Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = ramie fabric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 243
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

27 pages, 2260 KiB  
Article
Machine Learning for Industrial Optimization and Predictive Control: A Patent-Based Perspective with a Focus on Taiwan’s High-Tech Manufacturing
by Chien-Chih Wang and Chun-Hua Chien
Processes 2025, 13(7), 2256; https://doi.org/10.3390/pr13072256 - 15 Jul 2025
Viewed by 768
Abstract
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, [...] Read more.
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, such as convolutional neural networks (CNNs), reinforcement learning (RL), and federated learning (FL), within Taiwan’s advanced manufacturing sectors, including semiconductor fabrication, smart assembly, and industrial energy optimization. The present study draws on patent data and industrial case studies from leading firms, such as TSMC, Foxconn, and Delta Electronics, to trace the evolution from classical optimization to hybrid, data-driven frameworks. A critical analysis of key challenges is provided, including data heterogeneity, limited model interpretability, and integration with legacy systems. A comprehensive framework is proposed to address these issues, incorporating data-centric learning, explainable artificial intelligence (XAI), and cyber–physical architectures. These components align with industrial standards, including the Reference Architecture Model Industrie 4.0 (RAMI 4.0) and the Industrial Internet Reference Architecture (IIRA). The paper concludes by outlining prospective research directions, with a focus on cross-factory learning, causal inference, and scalable industrial AI deployment. This work provides an in-depth examination of the potential of machine learning to transform manufacturing into a more transparent, resilient, and responsive ecosystem. Additionally, this review highlights Taiwan’s distinctive position in the global high-tech manufacturing landscape and provides an in-depth analysis of patent trends from 2015 to 2025. Notably, this study adopts a patent-centered perspective to capture practical innovation trends and technological maturity specific to Taiwan’s globally competitive high-tech sector. Full article
(This article belongs to the Special Issue Machine Learning for Industrial Optimization and Predictive Control)
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Mechanical Properties and Microstructure of Ramie Fiber-Reinforced Natural Rubber Composites
by Ajith Kuriakose Mani, Aju Zachariah Mani, Abin Varghese Jacob, Anantha Krishnan, Alen Shibu Paul, Akash V. Krishnan, Sivasubramanian Palanisamy, Sathiyalingam Kannaiyan and Song-Jeng Huang
J. Compos. Sci. 2025, 9(7), 332; https://doi.org/10.3390/jcs9070332 - 27 Jun 2025
Viewed by 521
Abstract
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one [...] Read more.
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one of the strongest natural fibers, is used as reinforcement, and the mechanical properties of natural rubber composites are evaluated. The composites were fabricated using a vulcanizing technique at 150 °C, and the fibers were cut into different lengths (5 mm, 10 m, and 15 mm) and weights (15 g, 30 g, and 60 g). Mechanical performance tests, including tensile and tear strength and hardness, were conducted. The results showed that as fiber concentration increased, so did the curing time. Moreover, the composites with higher fiber concentration had higher strength. The composite with a 10 mm fiber length and 60 g weight showed the highest tensile strength (10.35 MPa). Maximum tear strength (52.51 kN/m) was achieved with 5 mm fiber length and 60 g weight. Hardness values reached up to 88 Shore A (10 mm fiber length and 60 g weight), indicating excellent wear resistance. The specimen with the highest tensile strength was subjected to scanning electron microscope analysis. The SEM analysis revealed that the composite had a ductile type of fracture with appreciable plastic deformation, confirming good fiber–matrix interaction. These findings underscore the potential of ramie fiber–reinforced natural rubber composites as sustainable, high-performance alternatives to petroleum-based materials in structural and vibration-damping applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Graphical abstract

17 pages, 5492 KiB  
Article
Simulation and Test of Key Decorticating Components of Spiral Ramie Decorticator
by Wenlong Zheng, Lan Ma, Jiajie Liu, Bo Yan, Yiping Duan, Sixun Chen, Jiangnan Lyu and Wei Xiang
Agronomy 2025, 15(1), 122; https://doi.org/10.3390/agronomy15010122 - 6 Jan 2025
Cited by 1 | Viewed by 830
Abstract
Ramie is a valuable natural fiber resource. The fabric made of ramie fiber has distinctive natural characteristics, and its products are widely favored in the international market. Because the cellulose fiber in ramie is closely adhered by a viscous material composed of pectin, [...] Read more.
Ramie is a valuable natural fiber resource. The fabric made of ramie fiber has distinctive natural characteristics, and its products are widely favored in the international market. Because the cellulose fiber in ramie is closely adhered by a viscous material composed of pectin, hemicellulose, and lignin, mechanical stripping and processing is needed to obtain primary ramie fiber for downstream use. To address the production challenges posed by high labor intensity and the scarcity of small, direct-feeding ramie decorticators in hilly and mountainous regions, this study designed and optimized a spiral ramie decortication component that integrated functions of ramie stalk crushing, xylem removal, outer shell scraping, and phloem separating and throwing. The three-dimensional model of the ramie stripping component was crafted with SolidWorks software, and subsequent modal analysis and dynamic simulation studies were conducted using Abaqus software. The Box–Behnken experimental design method was used to construct a mathematical model describing the effects of the decorticating drum rotation speed and the decorticating gap on the fiber percentage of fresh stalk, and the optimal operating parameters were determined accordingly. The research findings indicated that the component’s initial ten natural frequencies span from 234.41 to 431.70 Hz, which do not overlap with the external excitation frequencies, thus ensuring that no resonance phenomenon occurs during the operation process, meeting the design requirements for the ramie decortication operation. Under dynamic load conditions, the ramie decorticator can efficiently perform the task of ramie fiber decortication, and the stress and strain experienced by the device meet the established design specifications; by optimizing operating parameters, the optimal operating conditions were determined to be the speed of feeding and crushing parts (SFCP) of 100 r/min, the speed of separating and throwing parts (SSTP) of 400 r/min, the gap of feeding and crushing parts (GFCP) of 8 mm, and the gap of separating and throwing parts (GSTP) of 0 mm. Experimental results indicated that under this optimal parameter combination, the fiber percentage of fresh stalk of the spiral ramie decorticator can reach 5.03%, with a relative error of less than 3% compared to the theoretical model prediction value, thus confirming the accuracy of the model prediction. This study establishes a robust technical basis for the development of a convenient decortication technology for ramie fibers. However, this technique is more suitable for small growers, especially in hilly areas, to achieve large-scale applications, schemes must be reevaluated based on production efficiency. Full article
Show Figures

Figure 1

16 pages, 4729 KiB  
Article
Mechanical Characterization, Water Absorption, and Thickness Swelling of Lightweight Pineapple Leaf/Ramie Fabric-Reinforced Polypropylene Hybrid Composites
by Lin Feng Ng, Mohd Yazid Yahya, Chandrasekar Muthukumar, Jyotishkumar Parameswaranpillai, Quanjin Ma, Muhammad Rizal Muhammad Asyraf and Rohah Abdul Majid
Polymers 2024, 16(13), 1847; https://doi.org/10.3390/polym16131847 - 28 Jun 2024
Cited by 15 | Viewed by 2566
Abstract
Fiber-reinforced composites are among the recognized competing materials in various engineering applications. Ramie and pineapple leaf fibers are fascinating natural fibers due to their remarkable material properties. This research study aims to unveil the viability of hybridizing two kinds of lignocellulosic plant fiber [...] Read more.
Fiber-reinforced composites are among the recognized competing materials in various engineering applications. Ramie and pineapple leaf fibers are fascinating natural fibers due to their remarkable material properties. This research study aims to unveil the viability of hybridizing two kinds of lignocellulosic plant fiber fabrics in polymer composites. In this work, the hybrid composites were prepared with the aid of the hot compression technique. The mechanical, water-absorbing, and thickness swelling properties of ramie and pineapple leaf fiber fabric-reinforced polypropylene hybrid composites were identified. A comparison was made between non-hybrid and hybrid composites to demonstrate the hybridization effect. According to the findings, hybrid composites, particularly those containing ramie fiber as a skin layer, showed a prominent increase in mechanical strength. In comparison with non-hybrid pineapple leaf fabric-reinforced composites, the tensile, flexural, and Charpy impact strengths were enhanced by 52.10%, 18.78%, and 166.60%, respectively, when the outermost pineapple leaf fiber layers were superseded with ramie fabric. However, increasing the pineapple leaf fiber content reduced the water absorption and thickness swelling of the hybrid composites. Undeniably, these findings highlight the potential of hybrid composites to reach a balance in mechanical properties and water absorption while possessing eco-friendly characteristics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 5392 KiB  
Article
Effects of PLA-Type and Reinforcement Content on the Mechanical Behavior of Additively Manufactured Continuous Ramie Fiber-Filled Biocomposites
by Kui Wang, Yanlu Chang, Ping Cheng, Wei Wen, Yong Peng, Yanni Rao and Said Ahzi
Sustainability 2024, 16(7), 2635; https://doi.org/10.3390/su16072635 - 22 Mar 2024
Cited by 5 | Viewed by 1687
Abstract
The present work aimed to examine the tensile and flexural behaviors of biocomposites reinforced with continuous plant fibers, utilizing a range of polylactic acid (PLA) matrix materials and varying fiber content. These biocomposites were fabricated using an in situ-impregnated fused filament fabrication (FFF) [...] Read more.
The present work aimed to examine the tensile and flexural behaviors of biocomposites reinforced with continuous plant fibers, utilizing a range of polylactic acid (PLA) matrix materials and varying fiber content. These biocomposites were fabricated using an in situ-impregnated fused filament fabrication (FFF) technique. The study incorporated three different PLA matrix materials, namely PLA, PLA-Matte (PLA-Ma), and PLA-ST, each with distinct mechanical properties. The effect of different linear densities of continuous ramie yarns on the biocomposites was also investigated. The results show that adding continuous ramie yarn significantly enhances both the tensile and flexural strengths, as well as the modulus, of the matrixes. Furthermore, there was a positive correlation between the content of ramie yarn and the increases in strength and modulus. Moreover, the introduction of ramie yarns altered the fracture behavior of the biocomposites, shifting towards brittle fracture. This change significantly impacted the fracture toughness of the matrixes and resulted in a convergence of elongation at the point of breakage. Full article
(This article belongs to the Special Issue Additive Manufacturing and Sustainable Material Design)
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Characteristics and Quality of Flame-Retarded Ramie Fabrics for the Development of Functional Textiles
by Asri Peni Wulandari, Erlin Karlina, Eric Tanudjaja, Abdul Rohmat, Joko Kusmoro, Muhammad Fadhlillah, Karlina Somantri, Roni Sahroni and Widya Fatriasari
Materials 2024, 17(6), 1416; https://doi.org/10.3390/ma17061416 - 20 Mar 2024
Cited by 2 | Viewed by 1730
Abstract
Cellulose fabric testing for flame-retardant studies is frequently necessary in various textile applications. Natural cellulose material from ramie (Boehmeria nivea) is being promoted as an alternative raw material for the development of fire-resistant fabrics. This research aims to optimize the coating [...] Read more.
Cellulose fabric testing for flame-retardant studies is frequently necessary in various textile applications. Natural cellulose material from ramie (Boehmeria nivea) is being promoted as an alternative raw material for the development of fire-resistant fabrics. This research aims to optimize the coating process of ramie fabric using a phosphorus-based flame retardant (FR) to enhance its flame-retardant characteristics. The FR treatment involves bleaching the fabric with H2O2; followed by fabric finishing using a formula comprising 3% (v/v) hydroxymethyl resin; phosphoric acid (2%); and two formulations of the flammable agent Flamatic DM-3072N: 40% (v/v) and 50% (v/v), applied using the pad-dry-cure method. The flame-retardant properties of the treated fabric are evaluated through flammability testing based on the ASTM D6413-08 standard, limiting oxygen index (LOI) analysis, and micrograph surface structure analysis with SEM. The results indicate that ramie fabric treated with the FR-50% material exhibits superior fire resistance, preventing fire spread on the fabric with a char length of 15–30 mm and a LOI value of 29. These findings highlight the potential of FR-treated ramie fabrics for various industries, including the automotive and protective clothing industries. Full article
Show Figures

Figure 1

15 pages, 28811 KiB  
Article
Exploration of Voids, Acoustic Properties and Vibration Damping Ratio of Cyperus Pangorei Rottb Fiber and Ramie Fiber Reinforced with Epoxy Resin Hybrid Composites
by Sudhakar Kanniyappan and Senthil Kumaran Selvaraj
Polymers 2024, 16(6), 832; https://doi.org/10.3390/polym16060832 - 18 Mar 2024
Cited by 2 | Viewed by 1805
Abstract
Noise pollution is a major threat to the health and well-being of the entire world; this issue forces researchers to find new sound absorption and insulating material. In this paper, the sound absorption coefficient and vibration damping factor of panels manufactured from Cyperus [...] Read more.
Noise pollution is a major threat to the health and well-being of the entire world; this issue forces researchers to find new sound absorption and insulating material. In this paper, the sound absorption coefficient and vibration damping factor of panels manufactured from Cyperus pangorei rottb and ramie fiber reinforced with epoxy resin are explored. Cyperus pangorei rottb grass fiber and ramie fiber are widely available natural fibers. Cyperus pangorei rottb grass fiber is used in mat manufacturing, whereas ramie is widely used as a fabric. Using both of these fibers, six variant panels using a vacuum resin infusion process (VRIP) were fabricated. The panels were named C, R, CR, RCR-Flat, RCR-Curved, and RCR-Perforated. All the panels were tested for the sound absorption coefficient using an impedance tube with a frequency ranging up to 6300 Hz. Modal analysis was carried out by using the impulse hammer excitation method. A micro X-ray computed tomography (CT) scan was used to study the voids present in the panels. The results were compared among the six variants. The results show that the RCR-curved panel had the highest sound-absorbing coefficient of 0.976 at a frequency range between 4500 Hz to 5000 Hz. These panels also showed better natural frequency and damping factors. The presence of internal voids in these panels enhances sound absorption properties. These panels can be used at higher frequencies. Full article
Show Figures

Figure 1

16 pages, 4562 KiB  
Article
Preparation and Application of a Multifunctional Interfacial Modifier for Ramie Fiber/Epoxy Resin Composites
by Liyue Zhang, Jingkai Liu, Jinyue Dai, Xufeng Zhang, Xiaoling Liu, Xiaoqing Liu and Xiaosu Yi
Polymers 2023, 15(18), 3800; https://doi.org/10.3390/polym15183800 - 18 Sep 2023
Cited by 3 | Viewed by 2040
Abstract
A multi-functional modifier, which could improve the mechanical and thermal performance simultaneously, is significant in composites production. Herein, inspired by the chemistry of mussel, an interfacial modifier named FPD was designed and synthesized through one simple step, which was attached by three functional [...] Read more.
A multi-functional modifier, which could improve the mechanical and thermal performance simultaneously, is significant in composites production. Herein, inspired by the chemistry of mussel, an interfacial modifier named FPD was designed and synthesized through one simple step, which was attached by three functional groups (including catechol, N-H bond, and DOPO). Due to the innate properties of each functional group, FPD played multiple roles: adhere to the ramie fibers from catechol and cure with the epoxy resin from -NH-, an antiflaming property from DOPO, and the compatibilizer between ramie fibers and epoxy resin was also improved by changing the polarity of ramie fiber. All of the above functions can be proved by means of water contact angle (WCA), atomic force microscope (AFM), and scanning electron microscopy (SEM), etc. After solidification, the ramie fiber/epoxy composites demonstrated superior performances in terms of good mechanical properties and excellent flame retardant property. With the addition of 30 wt.% FPD, the tensile strength and modulus of the ramie/epoxy composite showed an improvement of 37.1% and 60.9%, and flexural strength and modulus of the composite were improved by 8.9% and 19.3% comparing with no addition composite. Moreover, the composite could achieve the goal for V-0 rating in the UL-94 test and LOI value was 34.6% when the addition of FPD reached 30 wt.%. This work provided us with an efficient method for fabricating nature fiber/epoxy composites with good properties. Full article
(This article belongs to the Special Issue Green Flame-Retardant Polymer Material)
Show Figures

Graphical abstract

16 pages, 5767 KiB  
Article
Influence of Stacking Sequence on Mechanical Properties of Basalt/Ramie Biodegradable Hybrid Polymer Composites
by Velumayil Ramesh, Krishnasamy Karthik, Robert Cep and Muniyandy Elangovan
Polymers 2023, 15(4), 985; https://doi.org/10.3390/polym15040985 - 16 Feb 2023
Cited by 54 | Viewed by 2993
Abstract
In this study, the mechanical properties of basalt/ramie/polyester hybrid composite laminates were investigated. A matrix of 45% polyester was used, as it has good bonding properties between fibers. The composite laminates were fabricated using a hand layup technique, with seven layers stacked in [...] Read more.
In this study, the mechanical properties of basalt/ramie/polyester hybrid composite laminates were investigated. A matrix of 45% polyester was used, as it has good bonding properties between fibers. The composite laminates were fabricated using a hand layup technique, with seven layers stacked in different sequences and impregnated in the polyester matrix to create a hybrid configuration. Tensile, flexural, impact, compression, and hardness tests were conducted according to ASTM standards for mechanical characterization. The results showed that the overall stacking sequence of sample number seven (BRBRBRB) had the highest tensile strength at 120 MPa, impact energy at 8 J, flexural strength at 115 MPa, compression strength at 70 MPa, and hardness of 77. Natural fiber-reinforced composites are being used in current automotive industry applications, such as in electric vehicles. Full article
(This article belongs to the Special Issue Advanced Polymer-Based Composites)
Show Figures

Figure 1

16 pages, 5472 KiB  
Article
Enhancement of Thermal Behaviour of Flax with a Ramie Fibre-Reinforced Polymer Composite
by Durvasulu Rajesh, Nagarajan Lenin, Robert Cep, Palanivel Anand and Muniyandy Elangovan
Polymers 2023, 15(2), 350; https://doi.org/10.3390/polym15020350 - 9 Jan 2023
Cited by 21 | Viewed by 2849
Abstract
Plant-derived fibres, called lignocellulosic fibres, are a natural alternative to synthetic fibres in polymer composite reinforcement. Utilizing renewable resources, such as fibre-reinforced polymeric composites made from plant and animal sources, has become a crucial design requirement for developing and producing parts for all [...] Read more.
Plant-derived fibres, called lignocellulosic fibres, are a natural alternative to synthetic fibres in polymer composite reinforcement. Utilizing renewable resources, such as fibre-reinforced polymeric composites made from plant and animal sources, has become a crucial design requirement for developing and producing parts for all industrial goods. Natural-fibre-based composites are used for door panels, trays, glove boxes, etc. This study involves developing and thermal analysing a flax fibre reinforced with phenol–formaldehyde resin hybridization with ramie fibre by way of a vacuum infusion process. As per ASTM Standard, eight different sequences were fabricated and thermally characterized. In the present study, three stages of weight loss (%) are shown by the thermogravimetric analysis (TGA). The sample loses less weight during the first stage, more during the second, and more during the third. The sample’s overall maximum temperature was recorded at 630 °C. It was discovered that sample D (80.1 °C) had the highest heat deflection temperature, and sample B had the lowest (86.0 °C). Sample C had a low thermal expansion coefficient, while sample G had a high thermal expansion coefficient. Sample E had the highest thermal conductivity, measured at 0.213 W/mK, whereas sample A had the lowest conductivity, at 0.182 W/mK. From the present study, it was found that sample H had better thermal characteristics. The result of the present investigation would generate thermal data regarding hybrid ramie and flax composites, which would be helpful for researchers and practitioners involved in the field of biocomposites. Full article
Show Figures

Figure 1

18 pages, 5129 KiB  
Article
Experimental Investigation of Bi-Directional Flax with Ramie Fibre-Reinforced Phenol-Formaldehyde Hybrid Composites
by Durvasulu Rajesh, Nagarajan Lenin, Robert Cep, Palanivel Anand and Muniyandy Elangovan
Polymers 2022, 14(22), 4887; https://doi.org/10.3390/polym14224887 - 12 Nov 2022
Cited by 39 | Viewed by 3538
Abstract
Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-formaldehyde resin [...] Read more.
Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre through a vacuum infusion process. Eight different sequences were fabricated using a core–sheath structure and were mechanically characterized as per ASTM standards. The fabrication technique influences the adhesion of the matrix with reinforcement. The results also reveal that composite having ramie as a sheath layer and flax as a core delivers good mechanical characteristics compared to vice versa. The laminate H exhibited highest mechanical properties among all the eight laminates produced for this study. It exhibited a tensile strength of 54 MPa, tensile modulus of 0.98 Gpa, elongation of 7.1%, flexural strength of 143 Mpa, and compressive strength of 63.65 Mpa. The stress strain curves revealed that all the laminates exhibited ductile behaviour before failing during the tensile test and flexural test, respectively. The stacking sequence of the laminate H influenced the mechanical properties exhibited by it and its counterparts. A morphological study was carried out to analyse the failure surfaces. Morphological analysis exhibited few defects in the laminate after the tests. The composites developed delivers better mechanical properties than commercial composites available on the market, which can be used in lightweight structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 4098 KiB  
Article
Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing
by Shangxuan Shi, Jiao Liang, Chenkai Qu, Shangbi Chen and Bin Sheng
Micromachines 2022, 13(8), 1309; https://doi.org/10.3390/mi13081309 - 13 Aug 2022
Cited by 15 | Viewed by 3424
Abstract
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human–machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser [...] Read more.
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human–machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq−1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors)
Show Figures

Figure 1

16 pages, 5086 KiB  
Article
Durability Properties of Lightweight Foamed Concrete Reinforced with Lignocellulosic Fibers
by Md Azree Othuman Mydin, Mohd Nasrun Mohd Nawi, Ruba A. Odeh and Anas A. Salameh
Materials 2022, 15(12), 4259; https://doi.org/10.3390/ma15124259 - 16 Jun 2022
Cited by 17 | Viewed by 3266
Abstract
Worldwide concern and ascendancy of emissions and carbon footprints have propelled a substantial number of explorations into green concrete technology. Furthermore, construction material costs have increased along with their gradual impact on the environment, which has led researchers to recognize the importance of [...] Read more.
Worldwide concern and ascendancy of emissions and carbon footprints have propelled a substantial number of explorations into green concrete technology. Furthermore, construction material costs have increased along with their gradual impact on the environment, which has led researchers to recognize the importance of natural fibers in improving the durability and mechanical properties of concrete. Natural fibers are abundantly available making them relatively relevant as a reinforcing material in concrete. Presently, it should be recognized that most construction products are manufactured using resources that demand a high quantity of energy and are not sustainable, which may lead to a global crisis. Consequently, the use of plant fibers in lightweight foamed concrete (LFC) is deemed a practical possibility for making concrete a sustainable material that responds to this dilemma. The main objective of this study is to investigate the effect of the addition of lignocellulosic fibers on the performance of LFC. In this investigation, four different types of lignocellulosic plant fibers were considered which were kenaf, ramie, hemp and jute fibers. A total of ten mixes were made and tested in this study. LFC samples with a density of 700 kg/m3 and 1400 kg/m3 were fabricated. The weight fraction for the lignocellulosic plant fibers was kept at 0.45%. The durability parameters assessed were flowability, water absorption capability, porosity and ultrasonic pulse velocity (UPV). The results revealed that the presence of cellulosic plant fibers in LFC plays an important role in enhancing all the durability parameters considered in this study. For workability, the addition of ramie fiber led to the lowest slump while the inclusion of kenaf fiber provided optimum UPV. For porosity and water absorption, the addition of jute fiber led to the best results. Full article
(This article belongs to the Topic Multifunctional Concrete for Smart Infrastructures)
Show Figures

Figure 1

12 pages, 3960 KiB  
Article
Biomass-Derived Carbon/Sulfur Composite Cathodes with Multiwalled Carbon Nanotube Coatings for Li-S Batteries
by Lina Han, Zemin Li, Yang Feng, Lijiang Wang, Bowen Li, Zijie Lei, Wenyan Wang and Weiwei Huang
Processes 2022, 10(1), 136; https://doi.org/10.3390/pr10010136 - 10 Jan 2022
Cited by 15 | Viewed by 3174
Abstract
Lithium sulfur (Li-S) batteries stand out among many new batteries for their high energy density. However, the intermediate charge–discharge product dissolves easily into the electrolyte to produce a shuttle effect, which is a key factor limiting the rapid development of Li-S batteries. Among [...] Read more.
Lithium sulfur (Li-S) batteries stand out among many new batteries for their high energy density. However, the intermediate charge–discharge product dissolves easily into the electrolyte to produce a shuttle effect, which is a key factor limiting the rapid development of Li-S batteries. Among the various materials used to solve the challenges related to pure sulfur cathodes, biomass derived carbon materials are getting wider research attention. In this work, we report on the fabrication of cathode materials for Li-S batteries based on composites of sulfur and biomass-derived porous ramie carbon (RC), which are coated with multiwalled carbon nanotubes (MWCNTs). RC can not only adsorb polysulfide in its pores, but also provide conductive channels. At the same time, the MWCNTs coating further reduces the dissolution of polysulfides into the electrolyte and weakens the shuttle effect. The sulfur loading rate of RC is 66.3 wt.%. As a result, the initial discharge capacity of the battery is 1325.6 mAh·g−1 at 0.1 C long cycle, and it can still maintain 812.5 mAh·g−1 after 500 cycles. This work proposes an effective double protection strategy for the development of advanced Li-S batteries. Full article
(This article belongs to the Special Issue High-Energy-Density and High-Safety Rechargeable Batteries)
Show Figures

Figure 1

Back to TopTop