Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = random masking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 97817 KiB  
Article
Compression of 3D Optical Encryption Using Singular Value Decomposition
by Kyungtae Park, Min-Chul Lee and Myungjin Cho
Sensors 2025, 25(15), 4742; https://doi.org/10.3390/s25154742 (registering DOI) - 1 Aug 2025
Abstract
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same [...] Read more.
In this paper, we propose a compressionmethod for optical encryption using singular value decomposition (SVD). Double random phase encryption (DRPE), which employs two distinct random phase masks, is adopted as the optical encryption technique. Since the encrypted data in DRPE have the same size as the input data and consists of complex values, a compression technique is required to improve data efficiency. To address this issue, we introduce SVD as a compression method. SVD decomposes any matrix into simpler components, such as a unitary matrix, a rectangular diagonal matrix, and a complex unitary matrix. By leveraging this property, the encrypted data generated by DRPE can be effectively compressed. However, this compression may lead to some loss of information in the decrypted data. To mitigate this loss, we employ volumetric computational reconstruction based on integral imaging. As a result, the proposed method enhances the visual quality, compression ratio, and security of DRPE simultaneously. To validate the effectiveness of the proposed method, we conduct both computer simulations and optical experiments. The performance is evaluated quantitatively using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and peak sidelobe ratio (PSR) as evaluation metrics. Full article
Show Figures

Figure 1

23 pages, 12630 KiB  
Article
Security-Enhanced Three-Dimensional Image Hiding Based on Layer-Based Phase-Only Hologram Under Structured Light Illumination
by Biao Zhu, Enhong Chen, Yiwen Wang and Yanfeng Su
Photonics 2025, 12(8), 756; https://doi.org/10.3390/photonics12080756 - 28 Jul 2025
Viewed by 181
Abstract
In this paper, a security-enhanced three-dimensional (3D) image hiding and encryption method is proposed by combining a layer-based phase-only hologram (POH) under structured light illumination with chaotic encryption and digital image watermarking technology. In the proposed method, the original 3D plaintext image is [...] Read more.
In this paper, a security-enhanced three-dimensional (3D) image hiding and encryption method is proposed by combining a layer-based phase-only hologram (POH) under structured light illumination with chaotic encryption and digital image watermarking technology. In the proposed method, the original 3D plaintext image is firstly encoded into a layer-based POH and then further encrypted into an encrypted phase with the help of a chaotic random phase mask (CRPM). Subsequently, the encrypted phase is embedded into a visible ciphertext image by using a digital image watermarking technology based on discrete wavelet transform (DWT) and singular value decomposition (SVD), leading to a 3D image hiding with high security and concealment. The encoding of POH and the utilization of CRPM can substantially enhance the level of security, and the DWT-SVD-based digital image watermarking can effectively hide the information of the 3D plaintext image in a visible ciphertext image, thus improving the imperceptibility of valid information. It is worth noting that the adopted structured light during the POH encoding possesses many optical parameters, which are all served as the supplementary keys, bringing about a great expansion of key space; meanwhile, the sensitivities of the wavelength key and singular matrix keys are also substantially enhanced thanks to the introduction of structured light, contributing to a significant enhancement of security. Numerical simulations are performed to demonstrate the feasibility of the proposed 3D image hiding method, and the simulation results show that the proposed method exhibits high feasibility and apparent security-enhanced effect as well as strong robustness. Full article
Show Figures

Figure 1

20 pages, 967 KiB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 328
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

14 pages, 29613 KiB  
Article
Unsupervised Insulator Defect Detection Method Based on Masked Autoencoder
by Yanying Song and Wei Xiong
Sensors 2025, 25(14), 4271; https://doi.org/10.3390/s25144271 - 9 Jul 2025
Viewed by 299
Abstract
With the rapid expansion of high-speed rail infrastructure, maintaining the structural integrity of insulators is critical to operational safety. However, conventional defect detection techniques typically rely on extensive labeled datasets, struggle with class imbalance, and often fail to capture large-scale structural anomalies. In [...] Read more.
With the rapid expansion of high-speed rail infrastructure, maintaining the structural integrity of insulators is critical to operational safety. However, conventional defect detection techniques typically rely on extensive labeled datasets, struggle with class imbalance, and often fail to capture large-scale structural anomalies. In this paper, we present an unsupervised insulator defect detection framework based on a masked autoencoder (MAE) architecture. Built upon a vision transformer (ViT), the model employs an asymmetric encoder-decoder structure and leverages a high-ratio random masking scheme during training to facilitate robust representation learning. At inference, a dual-pass interval masking strategy enhances defect localization accuracy. Benchmark experiments across multiple datasets demonstrate that our method delivers competitive image- and pixel-level performance while significantly reducing computational overhead compared to existing ViT-based approaches. By enabling high-precision defect detection through image reconstruction without requiring manual annotations, this approach offers a scalable and efficient solution for real-time industrial inspection under limited supervision. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 376 KiB  
Article
Insulin Nanoemulsion Eye Drops for the Treatment of Dry Eye Disease in Sjögren’s Disease: A Randomized Clinical Trial Phase I/II
by Mateus Maia Marzola, Diego Rocha Gutierrez, Beatriz Carneiro Cintra, Adriana de Andrade Batista Murashima, Luciana Facco Dalmolin, Denny Marcos Garcia, Renata Fonseca Vianna Lopez, Fabiola Reis Oliveira and Eduardo Melani Rocha
Vision 2025, 9(3), 54; https://doi.org/10.3390/vision9030054 - 9 Jul 2025
Viewed by 520
Abstract
Dry eye disease (DED) is a hallmark of primary Sjögren’s disease (SjD) and often resists conventional treatments like lubricant eye drops. Insulin nanoemulsions offer a potential solution by improving drug penetration and retention on the ocular surface. In animal models, insulin has shown [...] Read more.
Dry eye disease (DED) is a hallmark of primary Sjögren’s disease (SjD) and often resists conventional treatments like lubricant eye drops. Insulin nanoemulsions offer a potential solution by improving drug penetration and retention on the ocular surface. In animal models, insulin has shown benefits in promoting tear secretion and corneal healing. This study evaluated the safety and efficacy of insulin nanoemulsion eye drops (20 IU/mL, three times daily for 30 days) in patients with SjD. Thirty-two patients were randomized in a double-masked design to receive either insulin or placebo drops. Symptoms (assessed by OSDI questionnaire) and objective measures (tear film breakup time, corneal and conjunctival staining, and Schirmer Test) were recorded at baseline, after 4 weeks of treatment, and at a 4-week follow-up. Twenty-three participants completed the study. Both groups showed significant improvement in symptoms and objective signs after treatment (p < 0.05), but no significant differences were found between the insulin and placebo groups. No clinically relevant adverse effects were reported. Insulin nanoemulsion eye drops are safe for SjD patients, but their therapeutic advantage remains unclear. Further studies with larger samples, extended follow-up, and dose adjustments are needed to better understand their potential. Full article
Show Figures

Figure 1

30 pages, 3461 KiB  
Article
A Privacy-Preserving Record Linkage Method Based on Secret Sharing and Blockchain
by Shumin Han, Zikang Wang, Qiang Zhao, Derong Shen, Chuang Wang and Yangyang Xue
Appl. Syst. Innov. 2025, 8(4), 92; https://doi.org/10.3390/asi8040092 - 28 Jun 2025
Viewed by 455
Abstract
Privacy-preserving record linkage (PPRL) aims to link records from different data sources while ensuring sensitive information is not disclosed. Utilizing blockchain as a trusted third party is an effective strategy for enhancing transparency and auditability in PPRL. However, to ensure data privacy during [...] Read more.
Privacy-preserving record linkage (PPRL) aims to link records from different data sources while ensuring sensitive information is not disclosed. Utilizing blockchain as a trusted third party is an effective strategy for enhancing transparency and auditability in PPRL. However, to ensure data privacy during computation, such approaches often require computationally intensive cryptographic techniques. This can introduce significant computational overhead, limiting the method’s efficiency and scalability. To address this performance bottleneck, we combine blockchain with the distributed computation of secret sharing to propose a PPRL method based on blockchain-coordinated distributed computation. At its core, the approach utilizes Bloom filters to encode data and employs Boolean and arithmetic secret sharing to decompose the data into secret shares, which are uploaded to the InterPlanetary File System (IPFS). Combined with masking and random permutation mechanisms, it enhances privacy protection. Computing nodes perform similarity calculations locally, interacting with IPFS only a limited number of times, effectively reducing communication overhead. Furthermore, blockchain manages the entire computation process through smart contracts, ensuring transparency and correctness of the computation, achieving efficient and secure record linkage. Experimental results demonstrate that this method effectively safeguards data privacy while exhibiting high linkage quality and scalability. Full article
Show Figures

Figure 1

56 pages, 3118 KiB  
Article
Semantic Reasoning Using Standard Attention-Based Models: An Application to Chronic Disease Literature
by Yalbi Itzel Balderas-Martínez, José Armando Sánchez-Rojas, Arturo Téllez-Velázquez, Flavio Juárez Martínez, Raúl Cruz-Barbosa, Enrique Guzmán-Ramírez, Iván García-Pacheco and Ignacio Arroyo-Fernández
Big Data Cogn. Comput. 2025, 9(6), 162; https://doi.org/10.3390/bdcc9060162 - 19 Jun 2025
Viewed by 703
Abstract
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), [...] Read more.
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), and Long Short-Term Memory (LSTM) networks—are computationally inexpensive. However, their capacity for semantic reasoning in noisy, open-vocabulary knowledge bases (KBs) remains unquantified. Therefore, we investigate whether compact SANLMs can (i) reason over hybrid OpenIE-derived KBs that integrate commonsense, general-purpose, and non-communicable-disease (NCD) literature; (ii) operate effectively on commodity GPUs; and (iii) exhibit semantic coherence as assessed through manual linguistic inspection. To this end, we constructed four training KBs by integrating ConceptNet (600k triples), a 39k-triple general-purpose OpenIE set, and an 18.6k-triple OpenNCDKB extracted from 1200 PubMed abstracts. Encoder–decoder GRU, LSTM, and Transformer models (1–2 blocks) were trained to predict the object phrase given the subject + predicate. Beyond token-level cross-entropy, we introduced the Meaning-based Selectional-Preference Test (MSPT): for each withheld triple, we masked the object, generated a candidate, and measured its surplus cosine similarity over a random baseline using word embeddings, with significance assessed via a one-sided t-test. Hyperparameter sensitivity (311 GRU/168 LSTM runs) was analyzed, and qualitative frame–role diagnostics completed the evaluation. Our results showed that all SANLMs learned effectively from the point of view of the cross entropy loss. In addition, our MSPT provided meaningful semantic insights: for the GRUs (256-dim, 2048-unit, 1-layer): mean similarity (μsts) of 0.641 to the ground truth vs. 0.542 to the random baseline (gap 12.1%; p<10180). For the 1-block Transformer: μsts=0.551 vs. 0.511 (gap 4%; p<1025). While Transformers minimized loss and accuracy variance, GRUs captured finer selectional preferences. Both architectures trained within <24 GB GPU VRAM and produced linguistically acceptable, albeit over-generalized, biomedical assertions. Due to their observed performance, LSTM results were designated as baseline models for comparison. Therefore, properly tuned SANLMs can achieve statistically robust semantic reasoning over noisy, domain-specific KBs without reliance on massive LLMs. Their interpretability, minimal hardware footprint, and open weights promote equitable AI research, opening new avenues for automated NCD knowledge synthesis, surveillance, and decision support. Full article
Show Figures

Figure 1

10 pages, 1547 KiB  
Article
A Comparative Evaluation of the Quality and Feasibility of ‘Over-the-Head’ Cardiopulmonary Resuscitation by a Single Rescuer: Pocket Mask vs. Bag-Valve Mask—A Pilot Study
by Silvia San Román-Mata, Marc Darné, Ernesto Herrera-Pedroviejo, Martín Otero-Agra, Rubén Navarro-Patón, Roberto Barcala-Furelos and Silvia Aranda-García
Healthcare 2025, 13(12), 1428; https://doi.org/10.3390/healthcare13121428 - 14 Jun 2025
Viewed by 376
Abstract
Aim: The present study evaluated the feasibility and quality of cardiopulmonary resuscitation (CPR) performed by a single rescuer, comparing the over-the-head (OTH) technique using mouth-to-pocket mask ventilation with bag-valve mask (BVM) ventilation. The study analyzed the chest compression (CC) quality, ventilation adequacy, [...] Read more.
Aim: The present study evaluated the feasibility and quality of cardiopulmonary resuscitation (CPR) performed by a single rescuer, comparing the over-the-head (OTH) technique using mouth-to-pocket mask ventilation with bag-valve mask (BVM) ventilation. The study analyzed the chest compression (CC) quality, ventilation adequacy, interruption minimization, and the rescuers’ perceived difficulty. Methods: A randomized simulation crossover study was conducted with 26 lifeguard students trained in basic life support and both ventilation techniques. All of the participants performed two solo CPR trials (2 min each) using OTH with a pocket mask or BVM on a manikin connected to a feedback system (Little Anne QCPR, Laerdal). The overall CPR quality, ventilation, and CC quality were assessed, along with the perceived difficulty (scale 0–5). A 5 min rest was provided between the trials. Results: The overall CPR quality was excellent for both techniques with a median of 98% (IQR: 97–99) for BVM-OTH and 99% (IQR: 94–99) for Pocket-OTH (p = 0.31). The ventilation quality was better when using BVM-OTH (100%, IQR: 99–100) compared to that with Pocket-OTH (99%, IQR: 77–100; p = 0.046). No differences were found in the CC quality (99%, IQR: 99–100; p = 0.24). However, Pocket-OTH had more CCs and shorter interruption times (p ≤ 0.001). The perceived difficulty was low for both techniques. Conclusions: Both techniques enable high-quality CPR when performed alone. Given that no clinically relevant differences emerged in the resuscitation quality, the OTH technique using a pocket mask offers a viable alternative, particularly in scenarios with a single rescuer and limited resources. Full article
(This article belongs to the Section Prehospital Care)
Show Figures

Figure 1

23 pages, 6733 KiB  
Article
Multi-Index Assessment of Surface Urban Heat Island (SUHI) Dynamics in Samsun Using Google Earth Engine
by Yiğitalp Kara, Veli Yavuz and Anthony R. Lupo
Atmosphere 2025, 16(6), 712; https://doi.org/10.3390/atmos16060712 - 12 Jun 2025
Viewed by 1442
Abstract
Urbanization has emerged as a significant driver of environmental change, particularly impacting local climates through the creation of urban heat islands (SUHIs). SUHIs, characterized by higher temperatures in urban or metropolitan areas than in their rural surroundings, have become a critical focus of [...] Read more.
Urbanization has emerged as a significant driver of environmental change, particularly impacting local climates through the creation of urban heat islands (SUHIs). SUHIs, characterized by higher temperatures in urban or metropolitan areas than in their rural surroundings, have become a critical focus of urban climate studies. This study aims to examine the spatial and temporal dynamics of both thermal and vegetative indices (BT, LST, NDVI, NDBI, BUI, ECI, SUHI, UTFVI) across different land cover types in Samsun, Türkiye, in order to assess their contribution to the urban heat island effect. Specifically, brightness temperature (BT), land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), built-up index (BUI), environmental condition index (ECI), urban heat island (SUHI) intensity, and urban thermal field variance index (UTFVI) were calculated and assessed. The analysis utilized cloud-free Landsat 8 imagery sourced from the US Geological Survey via the Google Earth Engine platform, employing a one-year median for each pixel using a cloud masking algorithm. Land use and land cover (LULC) classification was conducted using the random forest (RF) algorithm with satellite composite imagery, achieving an overall accuracy of 85% for 2014 and 86% for 2023. This study provides a detailed analysis of the effects of various land use and cover types on temperature, vegetation, and structural characteristics, revealing the role of changes in different land types on the urban heat island effect. In the LULC classification, water bodies consistently maintained low LST values below 23 °C for both years, while built-up land exhibited the greatest temperature increase, from approximately 25 °C in 2014 to more than 31 °C in 2023. The analysis also revealed that LST varies with the size and type of vegetation, with a mean LST differential between all green spaces and urban areas averaging 7–8 °C, and differences reaching 12 °C in industrial zones. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 6862 KiB  
Article
Time-Varying Reliability Assessment of Urban Traffic Network Based on Dynamic Bayesian Network
by Sihui Dong, Ni Jia, Shiqun Li and Yazhuo Zou
Sustainability 2025, 17(12), 5402; https://doi.org/10.3390/su17125402 - 11 Jun 2025
Viewed by 469
Abstract
With the advancement of urbanization and the proposal of sustainable development goals, the complexity and vulnerability of urban transportation systems have become increasingly prominent, and their reliability is directly related to the sustainable operation of urban transportation. The reliability of urban road networks, [...] Read more.
With the advancement of urbanization and the proposal of sustainable development goals, the complexity and vulnerability of urban transportation systems have become increasingly prominent, and their reliability is directly related to the sustainable operation of urban transportation. The reliability of urban road networks, characterized by their dynamic nature, multi-scale characteristics, and anti-interference capabilities, directly restricts the functional guarantee of urban traffic and the efficiency of emergency response. To address the limitations of existing road network connectivity reliability assessment methods in representing time dynamics and modeling failure correlation, this study proposes a road network reliability assessment method based on a Dynamic Bayesian Network (DBN) by constructing a probabilistic reasoning model that integrates cascading failure characteristics. First, the connectivity reliability of the road network under random and targeted attack strategies was evaluated using a Monte Carlo simulation, revealing the impact of different attack strategies on network reliability. Subsequently, the congestion delay index is used as the standard of road section failure, considering the failure distribution and mutual dependence of road sections over time, a cascade failure mechanism is introduced, and a time-varying reliability assessment model based on a DBN is constructed. The effectiveness of the proposed method was verified through a case study of a partial road network in Dalian. The results show that ignoring cascading effects can significantly overestimate the reliability of the road network, especially during peak traffic hours, where such deviations may mask the real paralysis risks of the network. In contrast, the method proposed in this study fully considers time dynamics and failure correlation and can better capture the reliability of the road network under various dynamic conditions, providing a scientific basis for the sustainable planning and emergency management of urban traffic systems. Full article
Show Figures

Figure 1

43 pages, 9269 KiB  
Article
A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
by Lurui Wang, Mehdi Jadidi and Ali Dolatabadi
Appl. Sci. 2025, 15(12), 6418; https://doi.org/10.3390/app15126418 - 7 Jun 2025
Viewed by 442
Abstract
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained [...] Read more.
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained on 48 high-fidelity CFD simulations. Stage 1 applies sampling and a K-nearest-neighbor kernel-density-estimation algorithm that predicts the spatial distribution of impacting particles and re-allocates weights in regions of under-estimation. Stage 2 combines sampling, interpolation and symbolic regression to extract key features, then uses a weighted random forest model to forecast particle velocity and temperature upon impact. The ML predictions closely match CFD outputs while reducing computation time by orders of magnitude, demonstrating that ML-CFD integration can accelerate CSAM process design. Although developed for a masked setup, the framework generalizes readily to unmasked cold spray configurations. Full article
Show Figures

Figure 1

19 pages, 279 KiB  
Article
NTRU-MCF: A Chaos-Enhanced Multidimensional Lattice Signature Scheme for Post-Quantum Cryptography
by Rong Wang, Bo Yuan, Minfu Yuan and Yin Li
Sensors 2025, 25(11), 3423; https://doi.org/10.3390/s25113423 - 29 May 2025
Viewed by 610
Abstract
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the [...] Read more.
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the private key search space, achieving a key space size 2256 for dimensions m2 and rendering brute-force attacks infeasible. By incorporating fractional-order chaotic masks generated via a hyperchaotic Lü system, the scheme introduces nonlinear randomness and robust resistance to physical attacks. Fractional-order chaotic masks, generated via a hyperchaotic Lü system validated through NIST SP 800-22 randomness tests, replace conventional pseudorandom number generators (PRNGs). The sensitivity to initial conditions ensures cryptographic unpredictability, while the use of a fractional-order L hyperchaotic system—instead of conventional pseudorandom number generators (PRNGs)—leverages multiple Lyapunov exponents and initial value sensitivity to embed physically unclonable properties into key generation, effectively mitigating side-channel analysis. Theoretical analysis shows that NTRU-MCF’s security reduces to the Ring Learning with Errors (RLWE) problem, offering superior quantum resistance compared to existing NTRU variants. While its computational and storage complexity suits high-security applications like military and financial systems, it is less suitable for resource-constrained devices. NTRU-MCF provides robust quantum resistance and side-channel defense, advancing PQC for classical computing environments. Full article
28 pages, 16050 KiB  
Article
Advancing ALS Applications with Large-Scale Pre-Training: Framework, Dataset, and Downstream Assessment
by Haoyi Xiu, Xin Liu, Taehoon Kim and Kyoung-Sook Kim
Remote Sens. 2025, 17(11), 1859; https://doi.org/10.3390/rs17111859 - 27 May 2025
Viewed by 491
Abstract
The pre-training and fine-tuning paradigm has significantly advanced satellite remote sensing applications. However, its potential remains largely underexplored for airborne laser scanning (ALS), a key technology in domains such as forest management and urban planning. In this study, we address this gap by [...] Read more.
The pre-training and fine-tuning paradigm has significantly advanced satellite remote sensing applications. However, its potential remains largely underexplored for airborne laser scanning (ALS), a key technology in domains such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its effectiveness in downstream applications. We first propose a simple, generalizable framework for dataset construction, designed to maximize land cover and terrain diversity while allowing flexible control over dataset size. We instantiate this framework using ALS, land cover, and terrain data collected across the contiguous United States, resulting in a dataset geographically covering 17,000 + km2 (184 billion points) with diverse land cover and terrain types included. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The resulting models are fine-tuned for several downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that pre-trained models consistently outperform their counterparts trained from scratch across all downstream tasks, demonstrating the strong transferability of the learned representations. Additionally, we find that scaling the dataset using the proposed framework leads to consistent performance improvements, whereas datasets constructed via random sampling fail to achieve comparable gains. Full article
Show Figures

Figure 1

29 pages, 6039 KiB  
Article
Tree Species Detection and Enhancing Semantic Segmentation Using Machine Learning Models with Integrated Multispectral Channels from PlanetScope and Digital Aerial Photogrammetry in Young Boreal Forest
by Arun Gyawali, Mika Aalto and Tapio Ranta
Remote Sens. 2025, 17(11), 1811; https://doi.org/10.3390/rs17111811 - 22 May 2025
Viewed by 884
Abstract
The precise identification and classification of tree species in young forests during their early development stages are vital for forest management and silvicultural efforts that support their growth and renewal. However, achieving accurate geolocation and species classification through field-based surveys is often a [...] Read more.
The precise identification and classification of tree species in young forests during their early development stages are vital for forest management and silvicultural efforts that support their growth and renewal. However, achieving accurate geolocation and species classification through field-based surveys is often a labor-intensive and complicated task. Remote sensing technologies combined with machine learning techniques present an encouraging solution, offering a more efficient alternative to conventional field-based methods. This study aimed to detect and classify young forest tree species using remote sensing imagery and machine learning techniques. The study mainly involved two different objectives: first, tree species detection using the latest version of You Only Look Once (YOLOv12), and second, semantic segmentation (classification) using random forest, Categorical Boosting (CatBoost), and a Convolutional Neural Network (CNN). To the best of our knowledge, this marks the first exploration utilizing YOLOv12 for tree species identification, along with the study that integrates digital aerial photogrammetry with Planet imagery to achieve semantic segmentation in young forests. The study used two remote sensing datasets: RGB imagery from unmanned aerial vehicle (UAV) ortho photography and RGB-NIR from PlanetScope. For YOLOv12-based tree species detection, only RGB from ortho photography was used, while semantic segmentation was performed with three sets of data: (1) Ortho RGB (3 bands), (2) Ortho RGB + canopy height model (CHM) + Planet RGB-NIR (8 bands), and (3) ortho RGB + CHM + Planet RGB-NIR + 12 vegetation indices (20 bands). With three models applied to these datasets, nine machine learning models were trained and tested using 57 images (1024 × 1024 pixels) and their corresponding mask tiles. The YOLOv12 model achieved 79% overall accuracy, with Scots pine performing best (precision: 97%, recall: 92%, mAP50: 97%, mAP75: 80%) and Norway spruce showing slightly lower accuracy (precision: 94%, recall: 82%, mAP50: 90%, mAP75: 71%). For semantic segmentation, the CatBoost model with 20 bands outperformed other models, achieving 85% accuracy, 80% Kappa, and 81% MCC, with CHM, EVI, NIRPlanet, GreenPlanet, NDGI, GNDVI, and NDVI being the most influential variables. These results indicate that a simple boosting model like CatBoost can outperform more complex CNNs for semantic segmentation in young forests. Full article
Show Figures

Graphical abstract

23 pages, 8589 KiB  
Article
A Deep Learning-Based Approach to Apple Tree Pruning and Evaluation with Multi-Modal Data for Enhanced Accuracy in Agricultural Practices
by Tong Hai, Wuxiong Wang, Fengyi Yan, Mingyu Liu, Chengze Li, Shengrong Li, Ruojia Hu and Chunli Lv
Agronomy 2025, 15(5), 1242; https://doi.org/10.3390/agronomy15051242 - 20 May 2025
Viewed by 725
Abstract
A deep learning-based tree pruning evaluation system is proposed in this study, which integrates hyperspectral images, sensor data, and expert system rules. The system aims to enhance the accuracy and robustness of tree pruning tasks through multimodal data fusion and online learning strategies. [...] Read more.
A deep learning-based tree pruning evaluation system is proposed in this study, which integrates hyperspectral images, sensor data, and expert system rules. The system aims to enhance the accuracy and robustness of tree pruning tasks through multimodal data fusion and online learning strategies. Various models, including Mask R-CNN, SegNet, Tiny-Segformer, Box2Mask, CS-Net, SVM, MLP, and Random Forest, were used in the experiments to perform tree segmentation and pruning evaluation, with comprehensive performance assessments conducted. The experimental results demonstrate that the proposed model excels in the tree segmentation task, achieving a precision of 0.94, recall of 0.90, F1 score of 0.92, and mAP@50 and mAP@75 of 0.91 and 0.90, respectively, outperforming other comparative models. These results confirm the effectiveness of multimodal data fusion and dynamic optimization strategies in improving the accuracy of tree pruning evaluation. The experiments also highlight the critical role of sensor data in pruning evaluation, particularly when combined with the online learning strategy, as the model can progressively optimize pruning decisions and adapt to environmental changes. Through this work, the potential and prospects of the deep learning-based tree pruning evaluation system in practical applications are demonstrated. Full article
Show Figures

Figure 1

Back to TopTop