Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = raised erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3197 KiB  
Article
Experimental and Numerical Investigation of Seepage and Seismic Dynamics Behavior of Zoned Earth Dams with Subsurface Cavities
by Iman Hani Hameed, Abdul Hassan K. Al-Shukur and Hassnen Mosa Jafer
GeoHazards 2025, 6(3), 37; https://doi.org/10.3390/geohazards6030037 - 17 Jul 2025
Viewed by 316
Abstract
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. [...] Read more.
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. This study examines the influence of cavity presence, location, shape, and size on the behavior of zoned earth dams. A 1:25 scale physical model was tested on a uniaxial shake table under varying seismic intensities, and seepage behavior was observed under steady-state conditions. Numerical simulations using SEEP/W and QUAKE/W in GeoStudio complemented the experimental work. Results revealed that upstream and double-cavity configurations caused the greatest deformation, including crest displacements of up to 0.030 m and upstream subsidence of ~7 cm under 0.47 g shaking. Pore pressures increased markedly near cavities, with peaks exceeding 2.7 kPa. Irregularly shaped and larger cavities further amplified these effects and led to dynamic factors of safety falling below 0.6. In contrast, downstream cavities produced minimal impact. The excellent agreement between experimental and numerical results validates the modeling approach. Overall, the findings highlight that cavity geometry and location are critical determinants of dam safety under both static and seismic conditions. Full article
Show Figures

Figure 1

19 pages, 31306 KiB  
Article
Cavitation Performance Analysis in the Runner Region of a Bulb Turbine
by Feng Zhou, Qifei Li, Lu Xin, Xiangyu Chen, Shiang Zhang and Yuqian Qiao
Processes 2025, 13(7), 2231; https://doi.org/10.3390/pr13072231 - 12 Jul 2025
Viewed by 281
Abstract
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and [...] Read more.
As a core component in renewable energy systems for grid regulation, hydropower units are increasingly exposed to flow conditions that elevate the risk of cavitation and erosion, posing significant challenges to the safe operation of flow-passage components. In this study, model testing and computational fluid dynamics (CFD) simulations are employed to investigate the hydraulic performance and cavitation behavior of a bulb turbine operating under rated head conditions and varying cavitation numbers. The analysis focuses on how changes in cavitation intensity affect flow characteristics and efficiency within the runner region. The results show that as the cavitation number approaches its critical value, the generation, growth, and collapse of vapor cavities increasingly disturb the main flow, causing a marked drop in blade hydraulic performance and overall turbine efficiency. Cavitation predominantly occurs on the blade’s suction side near the trailing edge rim and in the clearance zone near the hub, with bubble coverage expanding as the cavitation number decreases. A periodic inverse correlation between surface pressure and the cavitation area is observed, reflecting the strongly unsteady nature of cavitating flows. Furthermore, lower cavitation numbers lead to intensified pressure pulsations, aggravating flow unsteadiness and raising the risk of vibration. Full article
Show Figures

Figure 1

29 pages, 24963 KiB  
Article
Monitoring and Future Prediction of Land Use Land Cover Dynamics in Northern Bangladesh Using Remote Sensing and CA-ANN Model
by Dipannita Das, Foyez Ahmed Prodhan, Muhammad Ziaul Hoque, Md. Enamul Haque and Md. Humayun Kabir
Earth 2025, 6(3), 73; https://doi.org/10.3390/earth6030073 - 4 Jul 2025
Viewed by 1110
Abstract
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural [...] Read more.
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural Network (CA-ANN) model. Multi-temporal Landsat imagery was classified with 80.75–86.23% accuracy (Kappa: 0.75–0.81). Model validation comparing simulated and actual 2014 data yielded 79.98% accuracy, indicating a reasonably good performance given the region’s rapidly evolving and heterogeneous landscape. The results reveal a significant decline in waterbodies, which is projected to shrink by 34.4% by 2054, alongside a 1.21% reduction in cropland raising serious environmental and food security concerns. Vegetation, after an initial massive decrease (1990–2014), increased (2014–2022) due to different forms of agroforestry practices and is expected to increase by 4.64% by 2054. While the model demonstrated fair predictive power, its moderate accuracy highlights challenges in forecasting LULC in areas characterized by informal urbanization, seasonal land shifts, and riverbank erosion. These dynamics limit prediction reliability and reflect the region’s ecological vulnerability. The findings call for urgent policy action particularly afforestation, water resource management, and integrated land use planning to ensure environmental sustainability and resilience in this climate-sensitive area. Full article
Show Figures

Figure 1

24 pages, 1270 KiB  
Article
Addressing Industry Adaptation Resistance in Combating Brand Deception: AI-Powered Technology vs. Revenue Sharing
by Peng Liu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 154; https://doi.org/10.3390/jtaer20030154 - 1 Jul 2025
Viewed by 356
Abstract
This paper studies a supply chain comprising a supplier, a third-party remanufacturer (TPR), and a retailer. The retailer sells both genuine and remanufactured products (i.e., Model O). Leveraging information advantages, the retailer may engage in brand deception by mislabeling remanufactured products as genuine [...] Read more.
This paper studies a supply chain comprising a supplier, a third-party remanufacturer (TPR), and a retailer. The retailer sells both genuine and remanufactured products (i.e., Model O). Leveraging information advantages, the retailer may engage in brand deception by mislabeling remanufactured products as genuine to obtain extra profits (i.e., Model BD). AI-powered anti-counterfeiting technologies (AIT) (i.e., Model BA) and revenue-sharing contracts (i.e., Model C) are considered countermeasures. The findings reveal that (1) brand deception reduces (increases) sales of genuine (remanufactured) products, prompting the supplier (TPR) to lower (raise) wholesale prices. The asymmetric profit erosion effect highlights the gradual erosion of profits for the supplier, retailer, and TPR under brand deception. (2) The bi-interval adaptation effect indicates that AIT is particularly effective in industries with low adaptation resistance. When both the relabeling rate and industry adaptation resistance are low (high), Model BA (Model O) achieves a triple win. (3) Sequentially, when the industry adaptation resistance is low, AIT can significantly improve total profits, consumer surplus (CS), and social welfare (SW). Compared to Model BD, revenue-sharing offers slight advantages in CS but notable disadvantages in SW. Full article
(This article belongs to the Section e-Commerce Analytics)
Show Figures

Figure 1

18 pages, 1684 KiB  
Article
Genetic Erosion in Captive Alpine Musk Deer Highlights the Challenges of Conserving Endangered Species in Closed Populations
by Han Jiang, Luyao Hai, Zhengwei Luo, Xianna Lan, Mi Zhou, Xinghu Qin and Defu Hu
Animals 2025, 15(13), 1827; https://doi.org/10.3390/ani15131827 - 20 Jun 2025
Viewed by 270
Abstract
The alpine musk deer (Moschus chrysogaster) is a critically endangered species in China whose wild populations have precipitously declined due to habitat degradation and poaching. In response, China established the world’s first captive breeding facility for this species in 1990. Despite [...] Read more.
The alpine musk deer (Moschus chrysogaster) is a critically endangered species in China whose wild populations have precipitously declined due to habitat degradation and poaching. In response, China established the world’s first captive breeding facility for this species in 1990. Despite over three decades of closed breeding, the genetic consequences of long-term captivity remain unclear. Here, we present the first comprehensive assessment of mitochondrial genetic diversity in a captive population of 409 individuals, using three mitochondrial markers (D-loop, Cytb, and COI) and comparative data from wild conspecifics. Our results reveal a pronounced reduction in genetic diversity in the captive population compared to wild populations. Nucleotide diversity (π) and haplotype diversity (Hd) were consistently lower across all markers in captivity, with D-loop Hd = 0.639 and π = 0.01073. Further combined sequence analysis revealed a single dominant haplotype (Hap4) representing 56.99% of individuals, indicative of severe haplotype loss and homogenization. Although some haplotypes are shared with wild populations, captive populations exhibit strong genetic differentiation from wild populations, with the captive populations retaining only a limited fraction of the species’ maternal lineages. This pronounced genetic erosion driven by strong founder effects and genetic drift raises concerns about the viability and reintroduction success of this species. These findings highlight the inherent limitations of closed captive populations in preserving evolutionary potential and adaptive capacity. Our study emphasizes the urgent need for evidence-based genetic management, including founder augmentation and population exchange, to mitigate inbreeding and maintain genetic diversity. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Creating Forested Wetlands for Improving Ecosystem Services and Their Potential Benefits for Rural Residents in Metropolitan Areas
by Zhuhong Huang, Yanwei Sun, Rong Sheng, Kun He, Taoyu Wang, Yingying Huang and Xuechu Chen
Water 2025, 17(11), 1682; https://doi.org/10.3390/w17111682 - 2 Jun 2025
Viewed by 459
Abstract
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this [...] Read more.
Intensive farming in urban suburbs often causes habitat loss, soil erosion, wastewater discharge, and agricultural productivity decline, threatening long-term benefits for the local community. We developed a nature-based solution for sustainable land restoration by establishing “Green Treasure Island” (GTI). The aim of this study is to evaluate the ecological restoration effectiveness of GTI and explore its feasibility and replicability for future applications. The core eco-functional zone of GTI—a 7 hm2 forested wetland—embedded a closed-loop framework that integrates land consolidation, ecological restoration, and sustainable land utilization. The forested wetland efficiently removed 65% and 74% of dissolved inorganic nitrogen and phosphorus from agricultural runoff, raised flood control capacity by 22%, and attracted 48 bird species. Additionally, this biophilic recreational space attracted over 3400 visitors in 2022, created green jobs, and promoted local green agricultural product sales. Through adaptive management and nature education activities, GTI evolved into a landmark that represents local natural–social characteristics and serves as a publicly accessible natural park for both rural and urban residents. This study demonstrates the feasibility of creating GTI for improving ecosystem services, providing a practical, low-cost template that governments and local managers can replicate in metropolitan rural areas worldwide to meet both ecological and development goals. Full article
Show Figures

Figure 1

22 pages, 1128 KiB  
Article
Will the Use of AI Undermine Students Independent Thinking?
by Roman Yavich
Educ. Sci. 2025, 15(6), 669; https://doi.org/10.3390/educsci15060669 - 28 May 2025
Viewed by 2647
Abstract
In recent years, the rapid integration of artificial intelligence (AI) technologies into education has sparked intense academic and public debate regarding their impact on students’ cognitive development. One of the central concerns raised by researchers and practitioners is the potential erosion of critical [...] Read more.
In recent years, the rapid integration of artificial intelligence (AI) technologies into education has sparked intense academic and public debate regarding their impact on students’ cognitive development. One of the central concerns raised by researchers and practitioners is the potential erosion of critical and independent thinking skills in an era of widespread reliance on neural network-based technologies. On the one hand, AI offers new opportunities for personalized learning, adaptive content delivery, and increased accessibility and efficiency in the educational process. On the other hand, growing concerns suggest that overreliance on AI-driven tools in intellectual tasks may reduce students’ motivation to engage in self-directed analysis, diminish cognitive effort, and lead to weakened critical thinking skills. This paper presents a comprehensive analysis of current research on this topic, including empirical data, theoretical frameworks, and practical case studies of AI implementation in academic settings. Particular attention is given to the evaluation of how AI-supported environments influence students’ cognitive development, as well as to the pedagogical strategies that can harmonize technological assistance with the cultivation of autonomous and reflective thinking. This article concludes with recommendations for integrating AI tools into educational practice not as replacements for human cognition, but as instruments that enhance critical engagement, analytical reasoning, and academic autonomy. Full article
Show Figures

Figure 1

20 pages, 5645 KiB  
Article
Experimental Study and Numerical Simulation of Sediment’s Promoting Effect on Cavitation Based on Flow Field Analysis
by Zeyuan Yang, Gang Yu and Qin Zhao
Processes 2025, 13(5), 1299; https://doi.org/10.3390/pr13051299 - 24 Apr 2025
Viewed by 415
Abstract
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural [...] Read more.
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural river sand samples with a median diameter of 0.05, 0.07, and 0.09 mm are selected, and sediment-laden water with a concentration of 10, 30, and 50 g/L is prepared. The results indicate that increasing the sediment concentration or reducing the sediment size intensifies cavitation, and the influence of the sediment concentration is significantly greater than that of the sediment size. Meanwhile, the numerical simulation is conducted based on a gas–liquid–solid phase mixing model. The findings indicate that a higher sediment concentration corresponds to a greater shearing effect near the wall, which raises the drag on the attached sheet-like cavitation clouds and enhances the re-entrant jet which can intensify the shedding of cavitation clouds. Furthermore, sediment particles contribute to more vortices. Therefore, for hydraulic machinery operating in sediment-laden water of high concentration, the relative velocity should be reduced to mitigate the shearing effect, thereby weakening the synergy of cavitation and sediment erosion at the turbine runner. Full article
(This article belongs to the Special Issue CFD Applications in Renewable Energy Systems)
Show Figures

Figure 1

19 pages, 8529 KiB  
Article
Spatio-Temporal Evolution of Water-Regulating Ecosystem Services Values in Morocco’s Protected Areas: A Case Study of Ifrane National Park
by Oumayma Sadgui, Abdellatif Khattabi and Zouhir Dichane
Land 2025, 14(4), 831; https://doi.org/10.3390/land14040831 - 11 Apr 2025
Viewed by 849
Abstract
Water-Regulating Ecosystem Services (WRES) play a crucial role in maintaining water quality and preventing soil erosion, particularly in watershed areas that are vulnerable to Land Use Land Cover Changes (LULCC) and climate change. This study focuses on the Upper Beht Watershed, the most [...] Read more.
Water-Regulating Ecosystem Services (WRES) play a crucial role in maintaining water quality and preventing soil erosion, particularly in watershed areas that are vulnerable to Land Use Land Cover Changes (LULCC) and climate change. This study focuses on the Upper Beht Watershed, the most ecologically significant basin of the Ifrane National Park (INP). The main objective is to understand how WRES values respond to the challenges posed by grasslands degradation, agricultural intensification, and urban expansion before and after the park’s creation. In this research, we first analyzed historical Land Use Land Cover (LULC) data from 1992 to 2022 using Google Earth Engine platform. We then employed the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST 3.10.2) models to quantify and map the impacts of ongoing LULCC on the watershed’s capacity to retain sediments and nutrients. Finally, we used the damage costs avoided method for economic assessment of WRES. Our findings demonstrate a notable improvement in the economic value of WRES following the establishment of the park, reaching USD 10,000 per year. In contrast, prior to its creation, this service experienced a decline of USD −7000 per year. This positive trend can be attributed to the expansion of forest cover in areas prioritized for reforestation and conservation interventions. The study highlights the critical importance of continuous WRES monitoring, providing park managers with robust data to advocate for sustained conservation efforts and increased investment in restoration initiatives within protected areas. Moreover, the findings can be used to raise awareness among local communities and encourage their active engagement in sustainable development initiatives. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

14 pages, 541 KiB  
Article
Toward Sustainable Tourism: An Activity-Based Segmentation of the Rural Tourism Market in China
by Lin Fu, Junko Sanada and Wenzheng Zhang
Sustainability 2025, 17(8), 3341; https://doi.org/10.3390/su17083341 - 9 Apr 2025
Viewed by 759
Abstract
Rural areas are increasingly popular tourist destinations, contributing to socioeconomic development while also posing sustainability challenges. Recent research emphasizes that the sustainability of tourist destinations largely depends on the types of visitors they attract. This study aims to conduct a segmentation analysis of [...] Read more.
Rural areas are increasingly popular tourist destinations, contributing to socioeconomic development while also posing sustainability challenges. Recent research emphasizes that the sustainability of tourist destinations largely depends on the types of visitors they attract. This study aims to conduct a segmentation analysis of tourists’ motivations and behaviors in Chinese rural tourism to gain market insights and guide destination demand management with a focus on sustainable development. Survey data were collected from 517 tourists in northern China using a self-administered questionnaire. The results identify four key tourist groups: urbanists, food and architecture enthusiasts, history lovers, and multiple experience seekers. Cluster analysis reveals that while most tourists prioritize leisure and entertainment, history lovers demonstrate a stronger interest in rural and agricultural experiences, positioning them as crucial to promoting sustainable tourism. In contrast, urbanists and food and architecture enthusiasts, though contributing economically, engage less with agricultural and environmental aspects, raising concerns about mass tourism and the erosion of rural authenticity. This research contributes to the expanding literature on rural tourism in China, providing insights into market segmentation as a tool for fostering sustainable development. It also offers practical implications for policymakers and destination managers to better align tourism strategies with sustainability objectives. Full article
Show Figures

Figure 1

13 pages, 267 KiB  
Article
What If I Prefer Robot Journalists? Trust and Objectivity in the AI News Ecosystem
by Elena Yeste-Piquer, Jaume Suau-Martínez, Marçal Sintes-Olivella and Enric Xicoy-Comas
Journal. Media 2025, 6(2), 51; https://doi.org/10.3390/journalmedia6020051 - 1 Apr 2025
Viewed by 1468
Abstract
The use of artificial intelligence (AI) in journalism has transformed the sector, with media generating content automatically without journalists’ involvement, and various media companies implementing AI solutions. Some research suggests AI-authored articles are perceived as equally credible as human-written content, while others raise [...] Read more.
The use of artificial intelligence (AI) in journalism has transformed the sector, with media generating content automatically without journalists’ involvement, and various media companies implementing AI solutions. Some research suggests AI-authored articles are perceived as equally credible as human-written content, while others raise concerns about misinformation and trust erosion Most studies focus on journalists’ views, with audience attitudes explored mainly through quantitative methods, though there is no consensus regarding the acceptability of AI use by news organizations. We explore AI’s role in journalism through audience research, conducting five focus groups to understand public perceptions. The findings highlight concerns about AI-generated content, particularly potential errors, opacity, and coldness of the content. The information is perceived as somewhat less valuable, being viewed as more automated and requiring less human effort. These concerns coexist with a certain view of AI content as more objective, unbiased, and closer to the ideal of independence from political and economic pressures. Nevertheless, citizens with more AI knowledge question the neutrality of automated content, suspecting biases from corporate interests or journalists influencing the prompts. Full article
16 pages, 10429 KiB  
Article
Friction and Wear Performances and Mechanisms of Graphite/Copper Composites Under Electrical Contact in Marine Environments
by Nenghui Wang, Chuanfeng Wang, Wenhu Xu, Weiping Cheng, Haihong Wu and Hongsheng Li
Materials 2025, 18(7), 1516; https://doi.org/10.3390/ma18071516 - 28 Mar 2025
Cited by 1 | Viewed by 461
Abstract
Marine environment-induced apparatus failures have led to substantial losses in marine engineering. Graphite/copper composites, known for their excellent electrical conductivity and wear resistance, are extensively utilized in various electric contact devices. However, research on the current-carrying friction and wear behavior of graphite/copper composites [...] Read more.
Marine environment-induced apparatus failures have led to substantial losses in marine engineering. Graphite/copper composites, known for their excellent electrical conductivity and wear resistance, are extensively utilized in various electric contact devices. However, research on the current-carrying friction and wear behavior of graphite/copper composites in marine environments is still limited. This study investigates the effects of mating materials, graphite content (30 wt.% and 45 wt.%), and electric voltage on the friction and wear mechanisms of graphite/copper composites in seawater. The results show that under seawater coupled with electricity, no mass loss was observed in the 30 wt.% graphite composites after friction tests against different counterparts. Electric voltage (3 V) affects the composite’s damage mechanism, inducing delamination wear, arc erosion and accelerating corrosion. Specifically, the electricity factor promotes oxidation recreations while inhibiting chlorine formation. Notably, when the composite is paired with gold-coated copper, it undergoes electrochemical reactions, leading to the formation of needle-like copper oxide. These oxides alter the surface morphology, elevate the mass of worn composites, and raise the friction coefficient of the tribopair to approximately 0.3, an increase from 0.2. Full article
Show Figures

Figure 1

20 pages, 1670 KiB  
Article
Heavy Rainfall Impact on Agriculture: Crop Risk Assessment with Farmer Participation in the Paravanar Coastal River Basin
by Krishnaveni Muthiah, K. G. Arunya, Venkataramana Sridhar and Sandeep Kumar Patakamuri
Water 2025, 17(5), 658; https://doi.org/10.3390/w17050658 - 24 Feb 2025
Viewed by 3241
Abstract
Heavy rainfall significantly impacts agriculture by damaging crops and causing substantial economic losses. The Paravanar River Basin, a coastal river basin in India, experiences heavy rainfall during the monsoon season. This study analyzed both ground-level rainfall measurements and farmers’ experiences to understand the [...] Read more.
Heavy rainfall significantly impacts agriculture by damaging crops and causing substantial economic losses. The Paravanar River Basin, a coastal river basin in India, experiences heavy rainfall during the monsoon season. This study analyzed both ground-level rainfall measurements and farmers’ experiences to understand the effects of heavy rainfall on agriculture. Rainfall data from nine rain gauge locations were analyzed across three cropping seasons: Kharif 1 (June to August), Kharif 2 (September to November), and Rabi (December to May). To determine the frequency of heavy rainfall events, a detailed analysis was conducted based on the standards set by the India Meteorological Department (IMD). Villages near stations showing increasing rainfall trends and a higher frequency of heavy rainfall events were classified as vulnerable. The primary crops cultivated in these vulnerable areas were identified through a questionnaire survey with local farmers. A detailed analysis of these crops was conducted to determine the cropping season most affected by heavy rainfall events. The impacts of heavy rainfall on the primary crops were assessed using the Delphi technique, a score-based crop risk assessment method. These impacts were categorized into eight distinct types. Among them, yield reduction, waterlogging, crop damage, soil erosion, and crop failure emerged as the most significant challenges in the study area. Additional impacts included nutrient loss, disrupted microbial activity, and disease outbreaks. Based on this evaluation, risks were classified into five categories: low risk, moderate risk, high risk, very high risk, and extreme risk. This categorization offers a framework for understanding potential consequences and making informed decisions. To address these challenges, the study recommended mitigation measures such as crop management, soil management, and drainage management. Farmers were also encouraged to conduct a cause-and-effect analysis. This bottom-up approach raised awareness among farmers and provided practical solutions to reduce crop losses and mitigate the effects of heavy rainfall. Full article
Show Figures

Figure 1

17 pages, 8015 KiB  
Article
CFD-DPM Model of Gas–Solid Two-Phase Flow Erosion of Needle Throttle Valve
by Zhihui Zhao, Zhe Wu, Weiqiang Wang, Xingyu Wang, Shengnan Du, Xianlei Chen, Panfeng Li and Yingying Wang
Coatings 2025, 15(2), 248; https://doi.org/10.3390/coatings15020248 - 19 Feb 2025
Viewed by 1077
Abstract
During shale gas field production, wellhead throttle valves are prone to erosion caused by solid particles carried in the gas stream, posing significant safety risks. Existing studies on erosion primarily focus on simple structure like elbows and tees, while research on gas–solid two-phase [...] Read more.
During shale gas field production, wellhead throttle valves are prone to erosion caused by solid particles carried in the gas stream, posing significant safety risks. Existing studies on erosion primarily focus on simple structure like elbows and tees, while research on gas–solid two-phase flow erosion in needle throttle valves remains limited. This paper establishes a numerical model based on the CFD-DPM approach, integrating actual shale gas field production conditions to investigate the erosion behavior of needle throttle valves under varying openings, particle sizes, inlet velocities, and particle mass flow rates. The results show that the valve spool consistently exhibits the highest erosion rate among all components, with the most severe erosion localized at its front end. At a 1/4 opening, particles colliding with the spool exhibit significantly increased frequency and energy when re-entering the upstream pipeline, raising the risk of blockages. Furthermore, when the opening exceeds 2/4, the valve chamber experiences higher erosion rates than the upstream and downstream pipelines. This study provides critical insights for optimizing valve design and maintenance strategies, thereby enhancing service life and ensuring safe shale gas production. Full article
Show Figures

Figure 1

15 pages, 10351 KiB  
Article
Life Prediction of Penstock Based on Strength Simulation and Sediment Wear Test
by Liang Peng, Jiayang Pang, Ziyao Zhou, Haiqi Wang, Shenhui Li, Wenping Xiang, Xutao Yi and Xiaobing Liu
Processes 2025, 13(2), 414; https://doi.org/10.3390/pr13020414 - 4 Feb 2025
Cited by 1 | Viewed by 860
Abstract
A hydropower station, which has been in operation for over 50 years, has a penstock located in the plant’s open pipe section. Recently, concerns have been raised regarding the potential risks to the penstock’s safe operation due to wall thinning caused by abrasion. [...] Read more.
A hydropower station, which has been in operation for over 50 years, has a penstock located in the plant’s open pipe section. Recently, concerns have been raised regarding the potential risks to the penstock’s safe operation due to wall thinning caused by abrasion. A series of stress tests, strength mathematical model analysis, and sediment erosion tests were performed on the penstock during turbine load rejection events. A stress and strain monitoring system for the steel pressure pipe was developed, enabling real-time monitoring and providing a warning function. The current wall thickness of the steel pressure pipe is about 28 mm. The results indicate that a pipe rupture is unlikely under any load rejection scenario. However, if the wall thickness is reduced to around 24 mm, the maximum equivalent stress of the pipe will approach the safety limit during load rejection. The sediment erosion test showed an erosion rate of 3.509 × 10–5 mm/h at an average sediment concentration of 0.63 kg/m3. Assuming no other factors, such as an increase in river sediment concentration, and based on the design specifications of the steel pressure pipe and the annual average sediment concentration of 0.63 kg/m3, it is projected that the open pipe section can be operated for about 19 years before the wall thickness reaches 24 mm. It is recommended that once the wall thickness reaches 24 mm due to erosion or other factors, the pipeline system undergoes maintenance or replacement. The findings provide significant guidance for the operation of similar power stations. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop