Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = ramie (Boehmeria nivea L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3489 KiB  
Article
Exploring the Potential of Cellulose Nanocrystals Originated from Ramie (Boehmeria nivea L. Gaud) in Formation of Microspheres for Enhanced Solubility of Furosemide
by Anis Yohana Chaerunisaa, Yoga Windhu Wardhana, Mayang Kusuma Dewi, Margaretha Efa Putri and Fitriani Jati Rahmania
Polymers 2025, 17(13), 1879; https://doi.org/10.3390/polym17131879 - 5 Jul 2025
Viewed by 383
Abstract
Cellulose nanocrystals possess unique properties such as high surface area and excellent biocompatibility. They can disrupt strong hydrogen bonds and other intermolecular forces that hinder the solubility of certain molecules thus enhancing the solubility of poorly soluble materials. The main challenge in formulating [...] Read more.
Cellulose nanocrystals possess unique properties such as high surface area and excellent biocompatibility. They can disrupt strong hydrogen bonds and other intermolecular forces that hinder the solubility of certain molecules thus enhancing the solubility of poorly soluble materials. The main challenge in formulating poorly soluble drugs lies in their limited therapeutic efficacy due to inadequate solubility and bioavailability. Therefore, an innovative approach such as using cellulose nanocrystals to enhance the solubility is highly needed. The aim of this research is to study the potential of ramie (Boehmeria nivea L. Gaud) as a source of cellulose nanocrystals in the development of microspheres for the solubility enhancement of poorly soluble drugs. Nanocrystalline cellulose was isolated from the ramie (Boehmeria nivea L. Gaud) by optimizing hydrolysis conditions with varying acid concentrations and reaction times. Characterizations were performed by measuring particle size, pH, and sulfate content, followed by morphological study by SEM, functional group analysis, and thermal analysis. The use of sulfuric acid in the hydrolysis process of flax cellulose at 45 °C, as the type of acid that gives the best results, at 50% acid concentration for 60 min produces cellulose nanocrystallines with a particle size of 120 nm, sulfate concentration density of 133.09 mmol/kg, crystallinity of 96.2%, and a yield of 63.24 ± 8.72%. Furosemide was used as the poorly soluble drug model and its solubility enhancement in the form of furosemide/RNCC microspheres was evaluated through saturated solubility testing and in vitro dissolution. This study demonstrated that RNCC could improve the solubility of furosemide, which contributes to developing sustainable drug formulations and eco-friendly delivery systems for poorly soluble drugs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3203 KiB  
Article
Genome-Wide Methylation Landscape Uncovers the Role of DNA Methylation in Ramie (Boehmeria nivea L.) Bast Fiber Growth
by Fu Li, Bingbing Luo, Yanzhou Wang, Jing Rao, Song Gao, Qingzhong Peng, Touming Liu and Langbo Yi
Agronomy 2024, 14(7), 1467; https://doi.org/10.3390/agronomy14071467 - 6 Jul 2024
Viewed by 1248
Abstract
Ramie is one of the most important fiber crops in China, with fibers extracted from stem barks having been used as textile materials for thousands of years. DNA methylation is an important epigenetic modification involved in plant growth and development. However, the role [...] Read more.
Ramie is one of the most important fiber crops in China, with fibers extracted from stem barks having been used as textile materials for thousands of years. DNA methylation is an important epigenetic modification involved in plant growth and development. However, the role of methylation in ramie fiber growth remains poorly understood. In the present study, we investigated the DNA methylation landscape of the nuclear genome in bark sections taken from the top (TPS) and the middle (MPS) of the stems of ramie plants, which represent different stages of fiber growth, using whole-genome bisulfite sequencing. We detected 7,709,555 and 8,508,326 5-methylcytosines in the TPS and MPS genomes, respectively. The distribution of methylation across three sequence contexts, CG, CHG, and CHH, varied greatly among gene elements, with methylation at CHH being the most prevalent. Comparison of methylation levels between the TPS and MPS genomes revealed 23.162 Mb of differentially methylated genomic regions, encompassing 9485 genes. Among these differentially methylated genes, 841 exhibited altered expression in the MPS genome. Notably, an SND2 ortholog Bni05G006779 showed a negative correlation between its expression and methylation levels. Overexpression of Bni05G006779 in Arabidopsis dramatically increased the number of xylem fibers and the secondary wall thickness of the fibers in the stems of transgenic plants. These findings provide important insights into the involvement of DNA methylation in regulating ramie fiber growth. Full article
(This article belongs to the Special Issue Genomics and Genetic Improvement of Bast Fiber Plants)
Show Figures

Figure 1

17 pages, 19610 KiB  
Article
Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses
by Hongdong Jie, Pengliang He, Long Zhao, Yushen Ma and Yucheng Jie
Plants 2023, 12(22), 3899; https://doi.org/10.3390/plants12223899 - 18 Nov 2023
Cited by 6 | Viewed by 2043
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various [...] Read more.
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage. Full article
Show Figures

Figure 1

15 pages, 3519 KiB  
Article
Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie (Boehmeria nivea L.)
by Yu Chen, Haohan Zhao, Yue Wang, Xiaojun Qiu, Gang Gao, Aiguo Zhu, Ping Chen, Xiaofei Wang, Kunmei Chen, Jia Chen, Peng Chen and Jikang Chen
Int. J. Mol. Sci. 2023, 24(20), 15282; https://doi.org/10.3390/ijms242015282 - 18 Oct 2023
Cited by 3 | Viewed by 1740
Abstract
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was [...] Read more.
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 1931 KiB  
Article
Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L.
by Yi Lu, Fangyuan Peng, Yingyang Wang, Haipu Li and Zhaoguang Yang
Toxics 2023, 11(10), 860; https://doi.org/10.3390/toxics11100860 - 14 Oct 2023
Viewed by 1803
Abstract
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite [...] Read more.
Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate—PV), and SbIII analogs (arsenite—AsIII, glycerol, silicic acid—Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils. Full article
Show Figures

Figure 1

27 pages, 7066 KiB  
Article
Properties of Ramie (Boehmeria nivea (L.) Gaudich) Fibers Impregnated with Non-Isocyanate Polyurethane Resins Derived from Lignin
by Vincentius Yolanda Angger Raditya, Muhammad Adly Rahandi Lubis, Rita Kartika Sari, Petar Antov, Seng Hua Lee, Lubos Kristak, Efri Mardawati and Apri Heri Iswanto
Materials 2023, 16(16), 5704; https://doi.org/10.3390/ma16165704 - 20 Aug 2023
Cited by 9 | Viewed by 2511
Abstract
The textile industries need an alternative to cotton since its supply is unable to keep up with the growing global demand. The ramie (Boehmeria nivea (L.) Gaudich) fiber has a lot of potential as a renewable raw material but has low fire-resistance, [...] Read more.
The textile industries need an alternative to cotton since its supply is unable to keep up with the growing global demand. The ramie (Boehmeria nivea (L.) Gaudich) fiber has a lot of potential as a renewable raw material but has low fire-resistance, which should be improved. In this work, the objectives were to investigate the characteristics of lignin derived from black liquor of kraft pulping, as well as the properties of the developed lignin-based non-isocyanate-polyurethane (L-NIPU), and to analyze ramie fiber before and after impregnation with L-NIPU. Two different formulations of L-NIPU were impregnated into ramie fiber for 30, 60, and 90 min at 25 × 2 °C under 50 kPa. The calculation of the Weight Percent Gain (WPG), Fourier Transform Infrared Spectrometer (FTIR), Rotational Rheometer, Dynamic Mechanical Analyzer (DMA), Pyrolysis Gas Chromatography Mass Spectrometer (Py–GCMS), Universal Testing Machine (UTM), and hydrolysis test were used to evaluate the properties of ramie fibers. The result showed that ramie fiber impregnated with L-NIPU produced higher mechanical property values and WPG than non-impregnated ramie fiber. There is a tendency that the longer impregnation time results in better WPG values, FTIR intensity of the urethane group, thermomechanical properties, crystallinity, and mechanical properties of ramie fiber. However, the use of DMC and HMT cannot replace the role of isocyanates in the synthesis of L-NIPU because it produces lower heat resistance than ramie impregnated using pMDI. Based on the results obtained, the impregnation of ramie fiber with L-NIPU represents a promising approach to increase its wider industrial application as a functional material. Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass for Functional Materials)
Show Figures

Figure 1

12 pages, 3047 KiB  
Article
Bnt05G007257, a Novel NAC Transcription Factor, Predicts Developmental and Synthesis Capabilities of Fiber Cells in Ramie (Boehmeria nivea L.)
by Xuehua Bai, Yafen Fu, Xin Wang, Guangyao Chen, Yanzhou Wang, Tongying Liu, Guang Li and Siyuan Zhu
Agronomy 2023, 13(6), 1575; https://doi.org/10.3390/agronomy13061575 - 10 Jun 2023
Viewed by 1449
Abstract
NAC transcription factors are one of the largest transcription factor families in plants, and they play a key role in the growth and development of a secondary cell wall. Despite the fact that ramie is well-known for its high fiber yield, the role [...] Read more.
NAC transcription factors are one of the largest transcription factor families in plants, and they play a key role in the growth and development of a secondary cell wall. Despite the fact that ramie is well-known for its high fiber yield, the role of NAC transcription factors in ramie secondary cell wall synthesis and fiber development remains unknown. In this study, based on our previous study, we describe the characterization, physicochemical property analysis, protein structure and function prediction, subcellular localization, and functional validation of Bnt05G007257, which encodes an NAC transcription factor from ramie, in transgenic A. thaliana. Our findings show that the open reading frame of Bnt05G007257 was 1035 bp long and encodes for a protein comprising 344 amino acids, having a relative molecular mass of 39.0945 kDa and a theoretical isoelectric point of 6.55. The secondary structure of the encoded protein mainly consisted of random coiling, with a typical conserved structural domain of NAC. The phylogenetic tree revealed that Bnt05G007257 is a homolog of the NAC transcription factor SND2, which regulates secondary wall biosynthesis in A. thaliana. Subcellular localization showed that Bnt05G007257 was tentatively predicted to be localized in the cytoplasm. Furthermore, in stem sections, the secondary wall fiber cells’ thickness in Bnt05G007257 transgenic plants was 31.50% thicker than that in wild-type plants, and the radial width was significantly increased by approximately 21.75%. This indicates that the NAC family homolog Bnt05G007257 may have the potential function of promoting fiber cell development and secondary cell wall synthesis, providing a theoretical basis for the selection of high-fiber-yielding ramie varieties in the future. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

9 pages, 2248 KiB  
Brief Report
Genome-Wide Identification of NAC Genes Associated with Bast Fiber Growth in Ramie (Boehmeria nivea L.)
by Zheng Zeng, Chan Liu, Xueyu Zhang, Siyuan Zhu, Yanzhou Wang and Touming Liu
Agronomy 2023, 13(5), 1311; https://doi.org/10.3390/agronomy13051311 - 6 May 2023
Viewed by 1709
Abstract
NAM, ATAF, and CUC (NAC) proteins are plant-specific transcription factors that play crucial roles in fiber growth by regulating the secondary wall thickening. In this study, a systematical investigation of NAC genes was performed in the genome of ramie, an important fiber crop, [...] Read more.
NAM, ATAF, and CUC (NAC) proteins are plant-specific transcription factors that play crucial roles in fiber growth by regulating the secondary wall thickening. In this study, a systematical investigation of NAC genes was performed in the genome of ramie, an important fiber crop, resulting in a total of 60 ramie NAC genes identified. Phylogenetic analysis of these 60 NAC members in conjunction with 111 Arabidopsis NAC proteins identified 11 subfamilies, three of which showed considerable contraction in the ramie genome. Ten ramie NAC genes were identified to encode the orthologs of Arabidopsis NAC regulators involved in the control of secondary wall biosynthesis. Of these ten genes, most showed relatively high expression in the stems, and eight displayed a differential expression between the barks from the top and middle section of the stems where fiber growth is under different stages. Furthermore, the overexpression of three of these ten NAC genes significantly promoted fiber growth in transgenic Arabidopsis. These results indicated that these ten NAC genes were associated with the fiber growth of ramie. This study provided an important basis for researching the regulatory mechanism of fiber growth. Full article
(This article belongs to the Special Issue Genomics and Genetic Improvement of Bast Fiber Plants)
Show Figures

Figure 1

13 pages, 2423 KiB  
Article
Mercury Enrichment Characteristics and Rhizosphere Bacterial Community of Ramie (Boehmeria Nivea L. Gaud.) in Mercury-Contaminated Soil
by Xiuhua Li, Xiaomi Wang, Ling Zhao, Zuopeng Wang, Ying Teng and Yongming Luo
Sustainability 2023, 15(7), 6009; https://doi.org/10.3390/su15076009 - 30 Mar 2023
Cited by 2 | Viewed by 1995
Abstract
Phytoremediation is a promising technique for reducing mercury (Hg) pollution. Little is known about the phytoremediation potential of ramie (Boehmeria nivea L. Gaud.) and the response of its rhizosphere soil microbiome to Hg contamination. In this study, we planted ramie in [...] Read more.
Phytoremediation is a promising technique for reducing mercury (Hg) pollution. Little is known about the phytoremediation potential of ramie (Boehmeria nivea L. Gaud.) and the response of its rhizosphere soil microbiome to Hg contamination. In this study, we planted ramie in three plots contaminated with different levels of Hg pollution and evaluated ramie Hg accumulation and translocation. We also analyzed the abundance, composition, and predominant taxa of the rhizosphere soil bacterial community. Results showed that the average THg concentration decreased by 30.80%, 18.36%, and 16.31% in plots L, M, and H, respectively. Ramie displayed strong Hg tolerance and good Hg accumulation performance, especially in soil contaminated with a low level of Hg. After ramie planting, soil SOM and CEC increased while pH, Eh, and THg content decreased in rhizosphere soil. Proteobacteria, Actinobacteriota, Gemmatimonadota, Latescibacterota, and NB1-j were identified as potential Hg-tolerant taxa at the phylum level, and their abundance increased in highly Hg-contaminated soil. Redundancy and correlation analyses indicated that soil bacterial community structure was significantly correlated with soil pH, Eh, and Hg content. This study provides a better understanding of the phytoremediation capacity of ramie and its rhizosphere function and thus lays a theoretical foundation for the phytoremediation of Hg-contaminated soils. Full article
(This article belongs to the Special Issue Soil Pollution and Soil Remediation in Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 4307 KiB  
Article
Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie (Boehmeria nivea L.) Fibers
by Manggar Arum Aristri, Rita Kartika Sari, Muhammad Adly Rahandi Lubis, Raden Permana Budi Laksana, Petar Antov, Apri Heri Iswanto, Efri Mardawati, Seng Hua Lee, Viktor Savov, Lubos Kristak and Antonios N. Papadopoulos
Polymers 2023, 15(6), 1492; https://doi.org/10.3390/polym15061492 - 16 Mar 2023
Cited by 18 | Viewed by 2891
Abstract
This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers (Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced [...] Read more.
This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers (Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced the tannin-Bio-NIPU resin, while the tannin-Bio-PU was made with polymeric diphenylmethane diisocyanate (pMDI). Two types of ramie fiber were used: natural ramie without pre-treatment (RN) and with pre-treatment (RH). They were impregnated in a vacuum chamber with tannin-based Bio-PU resins for 60 min at 25 °C under 50 kPa. The yield of the tannin extract produced was 26.43 ± 1.36%. Fourier-transform infrared (FTIR) spectroscopy showed that both resin types produced urethane (-NCO) groups. The viscosity and cohesion strength of tannin-Bio-NIPU (20.35 mPa·s and 5.08 Pa) were lower than those of tannin-Bio-PU (42.70 mPa·s and 10.67 Pa). The RN fiber type (18.9% residue) was more thermally stable than RH (7.3% residue). The impregnation process with both resins could improve the ramie fibers’ thermal stability and mechanical strength. The highest thermal stability was found in RN impregnated with the tannin-Bio-PU resin (30.5% residue). The highest tensile strength was determined in the tannin-Bio-NIPU RN of 451.3 MPa. The tannin-Bio-PU resin gave the highest MOE for both fiber types (RN of 13.5 GPa and RH of 11.7 GPa) compared to the tannin-Bio-NIPU resin. Full article
(This article belongs to the Special Issue Advances in Wood Composites V)
Show Figures

Figure 1

14 pages, 32601 KiB  
Article
Ramie leaf Extract Alleviates Bone Loss in Ovariectomized Rats—The Involvement of ROS and Its Associated Signalings
by Geum-Hwa Lee, The-Hiep Hoang, Hwa-Young Lee, Young-Je Lim, Ji-Hyun Kim, Su-Jin Jung, Soo-Wan Chae, Mohammad Mamun Ur Rashid, Han-Jung Chae and Sun-Jung Yoon
Nutrients 2023, 15(3), 745; https://doi.org/10.3390/nu15030745 - 1 Feb 2023
Cited by 4 | Viewed by 3504
Abstract
Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned [...] Read more.
Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 μg/kg 17β-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

22 pages, 7540 KiB  
Article
Genome-Wide Analysis of AP2/ERF Gene Superfamily in Ramie (Boehmeria nivea L.) Revealed Their Synergistic Roles in Regulating Abiotic Stress Resistance and Ramet Development
by Xiaojun Qiu, Haohan Zhao, Aminu Shehu Abubakar, Deyi Shao, Jikang Chen, Ping Chen, Chunming Yu, Xiaofei Wang, Kunmei Chen and Aiguo Zhu
Int. J. Mol. Sci. 2022, 23(23), 15117; https://doi.org/10.3390/ijms232315117 - 1 Dec 2022
Cited by 11 | Viewed by 2529
Abstract
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie [...] Read more.
AP2/ERF transcription factors (TFs) are one of the largest superfamilies in plants, and play vital roles in growth and response to biotic/abiotic stresses. Although the AP2/ERF family has been extensively characterized in many species, very little is known about this family in ramie (Boehmeria nivea L.). In this study, 138 AP2/ERF TFs were identified from the ramie genome and were grouped into five subfamilies, including the AP2 (19), RAV (5), Soloist (1), ERF (77), and DREB (36). Unique motifs were found in the DREB/ERF subfamily members, implying significance to the AP2/ERF TF functions in these evolutionary branches. Segmental duplication events were found to play predominant roles in the BnAP2/ERF TF family expansion. Light-, stress-, and phytohormone-responsive elements were identified in the promoter region of BnAP2/ERF genes, with abscisic acid response elements (ABRE), methyl jasmonate response elements, and the dehydration response element (DRE) being dominant. The integrated transcriptome and quantitative real-time PCR (qPCR) revealed 12 key BnAP2/ERF genes positively responding to waterlogging. Five of the genes are also involved in ramet development, with two (BnERF-30 and BnERF-32) further showing multifunctional roles. The protein interaction prediction analysis further verified their crosstalk mechanism in coordinating waterlogging resistance and ramet development. Our study provides new insights into the presence of AP2/ERF TFs in ramie, and provides candidate AP2/ERF TFs for further studies on breeding varieties with coupling between water stress tolerance and high yield. Full article
Show Figures

Figure 1

11 pages, 261 KiB  
Article
Effect of Dietary Ramie Powder at Various Levels on the Growth Performance, Meat Quality, Serum Biochemical Indices and Antioxidative Capacity of Yanling White Geese
by Fengming Chen, Jieyi He, Xin Wang, Tuo Lv, Chunjie Liu, Liping Liao, Zibo Li, Jun Zhou, Bingsheng He, HuaJiao Qiu and Qian Lin
Animals 2022, 12(16), 2045; https://doi.org/10.3390/ani12162045 - 11 Aug 2022
Cited by 11 | Viewed by 2009
Abstract
To investigate the effects of different levels of ramie powder (Boehmeria nivea (L.) Gaudich.) (i.e., 0%, 6%, 12% and 24%) on the production performance, serum biochemical indices, antioxidative capacity and intestinal development of Yanling white geese, a total of 256 geese at 56 [...] Read more.
To investigate the effects of different levels of ramie powder (Boehmeria nivea (L.) Gaudich.) (i.e., 0%, 6%, 12% and 24%) on the production performance, serum biochemical indices, antioxidative capacity and intestinal development of Yanling white geese, a total of 256 geese at 56 days of age were randomly divided into four groups and fed a control diet and the control diet supplemented with 6%, 12% and 24% ramie powder, respectively, for 42 days. The results show that dietary supplementation with 12% ramie powder significantly increased the average final weight (p < 0.05) and tended to improve the average daily gain (ADG) and feed/gain ratio (F/G) of the test geese (0.05 < p < 0.10). Moreover, the dietary inclusion of 12 and 24% ramie powder improved meat qualities by reducing the L* value (p < 0.05) and cooking loss (0.05 < p < 0.10) of thigh muscle. Compared with the control group, the ramie powder supplementation at different levels increased the serum activities of glutathione peroxidase and glutathione, promoting the antioxidative capacity of the body (0.05 < p < 0.10). This study demonstrates that moderate ramie powder is beneficial to the production performance of Yanling white geese and has the potential to be used as a poultry feed ingredient. In conclusion, 12% was the proper supplementation rate of ramie powder in Yanling white geese feed. Full article
(This article belongs to the Section Animal Nutrition)
11 pages, 2090 KiB  
Article
The Role of Hemicellulose in Cadmium Tolerance in Ramie (Boehmeria nivea (L.) Gaud.)
by Yushen Ma, Hongdong Jie, Yanyi Tang, Hucheng Xing and Yucheng Jie
Plants 2022, 11(15), 1941; https://doi.org/10.3390/plants11151941 - 26 Jul 2022
Cited by 19 | Viewed by 2104
Abstract
Ramie cell walls play an important role in cadmium (Cd) detoxification. However, the Cd binding capacity of the cell wall components and the cell wall compositions among ramie species remains unclear. Therefore, this study compared two ramie populations (‘Dazhuhuangbaima’ (low-Cd-accumulating population) and ‘Zhongzhu [...] Read more.
Ramie cell walls play an important role in cadmium (Cd) detoxification. However, the Cd binding capacity of the cell wall components and the cell wall compositions among ramie species remains unclear. Therefore, this study compared two ramie populations (‘Dazhuhuangbaima’ (low-Cd-accumulating population) and ‘Zhongzhu 1’ (high-Cd-accumulating population)) with different Cd enrichment characteristics. The two ramie populations were treated with 0, 25, and 75 mg kg−1 Cd for 30 days; then, their root length, plant height, biomass, Cd enrichment in the organs, subcellular Cd distribution, Cd content in the cell wall polysaccharides, and hemicellulose content were determined. The root length, plant height, biomass, and Cd enrichment in all organs were significantly higher (p ≤ 0.05) in ‘Zhongzhu 1’ than in ‘Dazhuhuangbaima’ under Cd stress. In addition, the subcellular Cd distribution analysis revealed that Cd was mainly found in the cell wall in both ramie populations. Among the cell wall fractions, Cd was mainly bound to the hemicelluloses, with 60.38–73.10% and 50.05–64.45% Cd accumulating in the ‘Zhongzhu 1’ and ‘Dazhuhuangbaima’ cell wall hemicelluloses, respectively. However, the Cd concentration in the ‘Zhongzhu 1’ hemicellulose was significantly higher (p ≤ 0.05) than that in the ‘Dazhuhuangbaima’ hemicellulose. Hemicellulose content analysis further revealed that the hemicellulose concentration increased with the Cd concentration in both populations, but it was significantly higher (p ≤ 0.05) in ‘Zhongzhu 1’ than in ‘Dazhuhuangbaima’ across all Cd treatments. Thus, ramie copes under Cd stress by increasing the hemicellulose content in the cell wall. The findings in this study confirm that hemicellulose is the main enrichment site for Cd in ramie. It also provides a theoretical basis for Cd enrichment breeding in ramie. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 8140 KiB  
Article
Genome-Wide Association Study of Six Forage Traits in Ramie (Boehmeria nivea L. Gaud)
by Xuehua Bai, Xin Wang, Yanzhou Wang, Yiping Wei, Yafen Fu, Jing Rao, Yonghong Ma, Zheng Zeng, Fu Li, Mansheng Wang and Siyuan Zhu
Plants 2022, 11(11), 1443; https://doi.org/10.3390/plants11111443 - 28 May 2022
Cited by 4 | Viewed by 2303
Abstract
Genome-wide association study (GWAS) of six forage traits using whole-genome sequencing data generated from 301 ramie accessions found that traits were continuously distributed; the maximum variant coefficient was fresh weight per clump (FWPC) (2019) and individual plant height (IPH) (2019) minimum. Correlation analysis [...] Read more.
Genome-wide association study (GWAS) of six forage traits using whole-genome sequencing data generated from 301 ramie accessions found that traits were continuously distributed; the maximum variant coefficient was fresh weight per clump (FWPC) (2019) and individual plant height (IPH) (2019) minimum. Correlation analysis demonstrated that 2019 and 2020 results were similar; all traits were correlated. GWAS analysis demonstrated that six traits exhibited consistent and precise association signals. Of the latter, 104 were significant and detected in 43 genomic regions. By screening forage trait-associated single nucleotide polymorphisms and combining Manhattan map with genome annotation, signals were categorized according to functional annotations. One loci associated with fresh weight per plant (FWP) (chromosome 5; Bnt05G007759), two associated with FWPC (chromosome 13; Bnt13G018582, and Bnt13G018583), and two associated with leaf dry weight per plant (LDWP) and dry weight per plant (DWP) (chromosome 4; Bnt04G005779 and Bnt04G005780), were identified. We describe forage trait candidate genes that are highly correlated with FWP and FWPC; Bnt05G007759 may be involved in nitrogen metabolism, while Bnt13G018582 and Bnt13G018583 may encode TEOSINTE branch 1/CYCLOIDEA/proliferating cytokine 1 (TCP) domains. Bnt04G005779 and Bnt04G005780, which may regulate growth and development, are highly related to LDWP and DWP. These genomic resources will provide a basis for breeding varieties. Full article
(This article belongs to the Special Issue Omics and Breeding of Bast Fiber Crops)
Show Figures

Figure 1

Back to TopTop