Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = rammed earth house

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5282 KiB  
Article
Climate Adaptability Analysis of Traditional Dwellings in Mountain Terraced Areas: A Case Study of ‘Mushroom Houses’ in the Hani Terraces of Yunnan, China
by Luyao Hu, Yinong Liu, Xinkai Li and Pengbo Yan
Atmosphere 2025, 16(5), 608; https://doi.org/10.3390/atmos16050608 - 16 May 2025
Viewed by 500
Abstract
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, [...] Read more.
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, and significant diurnal temperature variations. The thermal comfort voting method was used to establish a quantitative relationship between the Physiological Equivalent Temperature (PET) index and residents’ subjective thermal perceptions, thereby assessing seasonal variations in thermal comfort. Field measurements of indoor and outdoor temperature, humidity, and wind speed were conducted in May and December 2023 to evaluate thermal interactions between rooms. This study demonstrated: (1) the critical roles of building orientation (e.g., northwest-facing design), functional layout (e.g., multi-story zoning), and structural forms (e.g., thick walls, thatched roofs) in regulating temperature and humidity. (2) Confirmed that Hani ‘Mushroom Houses’ stabilize indoor environments through passive strategies, including material selection (wood, rammed earth), natural ventilation (cross-draft design), and spatial organization (climate-buffering storage layers). (3) Provided empirical evidence for optimizing traditional dwellings (e.g., enhanced insulation, ventilation improvements) and advancing sustainable practices in similar climatic regions. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

37 pages, 4763 KiB  
Review
Bio-Based Stabilization of Natural Soil for Rammed Earth Construction: A Review on Mechanical and Water Durability Performance
by Taiwo Sesay, Yuekai Xie, Yue Chen and Jianfeng Xue
Polymers 2025, 17(9), 1170; https://doi.org/10.3390/polym17091170 - 25 Apr 2025
Cited by 1 | Viewed by 1229
Abstract
Rammed earth (RE), despite being an ancient method of construction, has smoothly integrated into contemporary civil engineering due to its compatibility with current sustainability requirements for housing structures. However, typical RE needs some improvements to fully realize its potential as both a structurally [...] Read more.
Rammed earth (RE), despite being an ancient method of construction, has smoothly integrated into contemporary civil engineering due to its compatibility with current sustainability requirements for housing structures. However, typical RE needs some improvements to fully realize its potential as both a structurally effective and environmentally friendly building technique. As a result, multiple bio-inspired enhancement methods have been suggested to substitute traditional cement or lime stabilizers. This review examines the various efforts made in the past decade to biologically stabilize natural soil for the construction of RE. It provides a brief overview of the different bio-based materials utilized in this area but primarily concentrates on their effects on the mechanical strength and water durability of RE structures. The review also addresses current obstacles that prevent the widespread industrial adoption of this valuable earth-building method and identifies potential directions for future research. Overall, the available literature on the mechanical performance and durability of bio-based rammed earth (BRE) shows encouraging outcomes. Nonetheless, various issues, such as the absence of thorough data on the discussed topics, issues related to the inherent properties of soil and biomaterials, and doubts regarding the reliability of durability evaluation methods, have been identified as factors that could lead to a lack of confidence among RE practitioners in adopting bio-based treatments. This study will provide a solid foundation for future researchers aiming to advance BRE technology, thus enhancing sustainability within the construction sector. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 10209 KiB  
Article
Climate Adaptation of Folk House Envelopes in Xinjiang Arid Region: Evaluation and Multi-Objective Optimization from Historical to Future Climates
by Nurimaimaiti Tuluxun, Saierjiang Halike, Hao Liu, Buerlan Yelaixi and Kapulanbayi Ailaitijiang
Buildings 2025, 15(8), 1240; https://doi.org/10.3390/buildings15081240 - 9 Apr 2025
Viewed by 494
Abstract
Under intensifying global warming and extreme climate events, the climate adaptability of folk houses in Xinjiang’s arid regions faces critical challenges. However, existing studies predominantly focus on traditional folk houses under current climate conditions, neglecting modern material hybrids and long-term performance under future [...] Read more.
Under intensifying global warming and extreme climate events, the climate adaptability of folk houses in Xinjiang’s arid regions faces critical challenges. However, existing studies predominantly focus on traditional folk houses under current climate conditions, neglecting modern material hybrids and long-term performance under future warming scenarios. This study develops a data-driven framework to assess and enhance building envelope performance across historical-to-future climate conditions (2007–2021 TMY data, 2024 observations, and 2050/2080 SSP3–7.0 projections) using the entropy-weighted TOPSIS method and NSGA-II algorithm. Analyzing rammed earth, brick–wood, and brick–concrete folk houses in Kashgar, Hotan, Kuqa, and Turpan, the optimization targets thermal discomfort hours (TDHs), heating energy consumption (HEC), and net present value (NPV). The results demonstrate optimized solutions achieve 30–60 year climate resilience, reducing HEC by 51.54–84.76% (43.02–125.78 kW·h/m2·a) compared to baseline buildings, TDH by 15–52.93% (301–1236 h) in arid Zone A and by 5.54–10.8% (208–352 h) in the extreme hot-arid Zone B (Turpan), and NPV values by CNY 31,000–85,000. Rammed earth constructions demonstrate superior performance in Zone A, while brick–concrete exhibits optimal extreme hot-arid adaptability, and brick–wood requires prioritized retrofitting. The findings advocate revising China’s design standards to address concurrent winter overcooling and summer overheating risks under future warming. This work establishes a climate-resilient optimization paradigm for arid-region folk houses, advancing energy efficiency and thermal comfort. Full article
Show Figures

Figure 1

22 pages, 7231 KiB  
Article
Color Preference and Color Supportive Behavior: The After Effects of Color Perception of Rural Housing Among the Indigenous Residents in Gutian District, Fujian Province, China
by Deyi Kong, Ziyi Li, Xinhui Fei and Zujian Chen
Buildings 2025, 15(5), 743; https://doi.org/10.3390/buildings15050743 - 25 Feb 2025
Viewed by 870
Abstract
The colors of traditional dwellings are an extremely intuitive manifestation of regional culture and an important reference for guiding rural housing. This study takes the Gutian district as the research region and explores the internal influence mechanism of the “color perception–preference–supportive behavior” of [...] Read more.
The colors of traditional dwellings are an extremely intuitive manifestation of regional culture and an important reference for guiding rural housing. This study takes the Gutian district as the research region and explores the internal influence mechanism of the “color perception–preference–supportive behavior” of the indigenous residents towards traditional dwellings, specifically rammed earth dwellings. After constructing a structural equation model, the results were as follows: (1) The color perception of the indigenous residents towards traditional dwellings has two dimensions: distinctiveness and rootedness. (2) The color perception of the indigenous residents towards traditional dwellings can significantly enhance their color preference, but the two dimensions of color perception have different effects on color preference. (3) Color perception has a direct impact on color supportive behavior, mainly reflected in the dimension of the perception of distinctiveness. On the other hand, the mediating role of color preference has a positive impact on color—supportive behavior, mainly reflected in the dimension of the perception of rootedness. This study constructs a positive—cycle model that goes from the strengthening of color perception to the promotion of color preference and finally to the enhancement of color supportive behavior. The aim is to deeply analyze the multiple values contained in the colors of traditional dwellings, which not only demonstrate regional characteristics but also closely meet the emotional needs of the indigenous residents and have broad application potential in rural housing and cultural inheritance significance. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Figure 1

16 pages, 5282 KiB  
Article
Measuring Electromagnetic Wave Propagation Transmission Parameters Through Traditionally Constructed Buildings
by Slavko Rupčić, Vanja Mandrić, Ivan Kraus and Đurđica Kovačić
Sustainability 2025, 17(3), 1232; https://doi.org/10.3390/su17031232 - 3 Feb 2025
Viewed by 1079
Abstract
This paper examines the potential for shielding against electromagnetic (EM) radiation in traditional buildings. The primary objective is to evaluate how effectively these buildings can reduce the intensity of the electric field from external sources, while also identifying the factors that influence this [...] Read more.
This paper examines the potential for shielding against electromagnetic (EM) radiation in traditional buildings. The primary objective is to evaluate how effectively these buildings can reduce the intensity of the electric field from external sources, while also identifying the factors that influence this reduction, such as geometry, structure, and the characteristics of EM waves. Measurements were conducted on the transmission parameter S21, which indicates how EM waves propagate through the walls of residential buildings constructed using traditional methods. The buildings analyzed were made from wood, rammed earth, raw bricks blended with straw (known in Croatian as ćerpič), and baked bricks, which served as the reference material. During the measurements, conditions such as the thickness, humidity, and temperature of both the walls and the surrounding environment were carefully controlled. The buildings represented traditional construction styles typical of Croatia and most of Central and Eastern Europe. The results indicate that structures made from rammed earth and raw bricks with added straw significantly decrease the transmission of EM wave energy compared to those made from wood and baked bricks. It is important to note that the walls of wood buildings were considerably thinner than those made from the other materials tested. Additionally, both the moisture content and thickness of the walls contributed significantly to reducing transmission parameters. These findings support the use of these traditional materials for constructing environmentally friendly buildings, while also suggesting the need for further architectural design and testing. Since this research does not cover all types of traditionally constructed buildings—such as stone houses, wicker structures, and dugouts—future studies will aim to expand this investigation to include a broader variety of traditional building styles. Full article
Show Figures

Figure 1

26 pages, 7779 KiB  
Article
Architectural Features and Soil Properties of Traditional Rammed Earth Houses: Eastern Croatia Case Study
by Ivana Brkanić Mihić, Ivan Kraus, Jelena Kaluđer and Ana Perić Fekete
Buildings 2024, 14(7), 2049; https://doi.org/10.3390/buildings14072049 - 4 Jul 2024
Cited by 1 | Viewed by 2250
Abstract
Rammed earth buildings constitute a large part of the housing stock in rural areas. Although these houses are recognized as a cultural heritage, detailed analyses of their architectural features, geometric parameters crucial for structural stability, and soil properties used for their construction have [...] Read more.
Rammed earth buildings constitute a large part of the housing stock in rural areas. Although these houses are recognized as a cultural heritage, detailed analyses of their architectural features, geometric parameters crucial for structural stability, and soil properties used for their construction have not yet been carried out in Croatia. The aim of this study is to collect basic data on the architectural features and material properties of rammed earth walls through field research in Croatia. These data are crucial for both numerical and experimental studies to improve the understanding of the structural behavior of rammed earth houses. Data were obtained through field research and a detailed survey of 22 houses. The houses were analyzed, samples of the rammed earth walls were collected, and their properties were tested in the laboratory. This study contributes to a better understanding of regional building practices and provides data that will enable us to identify the causes of damage in future studies and to select rehabilitation measures to preserve the authentic symbols of cultural heritage. Full article
Show Figures

Figure 1

22 pages, 8372 KiB  
Article
Impact of Uninsulated Slab-on-Grade and Masonry Walls on Residential Building Overheating
by Tadeusz Kuczyński and Anna Staszczuk
Energies 2023, 16(22), 7558; https://doi.org/10.3390/en16227558 - 13 Nov 2023
Cited by 1 | Viewed by 1337
Abstract
Studies of the effects of removing underfloor insulation and increasing the thermal capacity of building walls are currently found almost exclusively in existing vernacular architecture and rammed-earth buildings, mostly in countries with warm climates. This paper proposes the combined use of these two [...] Read more.
Studies of the effects of removing underfloor insulation and increasing the thermal capacity of building walls are currently found almost exclusively in existing vernacular architecture and rammed-earth buildings, mostly in countries with warm climates. This paper proposes the combined use of these two measures to reduce the risk of overheating in a detached single-family house in a temperate climate during the summer. Experimental studies conducted during the largest heat wave on record in the summer of 2019 showed that peak daytime temperatures decreased by 5.2 °C to 7.1 °C, and peak nighttime temperatures decreased by 4.7 °C to 6.8 °C. Simulation studies taking into account occupant heat showed that the proposed passive methods could, under the IPCC 8.5 scenario, eliminate the need for mechanical cooling in a detached single-family house in the temperate climate of Central and Eastern Europe by 2100. The actual heating energy consumption for the building with an uninsulated floor and increased wall heat capacity was 5.5 kWh/m2 higher than for the reference building, indicating that it can be a near-zero energy building. The proposed concept is in line with the new approach to the energy design of buildings, which should not be limited to reducing thermal energy demand, but should also respond to the needs arising from global warming. Full article
(This article belongs to the Special Issue Smart Green Cities—Energy Treatment and Management)
Show Figures

Figure 1

17 pages, 6433 KiB  
Article
Shear Strength of Reproduced Soil Mixtures Based on Samples from Rammed Earth Walls from Eastern Croatia
by Jelena Kaluđer, Ivan Kraus, Ana Perić and Lucija Kraus
Appl. Sci. 2022, 12(22), 11708; https://doi.org/10.3390/app122211708 - 17 Nov 2022
Cited by 7 | Viewed by 2205
Abstract
Earthen architecture largely supports the concept of sustainable building. In the seismically active area of eastern Croatia, there is a large number of rammed earth houses, many of which are over 100 years old. All these houses were built using empirical knowledge, i.e., [...] Read more.
Earthen architecture largely supports the concept of sustainable building. In the seismically active area of eastern Croatia, there is a large number of rammed earth houses, many of which are over 100 years old. All these houses were built using empirical knowledge, i.e., without applying national design standards. In order to support the preservation of ethnic villages and traditional rammed earth houses, a field survey was conducted. Parts of the walls of traditional rammed earth houses were collected, and the material was thoroughly analyzed. Samples of rammed earth were reproduced, and tests were carried out with the aim of determining the shear strength to subsequently determine the seismic behavior of Croatian traditional earthen architecture. This paper presents the results of shear strength tests on samples with different particle size distributions, lime content, the straw of different cereals but also hemp fibers. An increase in shear strength was observed with the addition of natural fibers to the samples. Full article
(This article belongs to the Special Issue Green Construction Materials and Structures in the Circular Economy)
Show Figures

Figure 1

19 pages, 4172 KiB  
Article
Energy Saving and Thermal Comfort Performance of Passive Retrofitting Measures for Traditional Rammed Earth House in Lingnan, China
by Shihao Li, Meilin Wang, Pengyuan Shen, Xue Cui, Linqian Bu, Ruji Wei, Longzhu Zhang and Chengjia Wu
Buildings 2022, 12(10), 1716; https://doi.org/10.3390/buildings12101716 - 17 Oct 2022
Cited by 14 | Viewed by 3159
Abstract
The traditional rammed earth houses sharing similar patterns in the Lingnan region, south China, and distributed in rectangular arrays, are gradually losing their vitality and becoming uninhabited under modern living conditions. This research examined a typical pattern called the “Four-point gold” house and [...] Read more.
The traditional rammed earth houses sharing similar patterns in the Lingnan region, south China, and distributed in rectangular arrays, are gradually losing their vitality and becoming uninhabited under modern living conditions. This research examined a typical pattern called the “Four-point gold” house and analyzed the suitability of different retrofitting technologies by field measurements and building simulation. To optimize energy consumption, indoor thermal comfort, and the corresponding economic performance of the retrofitting measures for the prototypical house, five measures, including wall insulation, reflective roof coating, carpet, sunshade, and natural ventilation, are proposed after considering the status quo of the building envelope. It is found that the best performance in energy-saving, dynamic investment payback period, and annual indoor thermal comfort are 2192.27 kWh/a, 9.17 years, and 1766 h, respectively. Different parameters are included to be clustered by K means clustering technique, and the comprehensively optimized scheme consists of a regime of 30 mm XPS 30 mm, ZS-221 white coating, carpet, 0.5 m sunshade width, and turning off windows (doors). The proposed retrofitting strategy can be promoted to a wide range of traditional rammed earth houses in the Lingnan region in China and holds a conspicuous energy-saving potential for the suburban and rural residential sectors in the region. Full article
(This article belongs to the Special Issue Study on Building Energy Efficiency Related to Simulation Models)
Show Figures

Figure 1

16 pages, 6328 KiB  
Article
Prediction of Wall and Indoor Hygrothermal Properties of Rammed Earth Folk House in Northwest Sichuan
by Qinglong Gao, Tao Wu, Lei Liu, Yong Yao and Bin Jiang
Energies 2022, 15(5), 1936; https://doi.org/10.3390/en15051936 - 7 Mar 2022
Cited by 8 | Viewed by 3199
Abstract
The climate crisis is one of the most important problems today. In the process of human building, the use of cement, steel, and other industrial materials in the process of building construction and recycling has brought a huge burden to the natural environment. [...] Read more.
The climate crisis is one of the most important problems today. In the process of human building, the use of cement, steel, and other industrial materials in the process of building construction and recycling has brought a huge burden to the natural environment. Earth is one of the oldest building materials, its availability and insulation make it an excellent constructive solution in human history. Among several existing earth construction techniques, rammed earth is one of the most relevant. In this paper, a numerical model of the rammed earth folk house in Mianyang was established, and an experimental device was built to verify it. With the typical meteorological year data of Mianyang in northwest Sichuan, the heat and moisture transfer in rammed earth wall, as well as the indoor thermal and moisture environment were numerically simulated. The results show that the rammed earth wall weakens the temperature fluctuation of the inner surface of the wall and makes the peak temperature of the inner surface of the wall lag the outer surface. The relative humidity in the center of the rammed earth wall can be maintained at about 60%, both in winter and summer. The moisture absorption and desorption capacity of rammed earth walls without inner decorative materials is about three times that of gypsum board, and the use of a waterproof coating will render the rammed earth wall almost unable to adjust the indoor relative humidity. Additionally, the use of decorative materials will increase the fluctuation range of indoor relative humidity and the risk of mold breeding. Full article
(This article belongs to the Special Issue Green Buildings for Carbon Neutral)
Show Figures

Figure 1

24 pages, 8099 KiB  
Article
The Impact of Clay Minerals on the Building Technology of Vernacular Earthen Architecture in Eastern Austria
by Hubert Feiglstorfer and Franz Ottner
Heritage 2022, 5(1), 378-401; https://doi.org/10.3390/heritage5010022 - 21 Feb 2022
Cited by 4 | Viewed by 4153
Abstract
The vernacular architecture in many regions in Eastern Austria was characterized by the use of unfired clay, at least until the 19th century, and in some areas until the 20th century. Farmhouses and associated farm buildings, such as storage buildings or press houses [...] Read more.
The vernacular architecture in many regions in Eastern Austria was characterized by the use of unfired clay, at least until the 19th century, and in some areas until the 20th century. Farmhouses and associated farm buildings, such as storage buildings or press houses for the production of wine and cider, were erected using different earth construction techniques. The study area stretches from the Weinviertel, a region located in the province of Lower Austria in the north-east of Austria, to the Burgenland, a region located in the south-east of Austria, which belonged to Western Hungary until 1921. From a geological point of view, in the east of Austria—in the Vienna Basin and the Molasse Zone—huge areas of Tertiary clay are covered with loess deposits, which is the best-known basic material used in local earth-building traditions. A core question in the research on vernacular earthen heritage focuses on the impact of the geological conditions in Eastern Austria on the local earth-building techniques. The mineralogical composition of the different clays had an impact on the local building techniques. From a material-culture point of view, research on the relationship between the mineralogical properties of clay resources and local building techniques sheds light on the factors which influenced the evolution of certain vernacular building features. Tertiary clays and loess from the Pleistocene favoured the making of earth lumps, cob walls and adobe bricks over the whole Eastern Austrian region. Contrarily, regions in Burgenland with a high amount of gravel preferred, by tradition, to make walls by ramming. The clay mineral smectite acts as a binding agent in earth-building techniques over the whole investigated region—Weinviertel, Burgenland and Western Hungary. Full article
(This article belongs to the Special Issue Geological Materials and Culture Heritage: Past, Present and Future)
Show Figures

Figure 1

16 pages, 6800 KiB  
Article
Shifting Patterns of House Structures during the Neolithic-Bronze Age in the Yellow River Basin: An Environmental Perspective
by Peng Lu, Yan Tian, Michael Storozum, Panpan Chen, Hui Wang, Xia Wang, Junjie Xu, Lei Jing, Lijie Yan, Li Zhang and Duowen Mo
Land 2021, 10(6), 574; https://doi.org/10.3390/land10060574 - 28 May 2021
Cited by 6 | Viewed by 5930
Abstract
The emergence of houses is a social revolution around the world. Over the past several decades, Chinese archaeologists have excavated many Neolithic to Bronze Age houses, but there is still a great amount of uncertainty about the social and environmental factors driving the [...] Read more.
The emergence of houses is a social revolution around the world. Over the past several decades, Chinese archaeologists have excavated many Neolithic to Bronze Age houses, but there is still a great amount of uncertainty about the social and environmental factors driving the differences between these house structures in the Yellow River Basin. In this paper, we summarize data from excavation reports on the shape and size of Neolithic-Bronze Age houses in the upper, middle and lower reaches of the Yellow River, respectively, to identify some social and environmental factors that may have affected the development of house structures across northern China. Our results show that the shape and size of the houses developed at a different pace, but in general followed a similar developmental sequence: (1) 10–8 ka BP, the bud of settlements emerged in the middle and lower reaches of the Yellow River; (2) 8–7 ka BP, people started to construct small pithouses without walls; (3) 7–6 ka BP, people made medium-sized pithouses with low walls, and surface buildings were made with a wood skeleton and mud walls; (4) 6–5 ka BP, ultra-large houses emerged; (5) 5–4 ka BP, house form became more varied, including pithouses, cave dwellings and surface buildings with a wood skeleton mud wall, rammed earth wall, piled mud-grass mixed walls and adobe walls; and (6) 4–3 ka BP, original palaces emerged. Our analyses indicate that the environment played an essential role in determining the house changes over time and that the early to middle Holocene’s warm and humid climate provided excellent conditions for the emergence of settlements throughout the region. Due to the shortage of trees, people chose to change their house construction methods to accommodate the growing lumber shortage. In conclusion, the rapid shift in house construction methods reflects the changing ecological condition as well as a feedback cycle between the environment and social practices driven by resource limitations. Full article
Show Figures

Figure 1

14 pages, 8349 KiB  
Article
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
by Piotr Narloch, Ahmad Hassanat, Ahmad S. Tarawneh, Hubert Anysz, Jakub Kotowski and Khalid Almohammadi
Appl. Sci. 2019, 9(23), 5131; https://doi.org/10.3390/app9235131 - 27 Nov 2019
Cited by 38 | Viewed by 5073
Abstract
Predicting the compressive strength of cement-stabilized rammed earth (CSRE) using current testing machines is time-consuming and costly and may harm the environment due to the samples’ waste. This paper presents an automatic method using computer vision and deep learning to solve the problem. [...] Read more.
Predicting the compressive strength of cement-stabilized rammed earth (CSRE) using current testing machines is time-consuming and costly and may harm the environment due to the samples’ waste. This paper presents an automatic method using computer vision and deep learning to solve the problem. For this purpose, a deep convolutional neural network (DCNN) model is proposed, which was evaluated on a new in-house scanning electron microscope (SEM) image database containing 4284 images of materials with different compressive strengths. The experimental results show reasonable prediction results compared to other traditional methods, achieving 84% prediction accuracy and a small (1.5) oot Mean Square Error (RMSE). This indicates that the proposed method (with some enhancements) can be used in practice for predicting the compressive strength of CSRE samples. Full article
(This article belongs to the Special Issue Low Binder Concrete and Mortars)
Show Figures

Graphical abstract

21 pages, 2566 KiB  
Review
Hygrothermal Properties of Raw Earth Materials: A Literature Review
by Giuffrida Giada, Rosa Caponetto and Francesco Nocera
Sustainability 2019, 11(19), 5342; https://doi.org/10.3390/su11195342 - 27 Sep 2019
Cited by 96 | Viewed by 8466
Abstract
Raw earth historic and contemporary architectures are renowned for their good environmental properties of recyclability and low embodied energy along the production process. Earth massive walls are universally known to be able to regulate indoor thermal and hygroscopic conditions containing energy consumptions, creating [...] Read more.
Raw earth historic and contemporary architectures are renowned for their good environmental properties of recyclability and low embodied energy along the production process. Earth massive walls are universally known to be able to regulate indoor thermal and hygroscopic conditions containing energy consumptions, creating comfortable interior spaces with a low carbon footprint. Therefore, earth buildings are de facto green buildings. As a result of this, some earthen technologies have been rediscovered and implemented to be adapted to the contemporary building production sector. Nevertheless, the diffusion of contemporary earthen architecture is decelerated by the lack of broadly accepted standards on its anti-seismic and thermal performance. Indeed, the former issue has been solved using high-tensile materials inside the walls or surface reinforcements on their sides to improve their flexural strength. The latter issue is related to the penalization of earth walls thermal behavior in current regulations, which tent to evaluate only the steady-state performance of building components, neglecting the benefit of heat storage and hygrothermal buffering effect provided by massive and porous envelopes as raw earth ones. In this paper, we show the results of a paper review concerning the hygrothermal performance of earthen materials for contemporary housing: great attention is given to the base materials which are used (inorganic soils, natural fibers, and mineral or recycled aggregates, chemical stabilizers), manufacturing procedures (when described), performed tests and final performances. Different earth techniques (adobe, cob, extruded bricks, rammed earth, compressed earth blocks, light earth) have been considered in order to highlight that earth material can act both as a conductive and insulating meterial depending on how it is implemented, adapting to several climate contests. The paper aims to summarize current progress in the improvement of thermal performance of raw earth traditional mixes, discuss the suitability of existing measurement protocols for hygroscopic and natural materials and provide guidance for further researches. Full article
(This article belongs to the Special Issue The Application of Renewable Energy in Sustainable Architecture)
Show Figures

Figure 1

18 pages, 16398 KiB  
Article
Assessing the Seismic Behavior of Rammed Earth Walls with an L-Form Cross-Section
by Quoc-Bao Bui, Tan-Trung Bui, Mai-Phuong Tran, Thi-Loan Bui and Hoang-An Le
Sustainability 2019, 11(5), 1296; https://doi.org/10.3390/su11051296 - 1 Mar 2019
Cited by 15 | Viewed by 4451
Abstract
Rammed earth (RE) is a construction material which is made by compacting the soil in a formwork. This material is attracting the attention of the scientific community due to its sustainable characteristics. Among different aspects to be investigated, the seismic performance remains an [...] Read more.
Rammed earth (RE) is a construction material which is made by compacting the soil in a formwork. This material is attracting the attention of the scientific community due to its sustainable characteristics. Among different aspects to be investigated, the seismic performance remains an important topic which needs advanced investigations. The existing studies in the literature have mainly adopted simplified approaches to investigate the seismic performance of RE structures. The present paper adopts a numerical approach to investigate the seismic behavior of RE walls with an L-form cross-section. The 3D FEM model used can take into account the plasticity and damage of RE layers and the interfaces. The model was first validated by an experimental test presented in the literature. Then, the model was employed to assess the seismic performance of a L-form wall of a RE house at different amplitudes of earthquake excitations. Influences of the cross-section form on the earthquake performance of RE walls were also investigated. The results show that the L-form cross-section wall has a better seismic performance than a simple rectangular cross-section wall with similar dimensions. For the L-form cross-section wall, the damage observed concentrates essentially on the connection between two flanges of the wall. Full article
(This article belongs to the Special Issue Sustainable Civil Engineering Materials)
Show Figures

Figure 1

Back to TopTop