Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (115)

Search Parameters:
Keywords = rain cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9010 KiB  
Article
Micro-Location Temperature Prediction Leveraging Deep Learning Approaches
by Amadej Krepek, Iztok Fister and Iztok Fister
Appl. Sci. 2025, 15(12), 6793; https://doi.org/10.3390/app15126793 - 17 Jun 2025
Viewed by 352
Abstract
Nowadays, technological progress has promoted the integration of artificial intelligence into modern human lives rapidly. On the other hand, extreme weather events in recent years have started to influence human well-being. As a result, these events have been addressed by artificial intelligence methods [...] Read more.
Nowadays, technological progress has promoted the integration of artificial intelligence into modern human lives rapidly. On the other hand, extreme weather events in recent years have started to influence human well-being. As a result, these events have been addressed by artificial intelligence methods more and more frequently. In line with this, the paper focuses on searching for predicting the air temperature in a particular Slovenian micro-location by using a weather prediction model Maximus based on a long-short term memory neural network learned by the long-term, lower-resolution dataset CERRA. During this huge experimental study, the Maximus prediction model was tested with the ICON-D2 general-purpose weather prediction model and validated with real data from the mobile weather station positioned at a specific micro-location. The weather station employs Internet of Things sensors for measuring temperature, humidity, wind speed and direction, and rain, while it is powered by solar cells. The results of comparing the Maximus proposed prediction model for predicting the air temperature in micro-locations with the general-purpose weather prediction model ICON-D2 has encouraged the authors to continue searching for an air temperature prediction model at the micro-location in the future. Full article
(This article belongs to the Special Issue Deep Learning and Data Mining: Latest Advances and Applications)
Show Figures

Figure 1

28 pages, 3219 KiB  
Article
The Effect of Cropping System and Irrigation Regime on the Plant Growth and Biochemical Profile of Cichorium spinosum
by Beatriz H. Paschoalinotto, Nikolaos Polyzos, Vasiliki Liava, Filipa Mandim, Tânia C. S. P. Pires, Mikel Añibarro-Ortega, Isabel C. F. R. Ferreira, Maria Inês Dias, Lillian Barros and Spyridon A. Petropoulos
Horticulturae 2025, 11(3), 306; https://doi.org/10.3390/horticulturae11030306 - 11 Mar 2025
Cited by 2 | Viewed by 820
Abstract
This study evaluated the effects of three irrigation treatments (control (rain-fed plants), deficit irrigation (DI: 50% of maximum field capacity), full irrigation (FI: 100% of maximum field capacity)), and two crop-management treatments (with or without crop rotation with bean, CR, and NCR, respectively) [...] Read more.
This study evaluated the effects of three irrigation treatments (control (rain-fed plants), deficit irrigation (DI: 50% of maximum field capacity), full irrigation (FI: 100% of maximum field capacity)), and two crop-management treatments (with or without crop rotation with bean, CR, and NCR, respectively) on the plant growth and chemical composition of C. spinosum. The results indicated that deficit irrigation combined with crop rotation increased the weight of leaves per plant, followed by rain-fed plants for the same crop-management treatment. Additionally, these two factors significantly influenced the nutritional profile, free sugars, and organic acid content in a variable manner. Moreover, the control treatment and deficit irrigation increased the content of K, Na, and Mg, which are highly mobile nutrients, whereas the levels of moderately mobile nutrients such as Fe, Mn, Cu, and Zn decreased. Deficit irrigation without crop rotation significantly increased the content of total tocopherols, followed by deficit irrigation with crop rotation and full irrigation without crop rotation. The main fatty acids were α-linolenic acid (C18:3n3), followed by palmitic acid (C16:0) and linoleic acid (C18:2n6), while the control and deficit irrigation treatments combined with crop rotation increased PUFA and decreased SFA content. Furthermore, deficit irrigation and crop rotation induced the accumulation of phenolic compounds, flavonoids, and phenolic acids, especially the content of the major compounds (e.g., chicoric acid, quercetin-O-hexurunoside, and luteolin-O-hexurunoside). The leaf extracts exhibited varied antioxidant activity (assessed by TBARS and OxHLIA assays), and antimicrobial activity. On the other hand, no antifungal, antiproliferative (except for AGS cell line), hepatotoxic, or anti-inflammatory effects were recorded. In conclusion, the combination of deficit irrigation and crop rotation with bean positively affected the quality traits and the fresh weight of leaves, thus suggesting that such eco-friendly practices could have beneficial effects in the cultivation of C. spinosum plants within the context of climate-change mitigation strategies. Full article
Show Figures

Figure 1

18 pages, 3267 KiB  
Article
WindRAD Scatterometer Quality Control in Rain
by Zhen Li, Anton Verhoef and Ad Stoffelen
Remote Sens. 2025, 17(3), 560; https://doi.org/10.3390/rs17030560 - 6 Feb 2025
Viewed by 584
Abstract
Rain backscatter corrupts Ku-band scatterometer wind retrieval by mixing with the signatures of the σ (backscatter measurements) on the sea surface. The measurements are sensitive to rain clouds due to the short wavelength, and the rain-contaminated measurements in a wind vector cell [...] Read more.
Rain backscatter corrupts Ku-band scatterometer wind retrieval by mixing with the signatures of the σ (backscatter measurements) on the sea surface. The measurements are sensitive to rain clouds due to the short wavelength, and the rain-contaminated measurements in a wind vector cell (WVC) deviate from the simulated measurements using the wind geophysical model function (GMF). Therefore, quality control (QC) is essential to guarantee the retrieved winds’ quality and consistency. The normalized maximum likelihood estimator (MLE) residual (Rn) is a QC indicator representing the distance between the σ measurements and the wind GMF; it works locally for one WVC. JOSS is another QC indicator. It is the speed component of the observation cost function, which is sensitive to spatial inconsistencies in the wind field. RnJ is a combined indicator, and it takes both local information (Rn) and spatial consistency (JOSS) into account. This paper focuses on the QC for WindRAD, a dual-frequency (C and Ku band) rotating-fan-beam scatterometer. The Rn and RnJ have been established and thoroughly investigated for Ku-band-only and combined C–Ku wind retrieval. An additional 0.4% of WVCs are rejected with RnJ, as compared to Rn for both Ku-band-only and combined C–Ku wind retrievals. The number of accepted WVCs with high rain rates (>7 mm/h) is reduced by half, and the wind verification with respect to ECMWF winds is generally improved. The C-band measurements are little influenced by rain, so the Ku-based Rn is more effective for the combined C–Ku wind retrieval than the total Rn from both the C and Ku bands. The rejection rate of the combined C–Ku retrievals reduces by about half compared to the Ku-band-only retrieval, with similar wind verification statistics. Therefore, adding the C band into the retrieval suppresses the rain effect, and acceptable QC capabilities can be achieved with fewer rejected winds. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Figure 1

13 pages, 3941 KiB  
Article
Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete
by Augusta Ivaškė, Ronaldas Jakubovskis, Renata Boris and Jaunius Urbonavičius
Materials 2024, 17(23), 5797; https://doi.org/10.3390/ma17235797 - 26 Nov 2024
Cited by 2 | Viewed by 1469
Abstract
The capacity of biological self-healing concrete (BSHC) to repair cracks relies on the sustained viability and metabolic function of bacteria embedded within the concrete. BSHC structures face significant risk in cold climates due to low temperatures and freeze–thaw (FT) cycles, during which freezing [...] Read more.
The capacity of biological self-healing concrete (BSHC) to repair cracks relies on the sustained viability and metabolic function of bacteria embedded within the concrete. BSHC structures face significant risk in cold climates due to low temperatures and freeze–thaw (FT) cycles, during which freezing water can generate internal pressure that damages bacterial cells and diminishes their activity. A special feature of this study is the incorporation of bacterial spores within expanded clay aggregates, tested under varying environmental conditions. The viability of bacterial spores was measured under cold and freeze–thaw cycles by counting colony-forming units, and a specific methodology was developed to assess the efficiency of self-healing under rain-simulated conditions. It was demonstrated that bacteria embedded in concrete could endure fluctuations in low temperatures and freeze–thaw cycles, compromising approximately 50% of viable spores. Also, it was found that water immersion during concrete curing can trigger early germination, decreasing viable spore counts by nearly tenfold. Ultimately, it was demonstrated that the healing of cracks in BSHC components is influenced by the conditions under which the specimens are incubated. The results suggest that BSHC can be employed in cold climate areas, given that suitable curing conditions and adequate bacterial protection within the concrete are ensured. Full article
Show Figures

Figure 1

25 pages, 11175 KiB  
Article
Performance Evaluation of Satellite Precipitation Products During Extreme Events—The Case of the Medicane Daniel in Thessaly, Greece
by Dimitrios Katsanos, Adrianos Retalis, John Kalogiros, Basil E. Psiloglou, Nikolaos Roukounakis and Marios Anagnostou
Remote Sens. 2024, 16(22), 4216; https://doi.org/10.3390/rs16224216 - 12 Nov 2024
Cited by 1 | Viewed by 1267
Abstract
Mediterranean tropical-like cyclones, or Medicanes, present unique challenges for precipitation estimations due to their rapid development and localized impacts. This study evaluates the performance of satellite precipitation products in capturing the precipitation associated with Medicane Daniel that struck Greece in early September 2023. [...] Read more.
Mediterranean tropical-like cyclones, or Medicanes, present unique challenges for precipitation estimations due to their rapid development and localized impacts. This study evaluates the performance of satellite precipitation products in capturing the precipitation associated with Medicane Daniel that struck Greece in early September 2023. Utilizing a combination of ground-based observations, reanalysis, and satellite-derived precipitation data, we assess the accuracy and spatial distribution of the satellite precipitation products GPM IMERG, GSMaP, and CMOPRH during the cyclone event, which formed in the Eastern Mediterranean from 4 to 7 September 2023, hitting with unprecedented, enormous amounts of rainfall, especially in the region of Thessaly in central Greece. The results indicate that, while satellite precipitation products demonstrate overall skill in capturing the broad-scale precipitation patterns associated with Medicane Daniel, discrepancies exist in estimating localized intense rainfall rates, particularly in convective cells within the cyclone’s core. Indeed, most of the satellite precipitation products studied in this work showed a misplacement of the highest amounts of associated rainfall, a significant underestimation of the event, and large unbiased root mean square error in the areas of heavy precipitation. The total precipitation field from IMERG Late Run and CMORPH showed the smallest bias (but significant) and good temporal correlation against rain gauges and ERA5-Land reanalysis data as a reference, while IMERG Final Run and GSMaP showed the largest underestimation and overestimation, respectively. Further investigation is needed to improve the representation of extreme precipitation events associated with tropical-like cyclones in satellite precipitation products. Full article
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1–5 Weeks in International Space Station
by Juliette Restier-Verlet, Mélanie L. Ferlazzo, Adeline Granzotto, Joëlle Al-Choboq, Camélia Bellemou, Maxime Estavoyer, Florentin Lecomte, Michel Bourguignon, Laurent Pujo-Menjouet and Nicolas Foray
Cells 2024, 13(20), 1703; https://doi.org/10.3390/cells13201703 - 15 Oct 2024
Cited by 1 | Viewed by 1489
Abstract
Radiation impacting astronauts in their spacecraft come from a “bath” of high-energy rays (0.1–0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a “stochastic rain” of low-energy particles from the shielding and impacting surface tissues like skin [...] Read more.
Radiation impacting astronauts in their spacecraft come from a “bath” of high-energy rays (0.1–0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a “stochastic rain” of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1–5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration. Full article
Show Figures

Figure 1

23 pages, 8642 KiB  
Article
The Impact of Green Infrastructure on the Quality of Stormwater and Environmental Risk
by Izabela Godyń, Agnieszka Grela, Krzysztof Muszyński and Justyna Pamuła
Sustainability 2024, 16(19), 8530; https://doi.org/10.3390/su16198530 - 30 Sep 2024
Cited by 5 | Viewed by 2013
Abstract
Increasing urbanization and the associated sealing of areas and the use of storm sewer systems for drainage not only increase the risk of flooding but also reduce water quality in streams into which stormwater is discharged. Green infrastructure (GI) measures are applied with [...] Read more.
Increasing urbanization and the associated sealing of areas and the use of storm sewer systems for drainage not only increase the risk of flooding but also reduce water quality in streams into which stormwater is discharged. Green infrastructure (GI) measures are applied with the aim of managing this stormwater sustainably and reducing the associated risks. To this end, a quantitative–qualitative approach was developed to simulate GI—namely, rain gardens, bioretention cells, and vegetative bioswales—at the urban catchment scale. The findings highlight the potential of applying GI measures to managing stormwater more effectively in urban environments and mitigating its negative pollution-related impacts. For the housing estate analyzed, a simulated implementation of GI resulted in a reduction in pollution, measured as total nitrogen (N; 9–52%), nitrate-N (5–30%), total phosphorus (11–59%), chemical oxygen demand (8–46%), total suspended solids (13–73%), copper (12–64%), zinc (Zn; 16–87%), polycyclic aromatic hydrocarbons (16–91%), and the hydrocarbon oil index (HOI; 15–85%). Reducing the concentrations of pollutants minimizes the risk to human health determined via the HOI from a low-risk level to zero risk and reduces the ecological risk in terms of Zn pollution from a significant risk to a low risk of adverse effects. The modeling conducted clearly shows that the GI solutions implemented facilitated a quantitative reduction and a qualitative improvement in stormwater, which is crucial from an environmental perspective and ensures a sustainable approach to stormwater management. Lowering the levels of stormwater pollution through the implementation of GI will consequently lower the environmental burden of pollutants in urban areas. Full article
Show Figures

Figure 1

10 pages, 3768 KiB  
Communication
Proposal for a New Differential High-Sensitivity Refractometer for the Simultaneous Measurement of Two Refractive Indices and Their Differences
by Šimons Svirskis, Dmitrijs Merkulovs and Vladimirs Kozlovs
Sensors 2024, 24(11), 3340; https://doi.org/10.3390/s24113340 - 23 May 2024
Viewed by 1463
Abstract
The refractive index of a liquid serves as a fundamental parameter reflecting its composition, thereby enabling the determination of component concentrations in various fields such as chemical research, the food industry, and environmental monitoring. Traditional methods for refractive index (RI) measurement rely on [...] Read more.
The refractive index of a liquid serves as a fundamental parameter reflecting its composition, thereby enabling the determination of component concentrations in various fields such as chemical research, the food industry, and environmental monitoring. Traditional methods for refractive index (RI) measurement rely on light deflection angles at interfaces between the liquid and a material with a known refractive index. In this paper, the authors present a new differential refractometer for the highly sensitive measurement of RI differences between two liquid samples. Using a configuration with two cells equipped with flat parallel plates as measuring elements, the instrument facilitates accurate analysis. Namely, the sensor signals from both the solution and the solvent cuvette are generated simultaneously with one laser pulse, reducing the possible fluctuations in the laser radiation intensity. Our evaluation shows the high sensitivity of RI measurements <7×106), so this differential refractometer can be proposed not only as a high-sensitivity sensing tool that can be used for mobile detection of nanoparticles in solution samples but also to determine the level of environmental nano-pollution using water (including rain, snow) samples from various natural as well as industrial sources, thus helping to solve some important environmental problems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 8090 KiB  
Article
Karenia brevis and Pyrodinium bahamense Utilization of Dissolved Organic Matter in Urban Stormwater Runoff and Rainfall Entering Tampa Bay, Florida
by Amanda L. Muni-Morgan, Mary G. Lusk and Cynthia A. Heil
Water 2024, 16(10), 1448; https://doi.org/10.3390/w16101448 - 19 May 2024
Cited by 4 | Viewed by 2095
Abstract
This study investigated how nitrogen and dissolved organic matter (DOM) from stormwater runoff and rainfall support the growth of Karenia brevis and Pyrodinium bahamense. Excitation–emission matrix spectroscopy coupled with parallel factor analysis tracked changes in the optical properties of DOM in each [...] Read more.
This study investigated how nitrogen and dissolved organic matter (DOM) from stormwater runoff and rainfall support the growth of Karenia brevis and Pyrodinium bahamense. Excitation–emission matrix spectroscopy coupled with parallel factor analysis tracked changes in the optical properties of DOM in each bioassay, revealing greater reactivity of terrestrial humic-like DOM. Significant increases in cell yield and specific growth rates were observed upon additions of runoff for both species, with significant increases in specific growth rates upon the addition of a 2 in simulated rain event for P. bahamense only. By hour 48, 100% of the dissolved organic nitrogen (DON) in each treatment was utilized by P. bahamense, and by hour 72, over 50% of the DON was utilized by K. brevis. The percentage of bioavailable dissolved organic carbon (DOC) was greater for P. bahamense compared to K. brevis, suggesting a greater affinity for DOC compounds by P. bahamense. However, the bioavailability of DOM for each species could be owed to distinct chemical characteristics of labile DOM conveyed from each site. This study demonstrates that stormwater runoff and rainfall are both sources of labile DOM and DON for K. brevis and P. bahamense, which has implications for blooms of these species in Tampa Bay waters. Full article
(This article belongs to the Special Issue Eutrophication and Harmful Algae in Aquatic Ecosystems)
Show Figures

Graphical abstract

15 pages, 1973 KiB  
Review
NO and H2S Contribute to Crop Resilience against Atmospheric Stressors
by Francisco J. Corpas
Int. J. Mol. Sci. 2024, 25(6), 3509; https://doi.org/10.3390/ijms25063509 - 20 Mar 2024
Cited by 8 | Viewed by 1563
Abstract
Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O [...] Read more.
Atmospheric stressors include a variety of pollutant gases such as CO2, nitrous oxide (NOx), and sulfurous compounds which could have a natural origin or be generated by uncontrolled human activity. Nevertheless, other atmospheric elements including high and low temperatures, ozone (O3), UV-B radiation, or acid rain among others can affect, at different levels, a large number of plant species, particularly those of agronomic interest. Paradoxically, both nitric oxide (NO) and hydrogen sulfide (H2S), until recently were considered toxic since they are part of the polluting gases; however, at present, these molecules are part of the mechanism of response to multiple stresses since they exert signaling functions which usually have an associated stimulation of the enzymatic and non-enzymatic antioxidant systems. At present, these gasotransmitters are considered essential components of the defense against a wide range of environmental stresses including atmospheric ones. This review aims to provide an updated vision of the endogenous metabolism of NO and H2S in plant cells and to deepen how the exogenous application of these compounds can contribute to crop resilience, particularly, against atmospheric stressors stimulating antioxidant systems. Full article
Show Figures

Figure 1

30 pages, 1622 KiB  
Review
Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results
by György Trencsényi, Csaba Csikos and Zita Képes
Int. J. Mol. Sci. 2024, 25(1), 664; https://doi.org/10.3390/ijms25010664 - 4 Jan 2024
Cited by 9 | Viewed by 4531
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific [...] Read more.
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes—Radium-223 and Radium-224 (223/224Ra)—in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

18 pages, 10806 KiB  
Article
Characterization and Application of Rice Straw-Based Polyurethane Foam Blocks for Soil Erosion Control
by Felrose P. Maravillas, Christine Joy M. Omisol, Gerson Y. Abilay, Nicholas L. Lasquite, Blessy Joy M. Aguinid, Dave Joseph E. Estrada, Rosal Jane Ruda-Bayor, Evalyn Joy C. Cea, Applegen I. Cavero, Mary Ann N. Ahalajal, Glen A. Lorenzo, Roberto M. Malaluan, Gerard G. Dumancas and Arnold A. Lubguban
Sustainability 2024, 16(1), 261; https://doi.org/10.3390/su16010261 - 27 Dec 2023
Viewed by 2926
Abstract
Soil erosion, a global problem, degrades land quality and increases pollution and sedimentation in bodies of water. This study propounds a new material to mitigate soil erosion using rice straw-based polyurethane foam (RSPF) blocks as a potential replacement for commercially available expanded polystyrene [...] Read more.
Soil erosion, a global problem, degrades land quality and increases pollution and sedimentation in bodies of water. This study propounds a new material to mitigate soil erosion using rice straw-based polyurethane foam (RSPF) blocks as a potential replacement for commercially available expanded polystyrene (EPS) foam in slope stabilization. RSPF was synthesized via a conventional one-shot foaming method with 15% rice straw-based polyol content. The RSPF blocks have an average density of 43.29 kg/m3, average compressive strength of 184.55 kPa, closed cell content of 88.4%, and water absorption capacity of 262% that can effectively reduce water runoff. These properties are comparable to EPS foams according to ASTM D6817, except for the high absorption capacity of RSPF. This added feature allows the foam to act as topsoil protection by reducing runoff. In slope stabilization and topsoil protection applications, the effectiveness of the RSPF blocks in reducing soil loss was tested in both simulated and natural rainfall events with different land slope degrees, rain intensities, and soil covers. Results show that the use of RSPF in the simulated setup with a heavy rain intensity of 80 mm/h reduced the soil loss by 61.5%, 22.7%, and 4.3% in 5°, 10°, and 20° of land slope, respectively. There was also a higher degree of soil loss reduction when the RSPF block was coupled with a natural vegetation soil cover by 79.6%, 70%, and 19.3% in 5°, 10°, and 20° land slopes, respectively. Moreover, in the natural rainfall events in an open field with a land slope of 20°, the recorded soil loss reduction reached 93.6–98.8% at an average rainfall intensity of 16.26 mm/h. Additionally, the relationship between soil loss and land slope was investigated to produce a best fit model that predicts the soil loss up to a 20° land slope. An interesting observation was made wherein the erosion rate increased using linear regression modeling in the simulated setup for bare soil (BS), soil with vegetation (SV), soil with RSPF (SF), and soil with RSPF and vegetation (FV), with high coefficient of determination (R2) values between 0.92 and 0.99. These findings suggest that the RSPF block is a promising alternative and sustainable material for EPS foams in mitigating soil erosion, especially under heavy rainfall conditions. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

19 pages, 24180 KiB  
Article
Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements
by Yaji Wang, Zhi Li, Lei Gao, Yong Zhong and Xinhua Peng
Remote Sens. 2023, 15(23), 5622; https://doi.org/10.3390/rs15235622 - 4 Dec 2023
Cited by 17 | Viewed by 2996
Abstract
Precipitation is an essential element in earth system research, which greatly benefits from the emergence of Satellite Precipitation Products (SPPs). Therefore, assessment of the accuracy of the SPPs is necessary both scientifically and practically. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is one [...] Read more.
Precipitation is an essential element in earth system research, which greatly benefits from the emergence of Satellite Precipitation Products (SPPs). Therefore, assessment of the accuracy of the SPPs is necessary both scientifically and practically. The Integrated Multi-Satellite Retrievals for GPM (IMERG) is one of the most widely used SPPs in the scientific community. However, there is a lack of comprehensive evaluation for the performance of the newly released IMERG Version 07, which is essential for determining its effectiveness and reliability in precipitation estimation. In this study, we compare the IMERG V07 Final Run (V07_FR) with its predecessor IMERG V06_FR across scales from January 2016 to December 2020 over the globe (cross-compare their similarities and differences) and a focused study on mainland China (validate against 2481 rain gauges). The results show that: (1) Globally, the annual mean precipitation of V07_FR increases 2.2% compared to V06_FR over land but decreases 5.8% over the ocean. The two SPPs further exhibit great differences as indicated by the Critical Success Index (CSI = 0.64) and the Root Mean Squared Difference (RMSD = 3.42 mm/day) as compared to V06_FR to V07_FR. (2) Over mainland China, V06_FR and V07_FR detect comparable precipitation annually. However, the Probability of Detection (POD) improves by 5.0%, and the RMSD decreases by 3.7% when analyzed by grid cells. Further, the POD (+0%~+6.1%) and CSI (+0%~+8.8%) increase and the RMSD (−11.1%~0%) decreases regardless of the sub-regions. (3) Under extreme rainfall rates, V07_FR measures 4.5% lower extreme rainfall rates than V06_FR across mainland China. But V07_FR tends to detect more accurate extreme precipitation at both daily and event scales. These results can be of value for further SPP development, application in climatological and hydrological modeling, and risk analysis. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

13 pages, 1004 KiB  
Article
Effect of Acute and Cumulative Stress on Gene Expression in Mammary Tissue and Their Interactions with Physiological Responses and Milk Yield in Saanen Goats
by Marta Liliane de Vasconcelos, Priscila dos Santos Silva, Henrique Barbosa Hooper, Giovana Krempel Fonseca Merighe, Sandra Aparecida de Oliveira and João Alberto Negrão
Animals 2023, 13(23), 3740; https://doi.org/10.3390/ani13233740 - 3 Dec 2023
Cited by 1 | Viewed by 2383
Abstract
This study addresses the hypothesis that different acute stressors can cumulatively decrease milk yield. In fact, in a time of global warming, the impact of environmental stress and farm management practices on milk production remains unclear. In this context, our objective was to [...] Read more.
This study addresses the hypothesis that different acute stressors can cumulatively decrease milk yield. In fact, in a time of global warming, the impact of environmental stress and farm management practices on milk production remains unclear. In this context, our objective was to investigate the effect of acute and cumulative stress on gene expression in mammary tissue and their interactions with physiological responses and milk yield in Saanen goats. Thirty lactating goats were subjected to two treatments: (1) control (CT), in which goats were maintained following a habitual routine under comfort conditions; (2) stress (ST), in which the goats were subjected to different types of environmental stress: heat stress, adrenocorticotropic hormone administration, hoof care management, and exposure to rain. These stressors were performed sequentially, with one stress per day on four consecutive lactation days, to evaluate their effect on milk quality and milk yield. Our results showed that compared to CT goats, cumulative stress increased the gene expression of glucocorticoid receptor (GR), interferon-gamma (IFN-γ), superoxide dismutase (SOD), and catalase (CAT) in mammary tissue, which are indicators of cortisol action, inflammatory response, and antioxidant enzymes. Furthermore, the acute challenges imposed on ST goats changed their rectal temperature and respiratory frequency and increased cortisol, glucose, cholesterol, triglycerides, and high-density lipoprotein release in plasma when compared to CT goats. Although these physiological and metabolic responses restore homeostasis, ST goats showed lower milk yield and higher somatic cell count in milk than CT goats. In conclusion, the results confirmed our initial hypothesis that different acute stressors cumulatively decrease the milk yield in Saanen goats. Full article
(This article belongs to the Special Issue Lactation Physiology and Milk Quality of Small Ruminants)
Show Figures

Figure 1

21 pages, 12639 KiB  
Article
Numerical Simulation of Charge Structure Evolution during the Feeder-Type Cells Merging
by Jie Deng, Fengxia Guo, Jing Sun, Zeyi Wu, Zhou Liu, Xian Lu, Ke Chen and Qingyuan Wang
Atmosphere 2023, 14(10), 1588; https://doi.org/10.3390/atmos14101588 - 20 Oct 2023
Viewed by 1299
Abstract
Formation of the multipolar charge structure during feeder-type cell merging has important consequences in severe convective weather. This study used the Weather Research and Forecasting model with electrification and discharge parameterization schemes to simulate the feeder-type cell merging process in the tail of [...] Read more.
Formation of the multipolar charge structure during feeder-type cell merging has important consequences in severe convective weather. This study used the Weather Research and Forecasting model with electrification and discharge parameterization schemes to simulate the feeder-type cell merging process in the tail of a squall line that occurred on 27 June 2020 in Hubei Province (China). The results showed that the two cells involved in the merging process were at different life stages, but that the distribution of the inductive charging zones in the parent and child cells was broadly the same as that of the non-inductive charging zones. The charging zones were restricted to the mixed-phase region (between the 0 and −40 °C layers) with a cloud water content of >0.2 g/kg in the updraft zone, and the magnitude of the inductive charging rate was slightly smaller than that of the non-inductive charging rate. The differences in the vertical wind shear between the parent and child cells caused differences in the content, charge number, and polarity of the hydrometeors, which resulted in obvious differences in the charge structure characteristics between the two cells. Overall, the cloud droplets, ice, snow, and graupel were the main charged hydrometeors in the cells, whereas the rain and hail had little charge. Full article
Show Figures

Figure 1

Back to TopTop