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ana.benedek@ulbsibiu.ro

4 Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Street, 550172 Sibiu, Romania
* Correspondence: stoia.mihaela@ulbsibiu.ro (M.S.); simona.oancea@ulbsibiu.ro (S.O.)

Abstract: From a public health perspective, the monitoring of water quality intended for human
consumption belongs to the operational and audit management of the supply zones. Our study
explores the spatial and temporal patterns of the parameters of drinking water in Sibiu County,
Romania. We related the relevant physical-chemical parameters (ammonia, chlorine, nitrates, Al, Fe,
Pb, Cd, Mn, pH, conductivity, turbidity, and oxidizability) and radioactivity (gross alpha activity,
gross beta activity, and radon-222 content) from a 5-year survey to the water source (surface water
and groundwater, which may be of subsurface or deep origin), space (sampling locality) and time
(sampling month and year). We conducted a combined evaluation using the generalized linear mixed
models (GLMMs), Pearson correlation analysis of the physical-chemical parameter, multivariate
linear redundancy analysis (RDA), t-value biplots construction, and co-inertia analysis. The obtained
regional model shows that the source, locality, and month of sampling are significant factors in
physical-chemical parameters’ variation. Fe and turbidity have significantly higher values in surface
water, and nitrates and conductivity in groundwater. The highest values are recorded in January
(nitrates), March (Cl, ammonia, pH) and August (Fe, turbidity). The RDA ordination diagram
illustrates the localities with particular or similar characteristics of drinking water, two of which
(rural sources) being of concern. The water source is the best predictor for radioactivity, which
increases from surface to ground. The gross alpha and beta activities are significantly and positively
correlated, and are both correlated with conductivity. In addition, the gross alpha activity is positively
correlated with nitrates and negatively with pH, while the gross beta activity is positively correlated
with Mn and negatively with Fe; these relationships are also revealed by the co-inertia analysis.
In conclusion, our model using multilevel statistical techniques illustrates a potential approach to
short-term dynamics of water quality which will be useful to local authorities.

Keywords: gross alpha activity; gross beta activity; Rn-222; drinking water; physical-chemical
parameters; multivariate statistical techniques

1. Introduction

The development of safe drinking water supplies relies on two key factors, namely,
quantity and quality [1]. In European countries, the risk assessment associated with water
consumption is based on monitoring programs for bodies of water that provide more than
100 m3 a day on average [2]. In Romania, the quality of drinking water is surveyed through
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the national program for monitoring the environmental and occupational risk factors. An
effective drinking water monitoring is highly required in order to reduce the impact of water
pollution on human health, particularly on the development of cancer, gastrointestinal, and
childhood diseases [3]. While water-borne diseases are well documented, such as diarrheal
disease on which a published study estimated that 34% out of 58% of all cases of diarrhea
was due to inadequate drinking water in low- and middle-income countries for the year
2012 [4], the health impact of water radioactivity and chemical contamination remains
an issue of concern. It was found that cancer risks arise from disinfection by-products,
arsenic, and alpha particle radiation [5]. Consistent evidence supports that arsenic level
above a certain threshold in drinking water increases the risk for bladder cancer [4]. Heavy
metals, pesticides, hydrocarbons, or persistent organic pollutants may cause reduced
reproduction, abnormal behavior (mercury), and damages to the nervous system, liver,
and kidneys [6]. Recently, lithium concentration in tap water has become a debatable issue
since maternal prenatal exposure to natural water sources in Denmark was associated with
autism risk in the offspring, as lithium levels increased [7]. On the other hand, the presence
of lithium at very low concentrations was associated with reduced suicide rates, and water
supplementation with lithium was proposed for discussion as a public policy [8].

The sources of chemical hazards that are of health significance in drinking water are
as follows: naturally occurring (source of Ba, B, As, Cd, F, and uranium in the final water),
industrial and human dwellings (source of Cd, Hg, benzene, styrene, toluene, carbon
tetrachloride, nitrilotriacetic acid, and 1,4-dioxane in the final water), agricultural activities
(source of nitrates, nitrites, and pesticides in the final water), water treatment or materials in
contact with drinking water (source of disinfectants such as chlorine, monochloramine, and
sodium dichloroisocyanurate, and of piping materials such as Cu, Pb, Ni, and vinyl chloride
in the final water), and pesticides used in water for public health—vector control (source
of DDT and larvicide) [9]. Radioactive substances (radionuclides) occur naturally (e.g.,
the decay series of uranium and thorium) and artificially (e.g., Caesium-134, Iodine-131,
Tritium, or Strontium-90) and are not routinely monitored to detect potential exceeding of
the screening level—the total radioactivity in the form of alpha and beta radiation. Drinking
water sources from groundwater may also contain radon, which is a radioactive gas of a
great health concern [10,11]. Radon substantially contributes to the natural human exposure
to radiation via inhalation and direct digestion, causing lung or stomach cancer [12].

Using advanced computing techniques, several models have been developed for the
prediction of water quality components, and, recently, artificial intelligence (AI) techniques
showed suitable performance in this field [13]. For detailed information on machine
learning algorithms, readers are invited to refer to the study of Zhu et al. [14]. It is
worth mentioning two of the predictive models using meaningful physical, chemical, and
microbial indicators, namely, the Adaptive Frequency Analysis proposed to solve scalability
in the time domain [15], and the LASSO (Least Absolute Shrinkage and Selection Operator)
regression model proposed to predict the biological risk [16]. Moreover, computational
intelligence techniques are developed and tested on a small scale, aiming to achieve smart
water management systems [17]. On the other hand, when large training sets cannot be
provided in water supply systems, statistic modelling of data remains a useful tool, i.e.,
for depicting regional models of drinking water quality. Maiolo et al. [18] provide the
multivariate analysis of 18 physical-chemical parameters for some water supply systems
in the Emilia-Romagna region of Italy, using PCA (principal component analysis), CA
(cluster analysis), and the KMO (Kaiser–Meyer–Olkin) test. Techniques such as multivariate
statistics, water quality identification index, positive matrix factorization, or the Soil Water
Assessment Tool were applied to examine the spatiotemporal variation in water quality, to
determine the major pollution sources in rivers, and to optimize the management practices
for environmental risk factors [19–21]. Recently, Schreiber et al. [22] reviewed the statistical
methods used in 580 randomly selected papers on water quality assessment and monitoring
in river ecosystems. They found that most papers rely only on descriptive statistics and
do not perform any tests. Among the statistical methods, the multilevel models (linear
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mixed models (LMMs) and generalized mixed models (GLMMs)) have increasingly been
used in the last two decades. The authors suggest these models to be the default statistical
approach in ecological research, because they better address analyses of datasets when
conventional statistical assumptions, namely, data independence and normal distribution,
are not met [22]. For a large number of response variables, constructing models for each
variable is not only statistically incorrect (due to the inflation of type I error), but it also
may miss patterns that occur at higher levels, for which all variables need to be analyzed
together, in multivariate analyses, such as the ordination methods. Principal component
analysis (PCA) has been intensively used over the last 35 years in papers on water quality
monitoring [22], and recently studies have also been increasingly conducted using its
constrained counterpart, redundancy analysis (RDA), which relates the response variables
matrix (the parameters of water quality) to the explanatory variables matrix (spatiotemporal
and environmental variables) [23–27].

The aim of this paper was to propose a dynamic model of drinking water quality for
a geographically defined area, relating physical-chemical and radioactivity parameters
to water source and spatiotemporal variables. This model can be further developed by
increasing the training dataset and adding new explanatory variables, which may be useful
for short-term dynamics and continuous monitoring for operational and audit management.

2. Materials and Methods
2.1. Study Area, Water Sources, and Sample Collection

The water samples were collected from Sibiu county in Romania, which is located in
the Transylvanian Depression, crossed in part by the Southern Carpathians [28]. In the
mountainous area of the county, the geological substratum is dominated by the presence
of crystalline shales, while in other areas gravels, sands, clays, marls, limestones and tuffs
can be found, with landslides occurring frequently [28,29]. The relief is highly diversified,
comprising mountain massifs and hills, which are predominant [28], but also glacial valleys,
foothills, depressions, and stepped plains [28,29]. Erosion, torrentiality, and surface runoff
are processes frequently encountered in the subalpine and alpine areas [28]. The region
is rich in deposits of salt, methane gas, chloride, bromide and iodide mineral waters,
and various building rocks [28,29]. The average annual rainfall is between 606.7 and
1300 mm [28]. A moderate continental climate predominates, but in some parts of the
county a mountain climate is also encountered [28].

In Sibiu County, regular monitoring of the water quality intended for human consump-
tion is carried out by the Public Health Directorate through its own accredited laboratories,
in order to meet the national and international legal requirements. The audit and control
monitoring of the authorized suppliers include the establishment of sampling points, sam-
ple collection, transportation, and analysis which are performed by specialized personnel.
An extensive database was extracted from lab reports between 2017 and 2021, namely,
65 samples analyzed from surface (54%) and groundwater (23% subsurface and 23% deep
sources). Samples were collected annually from 13 locations illustrated in Figure 1, between
January and November. The diversity of water sources within the supply zones and the
pre-established periodicity of sampling were considered eligible criteria for the present
study. In this respect, the following drinking water sources were selected: surface water
from the Cibin River (Sibiu); surface water from the Avrig River (Avrig); surface water from
the Târnava Mare River (Agnita, Medias, ); surface water from the Sadu River (Cisnădie,
Sadu); surface water from the Tilis, cut,a River (Tilis, ca); water from captured springs (Aciliu,
Păltinis, ); water from drilled wells (Săcel, Tălmaciu, Dumbrăveni); and water from mixed
sources: captured springs and drilled wells (S, eica-Mare).
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Figure 1. Location of sample collection points and water sources.

The investigated 65 samples selected for the present study meet the requirements of
data synchronization in terms of time, location, and water quality indicators (physical,
chemical, and radiological).

2.2. Monitoring of Water Radioactivity and Physical-Chemical Parameters

The Romanian drinking water standards expressing the maximum allowable values
for chemicals and radioactivity are based on public health considerations [30,31]. The
details of the experimental measurements performed on the 65 investigated water samples
are summarized in Table 1. This table also includes the maximum allowable limits of the
measured physical-chemical parameters. Microbiological issues were not the subject of the
present work.

Water quality monitoring and a physical-chemical parameter evaluation of the
65 investigated samples were performed in the laboratories of the Directorate of Pub-
lic Health of Sibiu, Romania, which are accredited by the national accreditation body
(RENAR), using Romanian standards (SR), which adopted the European or International
standards for analytical methods, such as European Norms (EN) or standards issued
by the International Organization for Standards (ISO). The validation of the analytical
methods, quality assurance, and control of the methods for drinking water, are carried
out in accordance with the analytical performance characteristics laid down by the Law
No. 458/2002 [32]. The gross alpha activity of water samples was measured using the
alpha spectrometer Tennelec TC 256, USA, calibrated with Am-241, based on the described
standard method [33]. The gross beta activity was measured using the beta spectrometer
Robotron 20050, Germany, calibrated with Sr-90/Y-90, based on the described standard
method [34]. The determined minimum detectable activities for gross alpha and beta mea-
surements, were of 0.007 Bq and 0.06 Bq, respectively, calculated based on the ISO 11929-4:
2022 method [35]. The measurement of radon concentration in the water samples was
conducted using the Alpha Guard DF 2000 radon monitor with the additional equipment
AquaKit, based on the method SR EN ISO 13164-3: 2020 [36]. In accordance with the
specific analytical method applied for each physical-chemical parameter as described in
Table 1, the following equipment was used: Specord 200 Plus spectrophotometer/Analytik
Jena; GBC Savant AAS Atomic Absorption Spectrometer; HQ40D Dual Channel Meter
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with conductivity cell CDC401 + PHC series pH electrode; and Hach 2100Q Portable Tur-
bidimeter. The traceability of measurements is achieved and maintained through periodic
calibrations, in accordance with SR EN ISO/IEC 17025:2018 [37].

Table 1. The applied methodology for monitoring radioactivity and the physical and chemical param-
eters of the investigated water sources intended for human consumption, and parametric limit values.

Parameter Analytical Method WHO Guideline
Value

US-EPA Limit
Value

EU
Limit Value

National Limit
Value Ref.

Radon
(Rn-222, 222Rn)

Alpha spectroscopy (pulse-counting
ionization chamber) 100 Bq/L 11.1 Bq/L 100 Bq/L 100 Bq/L

[38]
[39]
[40]
[32]

Gross alpha activity Alpha spectrometry 0.5 Bq/L ≤0.1 Bq/L 0.1 Bq/L
0.5 Bq/L 0.1 Bq/L

[33]
[41]
[42]
[43]
[40]
[32]

Gross beta activity Beta spectrometry with
scintillation detector 1 Bq/L 0.15 Bq/L 1 Bq/L 1 Bq/L

[34]
[41]
[43]
[40]
[32]

Ammonia UV-VIS spectrophotometry 0.5 mg/L 0.3 mg/L 0.5 mg/L 0.5 mg/L

[44]
[45]
[46]
[47]

Free chlorine
residual UV-VIS spectrophotometry 0.6–1 mg/L ≥0.1–≤0.5 mg/L

[48]
[38]
[32]

Nitrates UV-VIS spectrophotometry 50 mg/L 50 mg/L 50 mg/L 50 mg/L

[49]
[38]
[45]
[47]
[32]

Al, Fe UV-VIS spectrophotometry 200 µg/L 200 µg/L (Al),
300 µg/L (Fe) 200 µg/L 200 µg/L

[50]
[51]
[45]
[47]
[32]
[31]

Pb atomic absorption spectrometry 10 µg/L 10 µg/L 10 µg/L 10 µg/L

[52]
[38]
[45]
[47]
[32]

Cd Atomic absorption spectrometry 3 µg/L 5 µg/L 5 µg/L 5 µg/L

[52]
[38]
[45]
[47]
[32]
[31]

Mn Atomic absorption spectrometry 100 µg/L 50 µg/L 50 µg/L 50 µg/L

[52]
[38]
[45]
[47]

pH Electrode method ≥6.5–≤9.5 ≥6.5–≤9.5 ≥6.5–≤9.5 ≥6.5–≤9.5

[53]
[9]
[45]
[47]
[32]
[31]

Conductivity Electrode method 2500 µS/cm
at 20 ◦C

2500 µS/cm
at 20 ◦C

2500 µS/cm
at 20 ◦C

2500 µS/cm
at 20 ◦C

[53]
[9]
[45]
[47]
[31]
[31]
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Table 1. Cont.

Parameter Analytical Method WHO Guideline
Value

US-EPA Limit
Value

EU
Limit Value

National Limit
Value Ref.

Turbidity Nephelometric method Acceptable Acceptable Acceptable ≤5 UNT
Acceptable

[54]
[9]
[45]
[47]

Oxidizability Volumetric method 5 mgO2/L 5 mg O2/L 5 mg O2/L 5 mg O2/L

[55]
[9]
[45]
[47]

2.3. Statistical Modeling

The effect of the water source type and year of measurement on the gross alpha
and gross beta activity and radon-222 content considering local variations was evaluated.
Because the differences between deep (Deep) and subsurface (SSurf) water were not signifi-
cant, we considered the water source as a factor with two levels, groundwater (Ground)
and surface (Surf). The year of measurement was considered as a numeric variable starting
with 2017 (the beginning of the study), because we proposed to test the potential linear
trend of the radiation level. We used the GLMM with gamma distribution (the data were
overdispersed and residuals were not normally distributed) and logarithmic link function,
including locality as a random factor, because of repeated sampling. When the effect of the
random factor was not significant, we reported the results of the corresponding generalized
linear model (GLM). The explained variation in GLMs was expressed as the explained
deviation. In GLMMs the partition of the variation explained by the fixed and random
effects was carried out using the marginal and conditional lognormal R squared.

The correlation between water physical-chemical parameters was evaluated based on
the repeated measures (within localities) correlation coefficient calculated with package
mrcorr [56] in R version 4.1.0 [57], using bootstrapping with 100 resamples. We ran the
correlation analyses both with and without the outliers, and reported all results when
significant (or marginally significant).

To evaluate the overall response of physical-chemical parameters to water source
and sampling year, we used multivariate linear redundancy analysis (RDA), performed
using the Canoco 5.12 software [58]. In the RDA, multiple numerical response variables
(in our case the physical-chemical parameters and, separately, the radioactivity level) are
regressed against one or, more often, several predictors (explanatory variables) that may be
of different type (numerical or categorical—in our case, water source and sampling locality,
year and month), which are combined in independent (orthogonal) constrained ordination
axes (usually the first two are represented in the ordination diagrams) which explain most
variation in the response variables, their explanatory power decreasing gradually. In the
ordination diagrams the response variables are represented by arrows. The longer the
arrow, the better the response variable is explained by the predictors. The projection of
the arrowhead on the axes gives the degree of dependence of the response variable to the
constrained axis. The angle between arrows indicates the correlation between the response
variables (positive for acute angles and negative for obtuse ones). Numerical predictors are
also represented by arrows and their projection on the axes illustrates their contribution
to those axes. However, in our case the numerical predictor (the year) was not significant
in the multivariate models. Levels of factors are represented by the centroids of the data
points corresponding to each level. Their effect on the response variables is given by the
projection on the arrows. When the differences between deep and subsurface water were
significant, we considered the water source as a factor with all three levels (Deep, Ssurf,
and Surf). The significance of ordination axes was tested by the Monte Carlo permutation
test with 999 unrestricted permutations per test [59]. The significance of physical-chemical
parameters’ responses (either positive or negative) to individual predictors was evalu-
ated visually, constructing the t-value biplots (with van Dobben circles). To evaluate the
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relationship between radioactivity and the other physical-chemical parameters, we per-
formed a co-inertia analysis using the Canoco software [58]. The co-inertia analysis is a
symmetrical analysis of the covariance of two sets of variables, plotting them in the same
ordination space.

Statistical models are developed to explain and predict patterns in observed phenom-
ena. However, the evaluation of the predictive value of models requires dividing the data
into a training and a testing dataset, which was not possible because of the limited number
of observations.

Because Rn-222 measurements were carried out only in 2020 and 2021, models includ-
ing radon are based on 26 samples (from 2020 and 2021), while models without radon are
based on all 65 samples.

3. Results and Discussion
3.1. Radioactivity Parameters of Drinking Water in the Studied Area

All measured values of gross alpha and beta activities and radon-222 were situated
within the allowable values.

The gross alpha activity increased during the study period from 2017 to 2021 and
varied between sources, being higher in groundwater (Ground) than in surface water (Surf).

The best fitted model for gross alpha activity and gross beta activity after removing
the outlier (sample 61—Tilis, ca 2017) was the GLM with gamma distribution. By including
the locality as a random effect (in mixed models) the quality of the model did not increase,
which means that there were no significant differences among localities that were not
explained by source. The mean gross alpha activity for the first year of study, 2017, in the
localities with groundwater was 0.03 Bq/L. Each year the mean value of this parameter
decreased by 25% (χ2 = 29, df = 1, p < 0.001), and in localities with surface water the mean
gross alpha activity was 71% lower compared to that of groundwater (χ2 = 49.17, df = 1,
p < 0.001) (Figure 2a). The explained deviation of the gross alpha activity model was 60.8%.
The mean gross beta activity of groundwater was 0.122 Bq/L; it was 0.05 lower in surface
waters, the difference showing significance (t = −5.24, df = 62, p < 0.001) (Figure 2b), and
the explained variation being 29.6%.
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of water source (Surf—surface water, Ground—groundwater), within the 2017–2021 interval. The
circles represent outlier observations.

The value of radon-222 from Păltinis, source was considered an outlier, with a mean
value of 40.4 Bq/L, while the mean value for the other localities was 1.1 Bq/L; therefore, we
excluded Păltinis, from the data analysis by this statistical modeling. The best fitted model
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was a GLMM with gamma error distribution. The variance of radon-222 concentration
among localities was 1.54 and the mean value for localities with Ground was 1.89. In
localities with Surf, the mean radon-222 concentration was 96% lower and the difference
was highly significant (t = −8.83, df = 22, p < 0.001).

Most of the variation explained by the model was attributed to differences in the water
source (0.91), and only a small part was represented by the local variations among the
localities (0.05).

The three types of water source were the best predictors of the radiation parameters
(pseudo-F = 10.8, p = 0.001), explaining 48.4% (43.9% adjusted) of the variation in the
response variables. The comparison between constrained and unconstrained analyses
showed a high efficiency of the first constrained (RDA) axis, which summarized 75.7%
of the variation explained by the homologous unconstrained (PCA) axis, the correlation
between these axes being 0.87. The first constrained axis was the only one significant
(pseudo-F = 9.5, p = 0.001), extracting 93.7% of the explained variation. This axis was
defined mainly by the opposition between surface and groundwater sources. Along this
axis all radioactivity parameters increased from Surf to Deep and SSurf (Figure 3). The
gross alpha and beta activities were higher in Deep compared to Surf (Figure 4a), while
all three radioactivity parameters were significantly higher in SSurf compared to Surf
(Figure 4b).
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However, the high level of variation explained by this model is given mainly by
the particularly high radon-222 values of water from Păltinis, , which has a SSurf water
source. By considering only the gross alpha and beta activities, along with the locality,
the model was still significant (pseudo-F = 2.1, p = 0.012), but the explained variation was
lower, namely, 32.7% (17.3% adjusted). The localities were scattered in the ordination space
(Figure 5).
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The first ordination axis, which was the only significant one (pseudo-F = 2, p = 0.012),
was given by the opposition between Surf and Ground water sources, with gross alpha and
beta activities increasing in localities with Ground water sources. The radioactivity level
of Sibiu and other large towns (Cisnădie, Avrig) using Surf water was lowest, while some
smaller localities (Aciliu, Tilis, ca, Săcel) using Ground water, with the exception of Tilis, ca,
showed the highest radioactivity level (Figure 5). Tilis, ca, which uses Surf water, is close to
Aciliu, and the geology of the site may explain the particular radioactivity of this source. In
the underground of the Tilis, ca locality, Dordea [60] mentioned the presence of gneiss rocks,
exploited as a valuable resource for the construction industry [61]. Otoo et al. [46] observed
that due to its properties (density, durability, and water absorption capacity), this rock
stores many natural radionuclides, including 226Ra [61,62], which contributes significantly
to the gross alpha activity [63], and 40K [61], which plays an important role in the gross
beta activity [63], also showing a significant positive correlation with 222Rn abundance [61].
Other rocks described as being associated with high radon levels, especially in groundwater,
are granite [62,64,65], shale, and phyllite [64]. Thus, the presence of such rock types could
contribute to the unexpected high levels of water gross alpha and beta activities from the
three localities. Furthermore, in the case of wells, Knutsson and Olofsson [66] explained
that the way these are used and the type of technical plant of groundwater extraction can
influence the amount of radon in the water.

Regarding the Aciliu locality, Ion [67] mentioned the frequency of landslides in the
Aciliu-Apoldu area, a fact that can be associated with the reduction in surface and under-
ground water quality [68], but also with higher amounts of radionuclides [69,70].

Although the locality of Săcel is known for its industrial limestone [60], the presence of
this mineral cannot explain the higher radioactivity of the water, as it is usually associated
with a lower quantity of radionuclides [71], but the activities related to its extraction and
industrial use [72] could support the increase of the gross alpha and beta activities.

According to the national report, in 2021 the radioactivity parameters of drinking
water in Romania were situated below the allowable values. Compared to the national
level, Sibiu County belongs to the areas with the lowest values of gross alpha and beta
activities [73]. The maximal value of Rn-222 in the sample from Păltinis, (43.3 Bq/L) could
be explained by the geology (crystalline schist) of the study site—Cindrel Mountains in the
Southern Carpathians. Regarding the radioactivity of groundwater, similar results were
reported in the Galati region of Romania, the highest gross alpha and beta activities being
found in samples collected from drilled wells [74]. Recently, a radiological investigation of
64 samples of natural carbonated water originating from four Romanian counties, namely,
Covasna, Harghita, Bistrit,a-Năsăud, and Maramures, revealed that 53.5% and 26% of the
investigated samples exceeded the allowed values for gross alpha activity and gross beta
activity, respectively, which was attributed to the presence of volcanic rocks in the studied
area [75].

Table 2 highlights the radioactivity parameters (mean values) measured in drinking
water from different areas of Romania. In this respect, regional models of water radioactivity
parameters relating to the water sources as the best predictor should support more action
from the local public health authorities.

Table 2. Drinking water radioactivity parameters (mean values) in different regions of Romania.

Area Water Source Gross Alpha Activity
(Bq/L)

Gross Beta Activity
(Bq/L)

Rn-222
(Bq/L) Ref.

Sibiu
(Southern Transylvania) mixed 0.01 0.09 4.1 Present study

Galati (S-E region) mixed 0.02 0.07
Not measured

[74]
Eastern Carpathians springs 1.03 1.14 [75]
Western Carpathians springs

Not measured
7 [76]

N-W region of Transylvania mixed 15.9 [77]
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3.2. Physical-Chemical Parameters of Investigated Drinking Water Samples

Among the 65 investigated water samples, 16 samples exceeded the allowed values for
Fe, ammonia, and residual free chlorine (Table 3). The appearance of free chlorine residue
is associated to a certain extent with the treatment of water with chlorine, its used amount
being increased above the well-established minimum values in isolated cases such as the
possibility of transmitting a disease through water [78]. However, the level of residual free
chlorine in the water can be more definitely increased in the case of organic contamination,
for example, with the droppings of farm animals [79].

Table 3. Water sources and locations of samples showing the chemical contaminants found above the
allowed concentration values.

Location Source of Water
Chemical Parameter Sampling Year

Ammonia Residual Free Chlorine Fe

Sadu

surface

x x 2017, 2018, 2019
Tilis, ca x 2018, 2021
Agnita x 2020
Medias, x 2021
Sibiu x 2018, 2019, 2021
Săcel deep x x 2018

S, eica-Mare
subsurface

x x 2017, 2021
Aciliu x 2021

The geological substrate, the level of anthropic impact, the existence of some industrial
activities that use iron, and the contamination with household sewage residues can lead to
increased values of iron in the water [80,81]. Similarly, the high level of ammonium can also
come from anthropogenic [82,83] and industrial [83] activities, from animal droppings [79,83],
and from the use of chemical fertilizers for agriculture [83,84], or it can be influenced by
the pH and temperature in the environment [82].

Regarding chemical composition, the water sources from Avrig, Cisnădie, Dumbrăveni,
Păltinis, , and Tălmaciu meet all quality criteria within the studied period.

Physical parameters (pH, conductivity, turbidity, and oxidizability) were found within
the allowed values for the 5-year study period. Significant correlations were found between
some of the chemical parameters (Table 4).

Table 4. Coefficients of the correlation between radioactivity and physical and chemical parameters.
Only significant (p < 0.05, shown in bold) or marginally significant (0.05 < p < 0.1) results are shown.
Values given in parentheses are for data without the outliers.

Gross Alpha
Activity

Gross Beta
Activity Fe Cl Cd Mn pH Ammonia

Gross beta
activity

0.709
(0.327)

Nitrates (0.344)
Fe −0.34
Mn (0.285)
pH −0.276

Ammonia 0.303
Al 0.269 0.237

Oxidizability 0.238 −0.259 0.234
Conductivity 0.497 0.527 −0.263

Turbidity (0.257) 0.338 0.236

The water sources (Surf and Ground) and sampling month explained 29.1% (14.4%) of
the variation in the physical and chemical parameters (pseudo-F = 2, p = 0.004). The first
constrained axis was the only one significant (pseudo-F = 0.7, p = 0.002), extracting 42.5%
of the explained variation. This axis was defined mainly by the opposition between Surf
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and Ground water sources but also by some monthly variation. Along this axis, turbidity
and Fe showed the highest values in Surf samples, while conductivity, nitrates, ammonia,
and pH showed the highest values in Ground samples (Figure 6), the response to the water
source being significant for Fe, turbidity, conductivity, and nitrates (Figure 7). Among
the sampling months, August was characterized by high values of Fe level and turbidity,
March by high pH and concentrations of residual chlorine and ammonia, and January by
high values of conductivity and nitrates but also Cd and oxidizability (Figure 6).
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The locality explained 37.6% (23.2%) of the variation in the physical and chemical
parameters (pseudo-F = 2.6, p = 0.001), the first two constrained axes being significant,
accounting for 39.6% (pseudo-F = 0.8, p = 0.001) and 27.1% (pseudo-F = 0.7, p = 0.002) of
the explained variation (Figure 8). Along the first axis, conductivity and ammonia were
negatively correlated with Fe and turbidity. Along the second axis, all response variables
were positively correlated. The locality with the most distinctive chemical composition
of water was Sadu. It was characterized by the highest values of turbidity, Fe, Cd, Al,
and oxidizability, but also of ammonia and Mn. S, eica-Mare also showed distinct water
characteristics, with high values of conductivity, nitrates, pH, residual chlorine, ammonia,
and Mn. On the other hand, Păltinis, showed the lowest values of Cd, Al, oxidizability,
ammonia, and Mn. Sibiu and the other large towns had similar water physical-chemical
characteristics, with low values of conductivity, nitrates, pH, and residual chlorine.
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The national report highlights Mn, Fe, ammonia, and nitrates as the main chemical
parameters exceeding the allowed values for some chemicals, from 15% for Mn to 7.8% for
nitrates, of all samples collected in 2021 from small supply zones all over the country [73].
Similarly, other countries like Iran reported Fe and Mn as dominant metals exceeding
allowed values [85]. According to the Council Directive 98/83/EC [86], a parameter’s
variability and the long-term trend of its concentration should determine the location and
frequency of sampling.

In our spatiotemporal model of analysis, the variation of physical and chemical param-
eters is explained by the water sources (Surf and Ground), sampling month, and locality. In
the past, the city of Medias was polluted with heavy metals from a neighboring metallurgic
plant, but recent research performed on local drinking water sources indicates a low level
of pollution with Cd, Ni, Cr, Pb, and As [87]. In certain situations, chemical heterogeneity
may refer to inadequate treatment in water plants, or post-treatment contamination in the
distribution pipes, explaining the high concentrations of Mn, Fe, and nitrates [88]. Nitrates
and nitrites, often associated with anthropogenic activities, are involved in the maintenance
and development of microorganisms which can influence water turbidity [89,90]. Thus,
new methods for a combined evaluation of physical-chemical parameters and microbiome
data have been developed [91].

In other countries, Spain for example, it has been found that the total water hardness,
potassium, and pH influenced radioactivity levels [92].
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The co-inertia analysis between radioactivity and physical-chemical parameters showed
a negative correlation between the gross alpha activity and nitrates, oxidizability, and con-
ductivity, and a positive correlation with turbidity and residual chlorine. The gross beta
activity was positively correlated with conductivity, Cd, and Mn, and negatively correlated
with Fe (Figure 9).
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Multivariate statistical techniques were used by other researchers to evaluate the
spatial and temporal variations in the raw water quality, mostly as ecological studies [93–96]
and less as public health studies on drinking water supplies [97]. Thus, the present study
provides a method of multivariate modeling of data of relevant parameters periodically
analyzed in all supply zones of the study area from a public health perspective. This model
cannot be generalized, given the different environmental conditions and the complex
interactions among the water quality indicators. This approach integrates parameters
(routinely monitored), geography, and periodicity of sampling. It provides a multivariate
analysis perspective to find the relationship between meaningful parameters susceptible to
long-term health consequences and their predictions. The seasonal/monthly significant
variation of some chemical contaminants may support the adjustment of the monitoring
plan in terms of sampling frequency, and this is one of the most important aspects revealed
by this method.

4. Conclusions

The spatiotemporal multivariate evaluation of drinking water from different supply
zones located in Sibiu County, Romania, provides a comprehensive view and allows
observations on the correlations and variability of quality parameters in relationship with
the water source, location, and period of sampling. The validity of the hereby applied
statistical techniques was confirmed by results.

For all radioactivity parameters, the water source was the best predictor in the fitted
model of GLM with gamma distribution (for gross alpha activity and gross beta activity,
respectively), and GLMM with gamma error distribution (for Rn-222 content). According to
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the RDA results, water radioactivity increased from surface to deep and subsurface sources.
The co-inertia analysis between radioactivity and physical-chemical parameters showed a
positive correlation of the gross alpha activity with turbidity and residual chlorine, while
the gross beta activity was positively correlated with conductivity, Cd, and Mn. Water
radioactivity in Sibiu County is low, compared to other investigated areas, but further
studies are required for examining groundwater sources used by small communities.

Certain chemical contaminants such as ammonia and Fe may be of concern, especially
ammonia in rural localities due to agricultural practices and the pastoral character of the
area. The variability of the physical-chemical parameters and 5-year trend is explained
(RDA) by the water source, month of sampling, and locality. Results are significant for
turbidity and Fe level in surface water (with highest values in August), and for conductivity
and nitrates level in ground water (with high values in January). High pH and concen-
trations of residual chlorine and ammonia were characteristic for March. This monthly
variation of contaminants may be useful for more efficient operational management and
population awareness, with particular interest for the rural localities of Sadu and S, eica-
Mare. The present model highlights that the water source from the mountain resort Păltinis,
was the best drinking water in the studied interval in terms of quality, according to the
Romanian, European, and WHO requirements.

Our model illustrates a potential approach to water monitoring programs. It may be
further optimized by using a more comprehensive dataset from a longer survey period, and
also a larger number of predictors describing the environment, which would increase its
applicability for local authorities to draw appropriate water quality management measures.
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61. Otoo, F.; Darko, E.O.; Garavaglia, M.; Adukpo, O.K.; Amoako, J.K.; Tandoh, J.B.; Inkoom, S.; Nunoo, S.; Adu, S. Assessment of

natural radioactivity and radon exhalation rate associated with rock properties used for construction in greater Accra region,
Ghana. J. Radioanal. Nucl. Chem. 2021, 328, 911–923. [CrossRef]

62. Nagaraju, K.M.; Chandrashekara, M.S.; Rani, K.P.; Rajesh, B.M.; Paramesh, L. Radioactivity measurements in the environment of
Chamaraja Nagar area, India. Radiat. Prot. Environ. 2013, 36, 10. [CrossRef]

https://www.who.int/publications/i/item/9789240045064
http://data.europa.eu/eli/dir/2020/2184/oj
https://doi.org/10.3389/fpsyg.2017.00456
https://www.ncbi.nlm.nih.gov/pubmed/28439244
https://www.R-project.org/
https://doi.org/10.1007/s10967-021-07709-9
https://doi.org/10.4103/0972-0464.121812


Appl. Sci. 2023, 13, 10544 19 of 20

63. Sarvajayakesavalu, S.; Lakshminarayanan, D.; George, J.; Magesh, S.B.; Anilkumar, K.M.; Brammanandhan, G.M.; Chandrasekara,
A.; Ravikumar, M. Geographic Information System mapping of gross alpha/beta activity concentrations in ground water samples
from Karnataka, India: A preliminary study. Groundw. Sustain. Dev. 2018, 6, 164–168. [CrossRef]

64. Bourai, A.A.; Gusain, G.S.; Rautela, B.S.; Joshi, V.; Prasad, G.; Ramola, R.C. Variations in radon concentration in groundwater of
Kumaon Himalaya, India. Radiat. Prot. Dosim. 2012, 152, 55–57. [CrossRef]

65. Adithya, V.S.P.; Chidambaram, S.; Prasanna, M.V.; Venkatramanan, S.; Tirumalesh, K.; Thivya, C.; Thilagavathi, R. Health risk
implication and spatial distribution of radon in groundwater along the lithological contact in south India. Arch. Environ. Contam.
Toxicol. 2021, 80, 308–318. [CrossRef]

66. Knutsson, G.; Olofsson, B. Radon content in groundwater from drilled wells in the Stockholm region of Sweden. Nor. Geol.
Unders. 2002, 439, 79–85.
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