Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = radon management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4109 KiB  
Article
Quantifying Baseflow with Radon, H and O Isotopes and Field Parameters in the Urbanized Catchment of the Little Jukskei River, Johannesburg
by Khutjo Diphofe, Roger Diamond and Francois Kotze
Hydrology 2025, 12(8), 203; https://doi.org/10.3390/hydrology12080203 - 2 Aug 2025
Viewed by 190
Abstract
Understanding groundwater and surface water interaction is critical for managing water resources, particularly in water-stressed and rapidly urbanizing areas, such as many parts of Africa. A survey was conducted of borehole, spring, seep and river water radon, δ2H, δ18O [...] Read more.
Understanding groundwater and surface water interaction is critical for managing water resources, particularly in water-stressed and rapidly urbanizing areas, such as many parts of Africa. A survey was conducted of borehole, spring, seep and river water radon, δ2H, δ18O and field parameters in the Jukskei River catchment, Johannesburg. Average values of electrical conductivity (EC) were 274 and 411 μS·cm−1 for groundwater and surface water, and similarly for radon, 37,000 and 1100 Bq·m−3, with a groundwater high of 196,000 Bq·m−3 associated with a structural lineament. High radon was a good indicator of baseflow, highest at the end of the rainy season (March) and lowest at the end of the dry season (September), with the FINIFLUX model computing groundwater inflow as 2.5–4.7 L·m−1s−1. High EC was a poorer indicator of baseflow, also considering the possibility of wastewater with high EC, typical in urban areas. Groundwater δ2H and δ18O values are spread widely, suggesting recharge from both normal and unusual rainfall periods. A slight shift from the local meteoric water line indicates light evaporation during recharge. Surface water δ2H and δ18O is clustered, pointing to regular groundwater input along the stream, supporting the findings from radon. Given the importance of groundwater, further study using the same parameters or additional analytes is advisable in the urban area of Johannesburg or other cities. Full article
Show Figures

Figure 1

28 pages, 10033 KiB  
Article
The Role of Mechanical Ventilation in Indoor Air Quality in Schools: An Experimental Comprehensive Analysis
by Vincenzo Ballerini, Maddalena Coccagna, Matteo Bisi, Antonella Volta, Lorenzo Droghetti, Eugenia Rossi di Schio, Paolo Valdiserri and Sante Mazzacane
Buildings 2025, 15(6), 869; https://doi.org/10.3390/buildings15060869 - 11 Mar 2025
Cited by 4 | Viewed by 1128
Abstract
Indoor air quality (IAQ) plays a vital role in supporting both the physical and mental well-being of individuals in enclosed spaces, and the role of mechanical ventilation systems has gained increasing attention due to building design’s focus on energy efficiency and thus airtight [...] Read more.
Indoor air quality (IAQ) plays a vital role in supporting both the physical and mental well-being of individuals in enclosed spaces, and the role of mechanical ventilation systems has gained increasing attention due to building design’s focus on energy efficiency and thus airtight constructions. This study investigated the pre–post effects of installing a heat recovery mechanical ventilation system (MVHR) on indoor air quality in a high school classroom in Ferrara, Italy. The analysis focused on experimental measurements of temperature (T), relative humidity (RH), and carbon dioxide (CO2) both inside and outside the same classroom, which had constant occupancy (17 students) for an entire school year, allowing a comparison between natural and mechanical ventilation. With a comprehensive approach, particulate matter (PM2.5), volatile organic compounds (VOCs), and radon levels (Rn) were monitored as well, after the installation of the MVHR. By comparing natural and mechanical ventilation, the study highlights the strengths and limitations of the ventilation system implemented, together with an evaluation of the system’s energy consumption, including a 2 kW post-heating battery. In terms of results, the MVHR demonstrated clear benefits in managing CO2 levels and improving sensory, olfactory, and psychophysical well-being, as well as the attention levels of students. In detail, under natural ventilation, peak concentrations exceeded 4500 ppm, while mechanical ventilation kept them below 1500 ppm. The average CO2 concentration during occupancy dropped from 2500 ppm to around 1000 ppm, achieving a 62% reduction. However, beneficial effects were not observed for other parameters, such as PM2.5, VOCs, or radon. The latter displayed annual average values around 21 Bq/m3 and peaks reaching 56 Bq/m3. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

32 pages, 382 KiB  
Article
Classical Gasses with Singular Densities
by Luca Di Persio, Yuri Kondratiev and Viktorya Vardanyan
Mathematics 2024, 12(24), 4035; https://doi.org/10.3390/math12244035 - 23 Dec 2024
Viewed by 664
Abstract
We investigate classical continuous systems characterized by singular velocity distributions, where the corresponding Radon measures are defined over the entire space with infinite mass. These singular distributions are used to model particle velocities in systems where traditional velocity distributions do not apply. As [...] Read more.
We investigate classical continuous systems characterized by singular velocity distributions, where the corresponding Radon measures are defined over the entire space with infinite mass. These singular distributions are used to model particle velocities in systems where traditional velocity distributions do not apply. As a result, the particle positions in such systems no longer conform to conventional configurations in physical space. This necessitates the development of novel analytical tools to understand the underlying models. To address this, we introduce a new conceptual framework that redefines particle configurations in phase space, where each particle is represented by its spatial position and a velocity vector. The key idea is the construction of the Plato space, which is designed to represent idealized particle configurations where the total velocity remains bounded within any compact subset of phase space. This space serves as a crucial bridge to the space of vector-valued discrete Radon measures, where each measure captures the velocity distribution over the entire system. Given the inherent complexity of analyzing infinite-dimensional spaces, we tackle the problem by reformulating it onto a finite-dimensional configuration space. This is achieved by decomposing the infinite space into smaller, more manageable components. A central tool in this reformulation is the K-transform, which is pivotal in enabling harmonic analysis of the space. The K-transform allows us to represent the system in terms of components that are more amenable to analysis, thus simplifying the study of the system’s dynamics. Furthermore, we extend previous results in the study of correlation functions by developing correlation measures tailored for these vector-valued Radon measures. These generalized functions provide deeper insights into the correlations between particle positions and velocities, expanding the range of analysis to systems with singular velocity distributions. Through this approach, we develop a robust mathematical framework that sheds light on the structure and dynamics of complex particle systems, especially those characterized by singular velocity distributions. Our results offer a new perspective on systems with non-traditional velocity distributions, advancing the theory and methodology of particle systems in both classical and modern contexts. Full article
8 pages, 488 KiB  
Article
Italian National Radon Action Plan: New Challenges for Risk Assessment
by Giuseppe La Verde, Giuseppe Della Peruta, Chiara Imparato, Fabrizio Ambrosino, Rocco Mottareale, Gaetano Gagliardo and Mariagabriella Pugliese
Atmosphere 2024, 15(7), 846; https://doi.org/10.3390/atmos15070846 - 18 Jul 2024
Cited by 2 | Viewed by 1999
Abstract
Radon gas is one of the chemical pollutants with one of the most significant physical effects due to its impact on human health: it is a radioactive noble gas which, if inhaled, can stochastically induce lung cancer. For this reason, it is classified [...] Read more.
Radon gas is one of the chemical pollutants with one of the most significant physical effects due to its impact on human health: it is a radioactive noble gas which, if inhaled, can stochastically induce lung cancer. For this reason, it is classified as a category A substance and is the second cause of cancer after tobacco smoking. The monitoring and management of indoor radon is based on international recommendations but also national regulations, which, in recent years, have been updated by lowering the reference levels. In this work, some radon activity concentration data were evaluated by comparing the criteria of old and new legislation to highlight how the radiation protection approach has completely changed. Specifically, this study focuses on measurements in Campania, which, due to its originally volcanic geological structure, requires crucial attention in the context of radon risk assessment, given the considerable number of dwellings built in tuff. This initial data processing enabled the identification of potential high-priority radon risk areas, serving as an important reference point for the extension of the monitoring activities in Campania. Full article
(This article belongs to the Special Issue Air Pollution in Italy: Effects, Sources and Control)
Show Figures

Figure 1

19 pages, 636 KiB  
Review
Short-Term vs. Long-Term: A Critical Review of Indoor Radon Measurement Techniques
by Khathutshelo Vincent Mphaga, Thokozani Patrick Mbonane, Wells Utembe and Phoka Caiphus Rathebe
Sensors 2024, 24(14), 4575; https://doi.org/10.3390/s24144575 - 15 Jul 2024
Cited by 3 | Viewed by 2376
Abstract
Radon is a known carcinogen, and the accurate assessment of indoor levels is essential for effective mitigation strategies. While long-term testing provides the most reliable data, short-term testing (STT) offers a quicker and more cost-effective alternative. This review evaluated the accuracy of STT [...] Read more.
Radon is a known carcinogen, and the accurate assessment of indoor levels is essential for effective mitigation strategies. While long-term testing provides the most reliable data, short-term testing (STT) offers a quicker and more cost-effective alternative. This review evaluated the accuracy of STT in predicting annual radon averages and compared testing strategies in Europe (where long-term measurements are common) and the United States (where STT is prevalent). Twenty (20) studies were systematically identified through searches in scientific databases and the grey literature, focusing on STT accuracy and radon management. This review revealed several factors that influence the accuracy of STT. Most studies recommended a minimum four-day test for initial screening, but accuracy varied with radon levels. For low levels (<75 Bq/m3), a one-week STT achieved high confidence (>95%) in predicting annual averages. However, accuracy decreased for moderate levels (approximately 50% success rate), necessitating confirmation with longer testing periods (3 months). High radon levels made STT unsuitable due to significant fluctuations. Seasonality also played a role, with winter months providing a more representative picture of annual radon averages. STT was found to be a useful method for screening low-risk areas with low radon concentrations. However, its limitations were evident in moderate- and high-level scenarios. While a minimum of four days was recommended, longer testing periods (3 months or more) were crucial for achieving reliable results, particularly in areas with potential for elevated radon exposure. This review suggests the need for further research to explore the possibility of harmonizing radon testing protocols between Europe and the United States. Full article
(This article belongs to the Special Issue Detection and Measurement of Radioactive Noble Gases)
Show Figures

Figure 1

40 pages, 5127 KiB  
Review
Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives
by Janja Vaupotič
Sustainability 2024, 16(6), 2424; https://doi.org/10.3390/su16062424 - 14 Mar 2024
Cited by 8 | Viewed by 2520
Abstract
Initially, basic equations are given to express the activity concentrations and concentrations of potential α-energies of radon (222Rn) and thoron (220Tn) and their short-lived products in indoor air. The appearance of short-lived products as a radioactive aerosol is shown, [...] Read more.
Initially, basic equations are given to express the activity concentrations and concentrations of potential α-energies of radon (222Rn) and thoron (220Tn) and their short-lived products in indoor air. The appearance of short-lived products as a radioactive aerosol is shown, and the fraction of the unattached products is particularly exposed, a key datum in radon dosimetry. This fundamental part is followed by giving the sources of radon and thoron indoors, and thus, their products, and displaying the dependence of their levels on the ground characteristics, building material and practice, and living–working habits of residents. Substantial hourly, daily, and seasonal changes in their activity concentrations are reviewed, as influenced by meteorological parameters (air temperature, pressure, humidity, and wind speed) and human activity (either by ventilation, air conditioning and air filtration, or by generating aerosol particles). The role of the aerosol particle concentration and their size distribution in the dynamics of radon products in indoor air has been elucidated, focusing on the fraction of unattached products. Intensifying combined monitoring of radon short-lived products and background aerosol would improve radon dosimetry approaches in field and laboratory experiments. A profound knowledge of the influence of meteorological parameters and human activities on the dynamics of the behaviour of radon and thoron accompanied by their products in the air is a prerequisite to managing sustainable indoor air quality and human health. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

Figure 1

15 pages, 18399 KiB  
Article
Comprehensive Study of Natural Radioactivity in Building Materials: A Case Study in Ica, Peru
by Rafael Liza, Patrizia Pereyra, Daniel Muñoz, Victor Viera, Maria Elena López Herrera, Jhonny Rojas, Daniel Palacios, Félix Díaz, Nhell Cerna, Segundo Rojas and Laszlo Sajo-Bohus
Atmosphere 2024, 15(3), 279; https://doi.org/10.3390/atmos15030279 - 26 Feb 2024
Cited by 3 | Viewed by 2809
Abstract
This study evaluates radon exhalation rates and assesses the potential radiological risks of external exposure to primordial radionuclides in building materials employed in the Ica region of Peru, particularly those with high uranium content. The radon exhalation rates are currently measured using a [...] Read more.
This study evaluates radon exhalation rates and assesses the potential radiological risks of external exposure to primordial radionuclides in building materials employed in the Ica region of Peru, particularly those with high uranium content. The radon exhalation rates are currently measured using a combination of a closed chamber and an active monitor. We proposed a novel method that effectively ensured a hermetic seal for the closed chamber and guaranteed that the efficient maintenance of secular equilibrium. The obtained results ranged from below the detection limit (BDL) to a maximum of 52.3 mBq · kg−1h−1. Gamma spectrometry was employed to measure the concentrations of radionuclides by utilizing a 3′ × 3′ NaI detector. The analysis of cement samples revealed a strong positive correlation between the activity concentration of radium and the radon exhalation rate. The activity concentrations for radionuclides varied, with values ranging from BDL to 60.6 mBq · kg−1h−1 for 226Ra, BDL to 22.3 mBq · kg−1h−1 for 232Th, and BDL to 1074 mBq · kg−1h−1 for 40K. These findings contribute valuable insight to decision-making processes in the Peruvian construction industry, particularly regarding material safety and radiological risk management. Full article
(This article belongs to the Special Issue Indoor Air Pollutants and Public Health (2nd Edition))
Show Figures

Figure 1

25 pages, 16128 KiB  
Article
Incipient Salinization: A Case Study of the Spring of Asclepieion in Lentas (Ancient Lebena), Crete
by Emmanouil Manoutsoglou and Ekaterini S. Bei
Geosciences 2024, 14(3), 56; https://doi.org/10.3390/geosciences14030056 - 21 Feb 2024
Cited by 1 | Viewed by 2521
Abstract
Sanctuaries devoted to Asclepius were established and operated for almost a thousand years in various Greek and Roman cities throughout the Mediterranean region. The Asclepieion sanctuary in Lentas (formerly known as Ancient Lebena) in Crete was famous for receiving water from a sacred [...] Read more.
Sanctuaries devoted to Asclepius were established and operated for almost a thousand years in various Greek and Roman cities throughout the Mediterranean region. The Asclepieion sanctuary in Lentas (formerly known as Ancient Lebena) in Crete was famous for receiving water from a sacred spring. In Ancient Lebena, Levinaion was a famous centre for hydrotherapy, physiotherapy, and a psychiatric hospital. In the present paper, we aim to assess the hydrochemical status of this sacred spring that holds a prominent position in archaeological and historical studies. The main objectives of this study are: Initially, to present supervisory evidence (archaeological, geological, hydrochemical) of an area that was a water resource management model for many centuries, carrying out therapeutic work. The second objective is to present and compare hydrochemical data in the last century, i.e., from 1915 to 2021. The third objective is to highlight and warn of an incipient saltwater intrusion in the area along the Lentas coast. The fourth objective is to propose an alternative and sustainable form of water resources management in the region that requires the study and rational utilization of the sporadic small water springs in the region. Our study focuses on a basic hydrochemical analysis of spring and borehole water in the remains of Levinaion in the Lentas region, and their comparison with sparse historical data of the sacred spring water, aiming to interpret the impact of the changes in the spring water resources that occurred in recent decades due to urban modernization. Our results highlight (i) visible fluctuations in chemical composition of borehole water samples; (ii) a neutral to alkaline pH in borehole waters and an alkaline pH in spring waters; (iii) undetectable arsenic in Lentas borehole water, unlike historical data of Lentas spring water; (iv) low values of dissolved radon in Lentas borehole water and the spring water of Kefalovrysa; and (v) a timeless constant and hypothermic nature of the water of both the sacred spring and borehole of Lentas, and also of the Kefalovrysa spring. The recorded historical data, i.e., from 1915 to 1957, due to the absence of substantial anthropogenic activity in the area, can be used as reference values (natural background levels, NBLs) for the Lentas area. Our findings emerge with the need to bring again the flowing spring water of the sacred spring of Lentas in its original form through sustainable management and re-discover its beneficial therapeutical effects. Full article
Show Figures

Figure 1

16 pages, 2076 KiB  
Review
Mechanisms of Diffusion of Radon in Buildings and Mitigation Techniques
by Alberto Pietro Damiano Baltrocchi, Lucrezia Maggi, Bruno Dal Lago, Vincenzo Torretta, Márta Szabó, Muhtor Nasirov, Ergash Kabilov and Elena Cristina Rada
Sustainability 2024, 16(1), 324; https://doi.org/10.3390/su16010324 - 29 Dec 2023
Cited by 8 | Viewed by 2666
Abstract
Radon is a naturally occurring radioactive gas found in rocks, soil, and building materials. Precisely because of its gaseous nature, it tends to concentrate in indoor environments, resulting in a danger to human health. The effects of radon have been described, documented, and [...] Read more.
Radon is a naturally occurring radioactive gas found in rocks, soil, and building materials. Precisely because of its gaseous nature, it tends to concentrate in indoor environments, resulting in a danger to human health. The effects of radon have been described, documented, and attested by the international scientific community and recognized as the second cause of lung cancer after cigarette smoking and in synergy with it. In December 2013, the Council of the European Union issued Council Directive 2013/59/Euratom, which establishes basic safety standards relating to protection against the dangers deriving from exposure to ionized radiation and managing the health risks associated with radon. In addition, designing buildings against radon risk in synergy with the use of low environmental impact materials is one of the objectives of building sustainability certifications. This work presents how radon creeps into buildings and reports several technologies that are needed to remove and mitigate the risk associated with indoor radon in existing and new buildings. Full article
Show Figures

Figure 1

19 pages, 21884 KiB  
Article
Features of Degassing from Overburden Rock Massifs: A Case Study Using Radon
by Timofey Leshukov, Aleksey Larionov, Ekaterina Nastavko, Philipp Kaizer and Konstantin Legoshchin
Earth 2024, 5(1), 1-19; https://doi.org/10.3390/earth5010001 - 25 Dec 2023
Cited by 1 | Viewed by 2022
Abstract
Overburden rock massifs resulting from open-pit coal mining are very common objects in the world’s mining regions. These locations pose a significant challenge as the global mining industry expands. These dumps are capable of self-burning for quite a long time. The displacement and [...] Read more.
Overburden rock massifs resulting from open-pit coal mining are very common objects in the world’s mining regions. These locations pose a significant challenge as the global mining industry expands. These dumps are capable of self-burning for quite a long time. The displacement and sliding of these massifs can cause catastrophic consequences. In addition, these objects emit a significant amount of greenhouse gases into the atmosphere. Therefore, it is necessary to manage such objects and implement appropriate measures to limit their impact on the environment. In this work, we studied soil radon volume activity (VAR) and radon flux density (RFD) on the surface of the overburden rock massif of coal-bearing mining rocks and also made visual fixation of disturbances in the body of the massif, which appeared in the process of its movement. We found anomalies of VAR and RFD on the surface of the overburden extending from north to south. These anomalies were extended along the strike of the faults found in the body of the massif. Additionally, the radon anomalies coincided with the anomalies of methane gas emission previously measured for this object. Thus, we determined that the exit of gases from the body of the massif is carried out through fault (weakened) zones in the body of the massif. According to the results of the study, we propose to carry out radon monitoring in order to detect the spontaneous ignition process of the massif or the increase of its mobility. This will also allow us to take appropriate measures to stabilize the massif or to extinguish the dump before or simultaneously with the biological stage of reclamation. Full article
Show Figures

Figure 1

14 pages, 2921 KiB  
Article
Radionuclides in Italian Drinking Water and Regulations: Data Collection to Improve Risk Assessment
by Francesco Manna, Mariagabriella Pugliese, Fabrizio Ambrosino, Marco Trifuoggi, Antonella Giarra and Giuseppe La Verde
Environments 2023, 10(11), 193; https://doi.org/10.3390/environments10110193 - 7 Nov 2023
Cited by 6 | Viewed by 2405
Abstract
Drinking water, in addition to the best-known chemical and biological agents, contains radionuclides of both natural and artificial origin, which can contribute significantly to the overall effective dose received by the population. The Italian Decree Law 28/2016, implementing the 2013/51/EURATOM Directive, establishes the [...] Read more.
Drinking water, in addition to the best-known chemical and biological agents, contains radionuclides of both natural and artificial origin, which can contribute significantly to the overall effective dose received by the population. The Italian Decree Law 28/2016, implementing the 2013/51/EURATOM Directive, establishes the activities for risk management and the parameter values for different radionuclide activity concentrations. In addition to the institutions involved, the National Inspectorate for Nuclear Safety and Radiation Protection (ISIN) annually publishes monitoring reports of environmental radioactivity in Italy, including radioactivity in drinking water. The purpose of the study was to integrate ISIN reports with 2018–2020 data by collecting measurements performed by institutional laboratories to obtain more complete information and adding, for the Campania region, some data not yet published. This new updated report was not significantly different from ISIN’s one, meaning that those publications are nevertheless extremely representative of the radioactivity in Italian drinking water. However, the study allowed us to obtain more detailed data, including measurements not considered in ISIN reports, for instance, radon-222 activity concentrations. This may be of great usefulness for all radiation protection stakeholders in order to ensure environmental protection, pollution prevention, and population safety. Full article
Show Figures

Figure 1

10 pages, 3108 KiB  
Article
Control of Radon Flux of an Inactive Uranium Mill Facility in Spain
by Ismael Fuente, Carlos Sainz, Luis Quindós, Daniel Rábago, Isidoro Gutiérrez, Alicia Fernández, Raúl Rodríguez and Santiago Celaya
Atmosphere 2023, 14(10), 1536; https://doi.org/10.3390/atmos14101536 - 8 Oct 2023
Viewed by 1291
Abstract
As part of a contract with ENRESA (National Radioactive Waste Company S.A. is a Spanish public company responsible for the management of radioactive waste), after the closure of the uranium mill factory in Andújar, Spain, continuous measurements of the radon flux have been [...] Read more.
As part of a contract with ENRESA (National Radioactive Waste Company S.A. is a Spanish public company responsible for the management of radioactive waste), after the closure of the uranium mill factory in Andújar, Spain, continuous measurements of the radon flux have been carried out on an annual basis using activated carbon detectors following a methodology established in our laboratory (ISO 11665-7, 2012). The results obtained and their usefulness are presented from the point of view of control of the closure conditions established by the competent authority in order to minimize the impact of the site on the environment. Full article
Show Figures

Figure 1

20 pages, 5424 KiB  
Article
A Multivariate Model of Drinking Water Quality Based on Regular Monitoring of Radioactivity and Chemical Composition
by Cecilia Ionela Tăban, Ana Maria Benedek, Mihaela Stoia, Maria Denisa Cocîrlea and Simona Oancea
Appl. Sci. 2023, 13(18), 10544; https://doi.org/10.3390/app131810544 - 21 Sep 2023
Cited by 5 | Viewed by 1843
Abstract
From a public health perspective, the monitoring of water quality intended for human consumption belongs to the operational and audit management of the supply zones. Our study explores the spatial and temporal patterns of the parameters of drinking water in Sibiu County, Romania. [...] Read more.
From a public health perspective, the monitoring of water quality intended for human consumption belongs to the operational and audit management of the supply zones. Our study explores the spatial and temporal patterns of the parameters of drinking water in Sibiu County, Romania. We related the relevant physical-chemical parameters (ammonia, chlorine, nitrates, Al, Fe, Pb, Cd, Mn, pH, conductivity, turbidity, and oxidizability) and radioactivity (gross alpha activity, gross beta activity, and radon-222 content) from a 5-year survey to the water source (surface water and groundwater, which may be of subsurface or deep origin), space (sampling locality) and time (sampling month and year). We conducted a combined evaluation using the generalized linear mixed models (GLMMs), Pearson correlation analysis of the physical-chemical parameter, multivariate linear redundancy analysis (RDA), t-value biplots construction, and co-inertia analysis. The obtained regional model shows that the source, locality, and month of sampling are significant factors in physical-chemical parameters’ variation. Fe and turbidity have significantly higher values in surface water, and nitrates and conductivity in groundwater. The highest values are recorded in January (nitrates), March (Cl, ammonia, pH) and August (Fe, turbidity). The RDA ordination diagram illustrates the localities with particular or similar characteristics of drinking water, two of which (rural sources) being of concern. The water source is the best predictor for radioactivity, which increases from surface to ground. The gross alpha and beta activities are significantly and positively correlated, and are both correlated with conductivity. In addition, the gross alpha activity is positively correlated with nitrates and negatively with pH, while the gross beta activity is positively correlated with Mn and negatively with Fe; these relationships are also revealed by the co-inertia analysis. In conclusion, our model using multilevel statistical techniques illustrates a potential approach to short-term dynamics of water quality which will be useful to local authorities. Full article
(This article belongs to the Special Issue Sustainable Environment and Water Resource Management)
Show Figures

Figure 1

7 pages, 1773 KiB  
Proceeding Paper
S.Ind.Ai.R.—School Network for Indoor Air Quality and Radon: An Innovative Platform for the Flexible Development of Indoor Environment Research Projects in Greek Schools
by Evangelos Batris, Evangelia Georgaki, Dimitrios Nikolopoulos, Ioannis Valais and Konstantinos Moustris
Environ. Sci. Proc. 2023, 26(1), 80; https://doi.org/10.3390/environsciproc2023026080 - 28 Aug 2023
Viewed by 874
Abstract
Indoor air quality (radon, pollution, thermal fatigue, ventilation) is crucial for health and performance, especially for children. It is necessary to increase public awareness about the significance of air quality, particularly radon. Environmental school networks can enhance public awareness and provide research opportunities [...] Read more.
Indoor air quality (radon, pollution, thermal fatigue, ventilation) is crucial for health and performance, especially for children. It is necessary to increase public awareness about the significance of air quality, particularly radon. Environmental school networks can enhance public awareness and provide research opportunities for scientists. SINDAIR, a school network based on SIMA-AEP, provides a flexible platform for larger scale educational and research projects. SINDAIR is in its pilot phase, involving various schools around Greece. With the assistance of UniWA, SINDAIR has started a pilot radon measuring campaign. Preliminary results show increased radon concentrations in certain school rooms, higher than expected, justifying further radon risk and air quality assessment, management, and perception programs. Full article
Show Figures

Figure 1

6 pages, 268 KiB  
Proceeding Paper
Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air
by Evangelos Batris, Dimitrios Nikolopoulos, Ioannis Valais and Konstantinos Moustris
Environ. Sci. Proc. 2023, 26(1), 115; https://doi.org/10.3390/environsciproc2023026115 - 28 Aug 2023
Viewed by 1582
Abstract
Indoor Radon is the second cause of deadly lung cancer and is suspected of inflicting further health risks and synergies with other air pollutants. Radon mapping is based on long-term average concentrations, but the spatiotemporal concentration variability can be very high, delivering higher [...] Read more.
Indoor Radon is the second cause of deadly lung cancer and is suspected of inflicting further health risks and synergies with other air pollutants. Radon mapping is based on long-term average concentrations, but the spatiotemporal concentration variability can be very high, delivering higher radiation doses than expected. Continuous monitoring, appropriate indices, and reliable models, aided by digital technologies may improve the assessment and management of indoor Radon risk, especially for vulnerable populations. Further epidemiological studies, research and modelling in dosimetry, new monitoring technologies and methods, and synergies with air quality research, are expected to contribute towards a unified strategy for Radon risk assessment, management, and perception. Full article
Back to TopTop