system including a low-cost multispectral camera and a Raspberry Pi 4. The camera acquired nadiral images hourly in three spectral bands (550, 660, and 850 nm), allowing calculation of the normalized difference vegetation index (NDVI). After three months, control plants reached a height of 12.3 ± 0.4 cm, while those treated with biochar and activated biochar grew to 18.03 ± 1.0 cm and 17.93 ± 1.2 cm, respectively. NDVI values were 0.15 ± 0.11 for control plants, increasing to 0.26 ± 0.03 (+78%) with biochar and to 0.28 ± 0.03 (+90%) with activated biochar. In conclusion, biochar application was beneficial for strawberry plants’ growth according to both visual and proximal-sensed measures. Further research is needed to optimize the integration of visual and proximal sensing monitoring, also enhancing the measured parameters. Full article
Show Figures

Figure 1

23 pages, 708 KB  
Article
Sustainable Strategies for Raspberry Production: Greenhouse Gas Mitigation Through Biodegradable Substrate Additives in High Tunnels
by Monika Komorowska, Maciej Kuboń, Marcin Niemiec, Justyna Tora, Małgorzata Okręglicka and Arunee Wongkaew
Sustainability 2025, 17(19), 8740; https://doi.org/10.3390/su17198740 - 29 Sep 2025
Viewed by 374
Abstract
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. [...] Read more.
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. The functional unit was 1 kg of marketable fruit, and the experiment was conducted in Karwia, Poland. GHG emissions were calculated for eight substrate variants following ISO 14040 and 14041 guidelines. The baseline was coconut fiber, while modified variants included the additions of sunflower husk biochar and/or a wood-industry isolate, representing sustainable strategies in soilless cultivation. Emissions ranged from 0.728 to 1.226 kg CO2 eq/kg of raspberries, with the control showing the highest values. All modified substrates (produced based on a mixture of biochar and isolate) reduced emissions, with the most efficient variant achieving nearly a 40% decrease. Water use efficiency was decisive, as consumption declined from 2744 m3/ha (control) to 1838 m3/ha in improved variants. Substrate air–water properties proved critical for both environmental and economic outcomes. The findings confirm that substrate modification constitutes an effective, sustainable strategy for raspberry production under high tunnels, supporting climate-smart horticulture and resource-efficient food systems. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

17 pages, 2255 KB  
Article
Electromyography-Based Sign Language Recognition: A Low-Channel Approach for Classifying Fruit Name Gestures
by Kudratjon Zohirov, Mirjakhon Temirov, Sardor Boykobilov, Golib Berdiev, Feruz Ruziboev, Khojiakbar Egamberdiev, Mamadiyor Sattorov, Gulmira Pardayeva and Kuvonch Madatov
Signals 2025, 6(4), 50; https://doi.org/10.3390/signals6040050 - 25 Sep 2025
Viewed by 932
Abstract
This paper presents a method for recognizing sign language gestures corresponding to fruit names using electromyography (EMG) signals. The proposed system focuses on classification using a limited number of EMG channels, aiming to reduce classification process complexity while maintaining high recognition accuracy. The [...] Read more.
This paper presents a method for recognizing sign language gestures corresponding to fruit names using electromyography (EMG) signals. The proposed system focuses on classification using a limited number of EMG channels, aiming to reduce classification process complexity while maintaining high recognition accuracy. The dataset (DS) contains EMG signal data of 46 hearing-impaired people and descriptions of fruit names, including apple, pear, apricot, nut, cherry, and raspberry, in sign language (SL). Based on the presented DS, gesture movements were classified using five different classification algorithms—Random Forest, k-Nearest Neighbors, Logistic Regression, Support Vector Machine, and neural networks—and the algorithm that gives the best result for gesture movements was determined. The best classification result was obtained during recognition of the word cherry based on the RF algorithm, and 97% accuracy was achieved. Full article
(This article belongs to the Special Issue Advances in Signal Detecting and Processing)
Show Figures

Figure 1

25 pages, 2735 KB  
Article
Whey Valorization in Functional Jellies: A Nutritional and Technological Approach
by Diana Fluerasu (Bălțatu), Monica Negrea, Christine Neagu, Sylvestre Dossa, Călin Jianu, Dacian Lalescu, Adina Berbecea, Liliana Cseh, Ileana Cocan, Corina Misca, Mariana Suba, Vlad Muresan, Anda Tanislav and Ersilia Alexa
Foods 2025, 14(18), 3193; https://doi.org/10.3390/foods14183193 - 13 Sep 2025
Viewed by 714
Abstract
The purpose of this paper is to evaluate the nutritional, functional, and technological potential of whey resulting as a by-product in the dairy industry, as such or mixed with berries (blueberries, strawberries, and raspberries) to obtain healthy jellies with added value. In this [...] Read more.
The purpose of this paper is to evaluate the nutritional, functional, and technological potential of whey resulting as a by-product in the dairy industry, as such or mixed with berries (blueberries, strawberries, and raspberries) to obtain healthy jellies with added value. In this regard, the following parameters were analyzed: protein content, total amino acids, total mineral substances, macro- and microelements, antioxidant capacity, and total polyphenols. Also, the storage stability, textural and color parameters, FTIR spectra, and microstructures of jellies were analyzed. The results obtained showed that the protein content ranged from 4.18% to 4.51%, with a general increase observed in the variants with added whey and berries. Regarding total mineral substances, a significant increase was noted in jellies with added whey (0.34%) and strawberries (0.35%), compared to the control (0.15%). Whey jellies presented the highest levels of K, Ca, Mg, Zn, and Fe, while samples with added fruits completed the microelement (Mn, Cu, Ni, and Cr) content. The storage stability at 4 °C and the evolution of pH and acidity confirm that the products maintain their structure, while when stored at ambient temperature an acceleration of the decrease in pH and an increase in acidity are observed after 14 days. The jellies with combined additions (whey and berries) presented the most favorable microstructure, which supports the use of synergistic functional ingredients in the development of innovative products with high nutritional and sensory value. The FTIR spectra reflect the composition of the ingredients used. Based on obtained results, it can be concluded that whey represents a versatile and sustainable resource for obtaining functional jellies, offering both nutritional benefits and favorable economic and ecological perspectives. Full article
(This article belongs to the Special Issue Whey Protein: Extraction, Functional Properties, and Applications)
Show Figures

Figure 1

18 pages, 1655 KB  
Article
Pilot-Scale Evaluation of a Filter Prototype for Bacterial Inactivation in Agro-Food Processing Wastewater
by Piotr Kanarek, Barbara Breza-Boruta and Wojciech Poćwiardowski
Water 2025, 17(17), 2631; https://doi.org/10.3390/w17172631 - 5 Sep 2025
Viewed by 1059
Abstract
The processing of freshly cut fruits and vegetables represents an important niche for implementing circular economy principles, particularly through the reuse of washing water. This is especially relevant as post-wash water is often treated as wastewater and discarded without reuse. One promising research [...] Read more.
The processing of freshly cut fruits and vegetables represents an important niche for implementing circular economy principles, particularly through the reuse of washing water. This is especially relevant as post-wash water is often treated as wastewater and discarded without reuse. One promising research avenue is the use of plant-derived extracts in water sanitation processes. Their antimicrobial properties offer a natural alternative to conventional disinfectants while reducing the formation of harmful disinfection by-products. The aim of this study was to evaluate the effectiveness of different filter bed configurations in removing pathogens from water. These configurations included a hydrogel saturated with natural plant extracts, an ion exchange resin layer, and an activated carbon layer. The most effective composite was also tested using real process water from a fruit washing line. The test materials included concentrated extracts from oak bark (Quercus robur), willow (Salix alba), birch (Betula pendula), raspberry shoots (Rubus idaeus), tea leaves (Camellia sinensis), and linden flowers (Tilia cordata), all immobilized in hydrogel, along with activated carbon and ion-exchange resin. Water samples were artificially inoculated with six opportunistic pathogens and collected process water was also used. Samples were analyzed microbiologically at six time intervals. The composite filter (hydrogel–resin–carbon) achieved a reduction of over 2 log10 in heavily inoculated water (~108 CFU mL−1) and maintained at least a 1 log10 reduction in real process effluents. The proposed solution supports blue water footprint reduction strategies (as the system aims to decrease the demand for freshwater resources through the reuse of treated wastewater) and aligns with the principles of green processing. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 745 KB  
Article
Effects of Raspberry Leaf Tea Polyphenols on Postprandial Glucose and Insulin Responses in Healthy Adults
by Hind Mesfer S. Alkhudaydi and Jeremy P. E. Spencer
Nutrients 2025, 17(17), 2849; https://doi.org/10.3390/nu17172849 - 1 Sep 2025
Viewed by 3066
Abstract
Background: Dietary polyphenols, particularly flavonoids, have been associated with improved glycemic control and reduced risk of type 2 diabetes. Raspberry leaf (RL) is a rich but underexplored source of such bioactives, including ellagitannins, flavonoids, and phenolic acids. While raspberry fruit has received some [...] Read more.
Background: Dietary polyphenols, particularly flavonoids, have been associated with improved glycemic control and reduced risk of type 2 diabetes. Raspberry leaf (RL) is a rich but underexplored source of such bioactives, including ellagitannins, flavonoids, and phenolic acids. While raspberry fruit has received some attention in nutritional science, the metabolic effects of raspberry leaf—especially its influence on postprandial glucose and insulin responses—remain largely unstudied. Objective: This study is the first to investigate the acute effects of RL tea consumption on postprandial blood glucose and insulin levels in healthy individuals following intake of common dietary carbohydrates (sucrose and glucose). Methods: In a randomized crossover study, 22 healthy adults (12 males, 10 females) consumed 50 g of glucose or sucrose with or without 10 g of RL tea in four separate sessions. Blood glucose and insulin levels were measured at fasting and at 15, 30, 60, 90, and 120 min post-ingestion. A total of 37 polyphenolic compounds were identified in the RL infusion using LC–MS, following a 5-minute hot water extraction. The contents of ellagitannins, flavonoids, and phenolic acids were 38 mg, 7 mg, and 4 mg per 10 g of RL, respectively, contributing to a total polyphenol content of 50 mg per 10 g. Results: When RL tea was consumed with sucrose, postprandial blood glucose levels were significantly reduced at 15 and 30 min by 1.19 ± 0.88 mmol/L (25.59% reduction, p = 0.001) and 2.03 ± 1.05 mmol/L (43.57% reduction, p = 0.0004), respectively. Insulin concentrations were also significantly lower at 15 min (113.90 ± 59.58 pmol/L, p = 0.019), 30 min (161.76 ± 91.96 pmol/L, p = 0.0008), and 60 min (139.44 ± 75.96 pmol/L, p = 0.025). No significant differences were observed with glucose ingestion. Conclusions: This study provides the first clinical evidence that RL tea can blunt early postprandial glycemic and insulinemic responses to sucrose in healthy individuals. The data suggest that these effects are likely mediated by relatively low levels of polyphenols—particularly ellagic acid—through inhibition of carbohydrate-digesting enzymes such as α-glucosidase and β-fructofuranosidase. These findings support the potential of RL tea as a simple, dietary approach to modulate glucose metabolism and warrant further investigation in populations at risk for metabolic disorders. Full article
(This article belongs to the Special Issue Natural Active Compounds in Inflammation and Metabolic Diseases)
Show Figures

Figure 1

21 pages, 2394 KB  
Article
Physicochemical and Sensory Properties of Davidson Plum (Davidsonia jerseyana) Sorbet, a Potential for New Functional Food Product
by Brittany Harriden, Costas Stathopoulos, Suwimol Chockchaisawasdee, Andrew J. McKune and Nenad Naumovski
Foods 2025, 14(16), 2902; https://doi.org/10.3390/foods14162902 - 21 Aug 2025
Cited by 1 | Viewed by 892
Abstract
The Australian native foods, despite high phytochemical composition, are severely underutilized in research and on the commercial market. One of these plants is the Davidson plum (Davidsonia jerseyana), a nutrient-dense and sustainable food ingredient. The study aimed to develop functional fruit [...] Read more.
The Australian native foods, despite high phytochemical composition, are severely underutilized in research and on the commercial market. One of these plants is the Davidson plum (Davidsonia jerseyana), a nutrient-dense and sustainable food ingredient. The study aimed to develop functional fruit sorbets incorporating freeze-dried Davidson plum powder (0–20% w/w) and evaluate their physicochemical, antioxidant, and sensory properties. Sorbets were created using strawberry, raspberry, pomegranate, and Davidson plum bases and analyzed for nutritional content, color, melting rate, texture, and antioxidant capacity (Total Phenolic Content (TPC), Total Flavonoid Content (TFC), Ferric Reducing Antioxidant Power (FRAP), Cupric Reducing Antioxidant Capacity (CUPRAC), 2,2-Diphenyl-1-picrylhydrazyl (Radical Scavenging Assay (DPPH)), total proanthocyanin and anthocyanin content. Sensory evaluation was also conducted using a semi-trained panel. The results showed that increasing Davidson plum concentration led to higher antioxidant activity and slower melting rates. Sorbets containing 10% and 15% Davidson plum demonstrated the highest levels of phenolic and flavonoid compounds. However, sensory analysis indicated that sorbets with 5% and 10% Davidson plum, particularly those made with a strawberry base were the most acceptable in terms of flavour, texture, and overall appeal. These findings suggest that incorporating Davidson plum into frozen desserts, especially at lower concentrations, can enhance both the functional and sensory qualities of sorbets while offering potential health benefits. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Figure 1

16 pages, 776 KB  
Article
Sour Fruit Beers—Ethanol and Lactic Acid Fermentation in Beer Production
by Adam Głowacki, Justyna Paszkot, Witold Pietrzak and Joanna Kawa-Rygielska
Molecules 2025, 30(16), 3358; https://doi.org/10.3390/molecules30163358 - 12 Aug 2025
Viewed by 834
Abstract
Fruit and sour beers are popular due to their unique sensory characteristics. Owing to changes in physicochemical parameters, mixed culture fermentation is a promising research area. The aim of the study was to evaluate how ethanol and lactic acid fermentation, combined with the [...] Read more.
Fruit and sour beers are popular due to their unique sensory characteristics. Owing to changes in physicochemical parameters, mixed culture fermentation is a promising research area. The aim of the study was to evaluate how ethanol and lactic acid fermentation, combined with the addition of berry fruits during the beer production process, influence the physicochemical and sensory characteristics of sour fruit beers. Three worts differing in hopping system were produced: one classic sweet wort and two lacto-fermented. Strawberries or raspberries were added to the young beer. This research showed that acidification of wort, fruit addition, and limiting of hopping time had a positive effect on both technological and sensory characteristics. Despite pH differences, alcohol content in beers was similar (2.52–3.21% v/v). Production method influenced mainly lactic acid (0–2.30 g/L), pH (3.53–4.79), and glycerol (0.83–1.62 g/L) contents. Non-acidified beers had the highest dextrin (17.64–23.13 g/L) and glycerol (1.36–1.62 g/L) levels. The addition of strawberries increased phenolics (205.21–237.03 mg GAE/L), FRAP (0.82–1.17 mmol TE/L), and refreshment sensation, while raspberries mainly enhanced sensory atributes (colour, foam, fruitiness, aroma). Lactic fermentation did not show a clear effect on polyphenol content or antioxidant activity. The research offers practical insights into functional beer development, with its novelty of using mixed fermentation and fruit addition to shape characteristics. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

25 pages, 1722 KB  
Article
Evaluation of GABA-Producing Fermented Whey Formulations: From Strain Selection to Raspberry-Enriched Beverages with Psychobiotic Potential
by Mariano Del Toro-Barbosa, Tlalli Uribe-Velázquez, Alejandra Hurtado-Romero, María Fernanda Rosales-De la Cruz, Danay Carrillo-Nieves, Luis Eduardo Garcia-Amezquita and Tomás García-Cayuela
Foods 2025, 14(16), 2762; https://doi.org/10.3390/foods14162762 - 8 Aug 2025
Viewed by 901
Abstract
Certain probiotic strains have been proposed to alleviate mental health conditions, such as anxiety and stress, by modulating the gut–microbiota–brain axis through the production of metabolites like gamma-aminobutyric acid (GABA). This study evaluated kefir-derived microbial strains for their GABA-producing capacity in mono- and [...] Read more.
Certain probiotic strains have been proposed to alleviate mental health conditions, such as anxiety and stress, by modulating the gut–microbiota–brain axis through the production of metabolites like gamma-aminobutyric acid (GABA). This study evaluated kefir-derived microbial strains for their GABA-producing capacity in mono- and co-culture systems using whey as the growth substrate. Based on the screening results, two microbial consortia were selected to develop fermented whey beverages with raspberry (FWF-R1 and FWF-R2). These beverages were characterized for their technological and functional properties over 21 days of refrigerated storage and following gastrointestinal digestion. Both formulations maintained stable acidity and showed a slight increase in viscosity during storage. The microbial counts remained above 8.5 log colony-forming units/mL, with high post-digestion viability, confirming their probiotic potential. The GABA levels increased progressively during storage, reaching 2.67 mM in FWF-R1 and 4.65 mM in FWF-R2, with recovery rates of 40–45% after digestion. The total phenolic content decreased moderately during storage but increased ~5-fold after digestion; the total anthocyanins declined by up to 70%. FWF-R2 achieved higher sensory acceptability and was preferred by 58% of consumers, emerging as the most promising formulation. These findings highlight the psychobiotic potential of these beverages and support the sustainable valorization of dairy and fruit by-products. Full article
Show Figures

Figure 1

13 pages, 764 KB  
Article
Influence of Mineral Fertilizers and Application Methods on Raspberry Composition Cultivated in an Acid Soil
by Biljana Sikirić, Vesna Mrvić, Nikola Koković, Sonja Tošić Jojević, Mila Pešić, Nenad Prekop and Olivera Stajković-Srbinović
Horticulturae 2025, 11(8), 914; https://doi.org/10.3390/horticulturae11080914 - 4 Aug 2025
Viewed by 479
Abstract
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, [...] Read more.
Acid soils are often a limiting factor in the production of most cultivated plants. In practice, the application of inadequate, physiologically acidic fertilizers, urea and NPK, is often encountered, which further worsens the already poor physicochemical properties of such soils. In this study, the influence of different amounts of NPK and urea fertilizers and methods of their application on the chemical properties of a very acidic soil and the accumulation of essential biogenic elements (N, P, K, Ca, Mg, and Al) in raspberry plants (leaves and fruits) was evaluated. The field trial with the raspberry plants was set up on a very acidic soil (pH in KCl 3.6), type Dystric Cambisol, and was monitored for 2 years. The application of NPK and urea mainly increased soil acidity in the second year in all treatments (for 0.10–0.18 pH unit) (except for urea applied in rows). The application of higher amounts of NPK increased the content of available forms of P (for 9.3–30.8 mg/kg) and K (for 57–95 mg/kg) in soil in both years, as well as exchangeable Ca (for 200–510 mg/kg) and Mg in the first year (15–165 mg/kg). The introduction of fertilizers in rows, compared to fertilization of the entire surface, influenced the reduction in mobile Al (especially when applying NPK, from 5.89 to 7.13 mg/100 g), the increase in mineral N and K content in the soil, and the increase in Ca and Mg only when applying urea, i.e., P when applying NPK in rows. In the leaves, the application of fertilizers in rows increased the content of Ca and Mg in the first year and P and K in the second year. In the fruits, the content of all estimated elements was not in correlation with their content in leaves and the fertilizer application, which indicates the influence of other ecological and biological factors on plant nutrition. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

Back to TopTop