Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = radiation-based therapies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 974 KiB  
Review
Murburn Bioenergetics and “Origins–Sustenance–Termination–Evolution of Life”: Emergence of Intelligence from a Network of Molecules, Unbound Ions, Radicals and Radiations
by Laurent Jaeken and Kelath Murali Manoj
Int. J. Mol. Sci. 2025, 26(15), 7542; https://doi.org/10.3390/ijms26157542 - 5 Aug 2025
Abstract
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge s [...] Read more.
The paradigm-shift idea of murburn concept is no hypothesis but developed directly from fundamental facts of cellular/ecological existence. Murburn involves spontaneous and stochastic interactions (mediated by murzymes) amongst the molecules and unbound ions of cells. It leads to effective charge separation (ECS) and formation/recruitment of diffusible reactive species (DRS, like radicals whose reactions enable ATP-synthesis and thermogenesis) and emission of radiations (UV/Vis to ELF). These processes also lead to a chemo-electromagnetic matrix (CEM), ascertaining that living cell/organism react/function as a coherent unit. Murburn concept propounds the true utility of oxygen: generating DRS (with catalytic and electrical properties) on the way to becoming water, the life solvent, and ultimately also leading to phase-based macroscopic homeostatic outcomes. Such a layout enables cells to become simple chemical engines (SCEs) with powering, coherence, homeostasis, electro-mechanical and sensing–response (PCHEMS; life’s short-term “intelligence”) abilities. In the current review, we discuss the coacervate nature of cells and dwell upon the ways and contexts in which various radiations (either incident or endogenously generated) could interact in the new scheme of cellular function. Presenting comparative evidence/arguments and listing of systems with murburn models, we argue that the new perceptions explain life processes better and urge the community to urgently adopt murburn bioenergetics and adapt to its views. Further, we touch upon some distinct scientific and sociological contexts with respect to the outreach of murburn concept. It is envisaged that greater awareness of murburn could enhance the longevity and quality of life and afford better approaches to therapies. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

10 pages, 615 KiB  
Article
Translating SGRT from Breast to Lung Cancer: A Study on Frameless Immobilization and Real-Time Monitoring Efficacy, Focusing on Setup Accuracy
by Jang Bo Shim, Hakyoung Kim, Sun Myung Kim and Dae Sik Yang
Life 2025, 15(8), 1234; https://doi.org/10.3390/life15081234 - 4 Aug 2025
Viewed by 75
Abstract
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and [...] Read more.
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions. Materials and Methods: A total of 204 treatment records from 17 patients with primary lung cancer who underwent radiotherapy at Korea University Guro Hospital between October 2024 and April 2025 were retrospectively analyzed. Patients were initially positioned using the Identify system (Varian) in the CT suite, with surface data transferred to the treatment room system. Alignment was performed to within ±1 cm and ±2° across six degrees of freedom. Cone-beam CT (CBCT) was acquired prior to treatment for verification, and treatment commenced when the Distance to Correspondence Surface (DCS) was ≤0.90. Setup deviations from the Identify system were recorded and compared with CBCT in three translational axes to evaluate positioning accuracy and PTV displacement. Results and Conclusions: The Identify system was shown to provide high setup accuracy and reliable real-time motion monitoring in lung cancer radiotherapy. Its ability to detect patient movement and automatically interrupt beam delivery contributes to enhanced treatment safety and precision. In addition, even though the maximum longitudinal (Lng) shift reached up to −1.83 cm with surface-guided setup, and up to 1.78 cm (Lat) 5.26 cm (Lng), 9.16 cm (Vrt) with CBCT-based verification, the use of Identify’s auto-interruption mode (±1 cm in translational axes, ±2° in rotational axes) allowed treatment delivery with PTV motion constrained within ±0.02 cm. These results suggest that, due to significant motion in the longitudinal direction, appropriate PTV margins should be considered during treatment planning. The Identify system enhances setup accuracy in lung cancer patients using a surface-guided approach and enables real-time tracking of intra-fractional errors. SGRT, when implemented with systems such as Identify, shows promise as a feasible alternative or complement to conventional IGRT in selected lung cancer cases. Further studies with larger patient cohorts and diverse clinical settings are warranted to validate these findings. Full article
(This article belongs to the Special Issue Current Advances in Lung Cancer Diagnosis and Treatment)
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 - 1 Aug 2025
Viewed by 650
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

11 pages, 2015 KiB  
Article
Risk Factors for Radiation-Induced Keratoconjunctivitis Sicca in Dogs Treated with Hypofractionated Intensity-Modulated Radiation Therapy for Intranasal Tumors
by Akihiro Ohnishi, Soichirou Takeda, Yoshiki Okada, Manami Tokoro, Saki Kageyama, Yoshiki Itoh and Taketoshi Asanuma
Animals 2025, 15(15), 2258; https://doi.org/10.3390/ani15152258 - 1 Aug 2025
Viewed by 127
Abstract
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients [...] Read more.
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients treated with IMRT delivered in 4–6 weekly fractions of 8 Gy. Orbital structures were retrospectively contoured, and dose–volume metrics (D50) were calculated. Receiver operating characteristic (ROC) curve analysis and odds ratios were used to evaluate the associations between radiation dose and KCS development. Six dogs (33%) developed KCS within three months post-treatment. Statistically significant dose differences were observed between affected and unaffected eyes for the eyeball, cornea, and retina. ROC analyses identified dose thresholds predictive of KCS: 13.8 Gy (eyeball), 14.9 Gy (cornea), and 17.0 Gy (retina), with the retina showing the highest odds ratio (28.33). To ensure clinical relevance, KCS was diagnosed based on decreased tear production combined with corneal damage to ensure clinical relevance. This study proposes dose thresholds for ocular structures that may guide treatment planning and reduce the risk of KCS in canine patients undergoing IMRT. Further prospective studies are warranted to validate these thresholds and explore mitigation strategies for high-risk cases. Full article
(This article belongs to the Special Issue Imaging Techniques and Radiation Therapy in Veterinary Medicine)
Show Figures

Graphical abstract

12 pages, 955 KiB  
Article
Single-Center Preliminary Experience Treating Endometrial Cancer Patients with Fiducial Markers
by Francesca Titone, Eugenia Moretti, Alice Poli, Marika Guernieri, Sarah Bassi, Claudio Foti, Martina Arcieri, Gianluca Vullo, Giuseppe Facondo, Marco Trovò, Pantaleo Greco, Gabriella Macchia, Giuseppe Vizzielli and Stefano Restaino
Life 2025, 15(8), 1218; https://doi.org/10.3390/life15081218 - 1 Aug 2025
Viewed by 186
Abstract
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer [...] Read more.
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer requiring adjuvant radiation with external beams were enrolled. Five patients underwent radiation therapy targeting the pelvic disease and positive lymph nodes, with doses of 50.4 Gy in twenty-eight fractions and a subsequent stereotactic boost on the vaginal vault at a dose of 5 Gy in a single fraction. One patient was administered 30 Gy in five fractions to the vaginal vault. These patients underwent external beam RT following the implantation of three 0.40 × 10 mm gold fiducial markers (FMs). Our IGRT strategy involved real-time 2D kV image-based monitoring of the fiducial markers during the treatment delivery as a surrogate of the vaginal cuff. To explore the potential role of FMs throughout the treatment process, we analyzed cine movies of the 2D kV-triggered images during delivery, as well as the image registration between pre- and post-treatment CBCT scans and the planning CT (pCT). Each CBCT used to trigger fraction delivery was segmented to define the rectum, bladder, and vaginal cuff. We calculated a standard metric to assess the similarity among the images (Dice index). Results: All the patients completed radiotherapy and experienced good tolerance without any reported acute or long-term toxicity. We did not observe any loss of FMs during or before treatment. A total of twenty CBCTs were analyzed across ten fractions. The observed trend showed a relatively emptier bladder compared to the simulation phase, with the bladder filling during the delivery. This resulted in a final median Dice similarity coefficient (DSC) of 0.90, indicating strong performance. The rectum reproducibility revealed greater variability, negatively affecting the quality of the delivery. Only in two patients, FMs showed intrafractional shift > 5 mm, probably associated with considerable rectal volume changes. Target coverage was preserved due to a safe CTV-to-PTV margin (10 mm). Conclusions: In our preliminary study, CBCT in combination with the use of fiducial markers to guide the delivery proved to be a feasible method for IGRT both before and during the treatment of post-operative gynecological cancer. In particular, this approach seems to be promising in selected patients to facilitate the use of SBRT instead of BRT (brachytherapy), thanks to margin reduction and adaptive strategies to optimize dose delivery while minimizing toxicity. A larger sample of patients is needed to confirm our results. Full article
Show Figures

Figure 1

37 pages, 1856 KiB  
Review
Current and Future Directions in Immunotherapy for Gastrointestinal Malignancies
by Catherine R. Lewis, Yazan Samhouri, Christopher Sherry, Neda Dadgar, Moses S. Raj and Patrick L. Wagner
Int. J. Transl. Med. 2025, 5(3), 33; https://doi.org/10.3390/ijtm5030033 - 31 Jul 2025
Viewed by 474
Abstract
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, [...] Read more.
Gastrointestinal (GI) malignancies are diverse and particularly challenging in terms of current immunotherapy but hold great opportunity for impact given that they constitute the highest cancer incidence and mortality rates worldwide. Traditional treatment options for solid GI malignancies include surgical intervention, chemotherapy, radiation, or a combination of these treatments. Emerging modalities within immunotherapy are anticipated to extend the results with conventional therapy by stimulating the patient’s own intrinsic potential for tumor-specific immunologic rejection. Combination regimens of chemotherapy and tumor-infiltrating lymphocyte (TIL) therapy in advanced colorectal cancer and pancreatic cancer, autologous monocyte therapy in advanced gastric cancer, and CAR-T therapy trained against GI-selective tumor antigens such as carcinoembryonic antigen are currently being studied. Clinical trials are underway to study the combination of various chemotherapeutic agents along with immunotherapy in the management of cholangiocarcinoma, hepatocellular carcinoma, and esophageal cancer. Alternative therapies are needed based on the tumor immune microenvironment, which can lead to a personalized approach to treatment. In this review, we discuss the current status of various modalities of immunotherapy in common GI malignancies, along with their mechanisms of immune activation and cancer suppression. We will also discuss the use of immunotherapy in less common solid GI malignancies and touch on recent advancements and clinical trials. Full article
Show Figures

Graphical abstract

12 pages, 643 KiB  
Article
Minimally Invasive Total Versus Partial Thymectomy for Early-Stage Thymoma
by Alexander Pohlman, Bilal Odeh, Irene Helenowski, Julia M. Coughlin, Wissam Raad, James Lubawski and Zaid M. Abdelsattar
Cancers 2025, 17(15), 2518; https://doi.org/10.3390/cancers17152518 - 30 Jul 2025
Viewed by 256
Abstract
Background/Objectives: Total thymectomy is currently the gold standard operation for treating thymoma. However, recent studies have suggested the potential health consequences of thymus removal in adults, including possible increased autoimmune disease and all-cause mortality. In this context, we assess oncologic outcomes following [...] Read more.
Background/Objectives: Total thymectomy is currently the gold standard operation for treating thymoma. However, recent studies have suggested the potential health consequences of thymus removal in adults, including possible increased autoimmune disease and all-cause mortality. In this context, we assess oncologic outcomes following total vs. partial thymectomy for early-stage thymoma. Methods: We identified patients diagnosed with WHO types A–B3 thymoma between 2010–2021 from a national hospital-based dataset. We excluded patients with stage II or higher disease, open resections and perioperative chemo-/radiation therapy. We stratified patients into total and partial thymectomy cohorts. We used propensity score matching to minimize confounding, Kaplan–Meier analysis to estimate survival, and Cox proportional hazards to identify associations. Results: Of 1598 patients with early-stage thymoma, 495 (31.0%) underwent partial and 1103 (69.0%) total thymectomy. Patients undergoing partial thymectomy were similar in sex (female 53.7% vs. 53.4%; p = 0.914), race (white 74.5% vs. 74.0%; p = 0.921), comorbidities (0 in 77.0% vs. 75.5%; p = 0.742), and tumor size (48.7 mm vs. 50.4 mm; p = 0.455) compared to total thymectomy. There were no differences in 30-day (0.8% vs. 0.6%, p = 0.747) or 90-day mortality (0.8% vs. 0.8%, p > 0.999), which persisted after matching. Moreover, 10-year survival was similar in both unmatched (p = 0.471) and matched cohorts (p = 0.828). Partial thymectomy was not independently associated with survival (aHR = 1.00, p = 0.976). Conclusions: In patients with early-stage thymoma, partial and total thymectomy were associated with similar short- and long-term outcomes. In light of recent attention to the role of the thymus gland, the results add important insights to shared decision-making discussions. Full article
(This article belongs to the Special Issue Advancements in Lung Cancer Surgical Treatment and Prognosis)
Show Figures

Figure 1

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 358
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 589 KiB  
Article
CT-Based Radiomics Enhance Respiratory Function Analysis for Lung SBRT
by Alice Porazzi, Mattia Zaffaroni, Vanessa Eleonora Pierini, Maria Giulia Vincini, Aurora Gaeta, Sara Raimondi, Lucrezia Berton, Lars Johannes Isaksson, Federico Mastroleo, Sara Gandini, Monica Casiraghi, Gaia Piperno, Lorenzo Spaggiari, Juliana Guarize, Stefano Maria Donghi, Łukasz Kuncman, Roberto Orecchia, Stefania Volpe and Barbara Alicja Jereczek-Fossa
Bioengineering 2025, 12(8), 800; https://doi.org/10.3390/bioengineering12080800 - 25 Jul 2025
Viewed by 446
Abstract
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this [...] Read more.
Introduction: Radiomics is the extraction of non-invasive and reproducible quantitative imaging features, which may yield mineable information for clinical practice implementation. Quantification of lung function through radiomics could play a role in the management of patients with pulmonary lesions. The aim of this study is to test the capability of radiomic features to predict pulmonary function parameters, focusing on the diffusing capacity of lungs to carbon monoxide (DLCO). Methods: Retrospective data were retrieved from electronical medical records of patients treated with Stereotactic Body Radiation Therapy (SBRT) at a single institution. Inclusion criteria were as follows: (1) SBRT treatment performed for primary early-stage non-small cell lung cancer (ES-NSCLC) or oligometastatic lung nodules, (2) availability of simulation four-dimensional computed tomography (4DCT) scan, (3) baseline spirometry data availability, (4) availability of baseline clinical data, and (5) written informed consent for the anonymized use of data. The gross tumor volume (GTV) was segmented on 4DCT reconstructed phases representing the moment of maximum inhalation and maximum exhalation (Phase 0 and Phase 50, respectively), and radiomic features were extracted from the lung parenchyma subtracting the lesion/s. An iterative algorithm was clustered based on correlation, while keeping only those most associated with baseline and post-treatment DLCO. Three models were built to predict DLCO abnormality: the clinical model—containing clinical information; the radiomic model—containing the radiomic score; the clinical-radiomic model—containing clinical information and the radiomic score. For the models just described, the following were constructed: Model 1 based on the features in Phase 0; Model 2 based on the features in Phase 50; Model 3 based on the difference between the two phases. The AUC was used to compare their performances. Results: A total of 98 patients met the inclusion criteria. The Charlson Comorbidity Index (CCI) scored as the clinical variable most associated with baseline DLCO (p = 0.014), while the most associated features were mainly texture features and similar among the two phases. Clinical-radiomic models were the best at predicting both baseline and post-treatment abnormal DLCO. In particular, the performances for the three clinical-radiomic models at predicting baseline abnormal DLCO were AUC1 = 0.72, AUC2 = 0.72, and AUC3 = 0.75, for Model 1, Model 2, and Model 3, respectively. Regarding the prediction of post-treatment abnormal DLCO, the performances of the three clinical-radiomic models were AUC1 = 0.91, AUC2 = 0.91, and AUC3 = 0.95, for Model 1, Model 2, and Model 3, respectively. Conclusions: This study demonstrates that radiomic features extracted from healthy lung parenchyma on a 4DCT scan are associated with baseline pulmonary function parameters, showing that radiomics can add a layer of information in surrogate models for lung function assessment. Preliminary results suggest the potential applicability of these models for predicting post-SBRT lung function, warranting validation in larger, prospective cohorts. Full article
(This article belongs to the Special Issue Engineering the Future of Radiotherapy: Innovations and Challenges)
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Viewed by 219
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

33 pages, 911 KiB  
Systematic Review
Systematic Literature Review on Economic Evaluations and Health Economic Models in Metastatic Castration-Sensitive Prostate Cancer
by Thanh Tu Nguyen, David Ameyaw, George Dennis Obeng, Rose Amuah, Judit Józwiak-Hagymásy, Tamás Dóczi, Dóra Mezei, Bertalan Németh, Attila Tordai, Ahu Alanya, Guillaume Grisay and Marcell Csanádi
Curr. Oncol. 2025, 32(8), 412; https://doi.org/10.3390/curroncol32080412 - 22 Jul 2025
Viewed by 259
Abstract
At diagnosis, metastatic prostate cancer (PC) is sensitive to androgen deprivation therapy (ADT), and patients are usually referred to as having castration-sensitive prostate cancer (mCSPC). The combination of ADT and androgen receptor pathway inhibitors (ARPI) is the current standard of care for mCSPC. [...] Read more.
At diagnosis, metastatic prostate cancer (PC) is sensitive to androgen deprivation therapy (ADT), and patients are usually referred to as having castration-sensitive prostate cancer (mCSPC). The combination of ADT and androgen receptor pathway inhibitors (ARPI) is the current standard of care for mCSPC. This study aimed to review the literature on economic evaluations and health economic models related to mCSPC. A literature search was performed covering Medline, Embase, and Scopus with additional grey literature sources. Studies with data on health economic evaluations focusing on Europe or North America were relevant. 18 peer-reviewed articles and 10 grey literature documents were included. The majority (n = 23) had a deterministic Markov structure and applied either Markov cohort or partitioned survival models. Evaluations investigated various types of ADT-based combinations, comparing the addition of ARPI, chemotherapy agents, or radiation therapy to ADT alone. We concluded that economic evaluations in the field of PC are widely published, and there are a large number of publications even in the specific subgroup of mCSPC. Regardless of the investigated interventions, most studies applied similar methodologies and simulated patients from the mCSPC state until the development of mCRPC or death. Full article
(This article belongs to the Section Health Economics)
Show Figures

Graphical abstract

17 pages, 2895 KiB  
Article
Salivary Proteome Profile of Xerostomic Patients Reveals Pathway Dysregulation Related to Neurodegenerative Diseases: A Pilot Study
by Abhijeet A. Henry, Micaela F. Beckman, Thomas S. Fry, Michael T. Brennan, Farah Bahrani Mougeot and Jean-Luc C. Mougeot
Int. J. Mol. Sci. 2025, 26(15), 7037; https://doi.org/10.3390/ijms26157037 - 22 Jul 2025
Viewed by 371
Abstract
Xerostomia, the subjective complaint of a dry mouth, is frequently associated with salivary flow reduction and/or salivary gland hypofunction. This condition significantly impacts an individual’s quality of life and oral health, including difficulties in speaking, chewing, and swallowing. Xerostomia may be caused by [...] Read more.
Xerostomia, the subjective complaint of a dry mouth, is frequently associated with salivary flow reduction and/or salivary gland hypofunction. This condition significantly impacts an individual’s quality of life and oral health, including difficulties in speaking, chewing, and swallowing. Xerostomia may be caused by autoimmune diseases, xerogenic medications, and radiation therapy. Our objective was to identify differentially expressed proteins in the saliva of patients with medication and autoimmune disease-associated xerostomia compared to non-xerostomic control subjects. Two groups of individuals (N = 45 total) were recruited: non-xerostomic subjects (NX-group; n = 18) and xerostomic patients (XP-group; n = 27). Dried saliva spot samples were collected from major salivary glands, i.e., parotid (left and right) and submandibular glands. Proteomic analysis was performed by deep nanoLC-MS/MS. Differential protein expression in the XP-group relative to the NX-group was determined by the Mann–Whitney U-test with FDR Benjamini–Hochberg correction (padj < 0.05). The Search Tool for Recurring Instances of Neighboring Genes (STRINGv12.0) was used to generate interaction networks and perform pathway analysis. A total of 1407 proteins were detected. Of these, 86 from the left parotid gland, 112 from the right parotid gland, and 73 from the submandibular gland were differentially expressed proteins (DEPs). Using STRING analysis, we identified, for the first time, several neurodegenerative disease-associated networks, primarily involving the downregulation of the 20S proteasome core complex and glyoxalase proteins across salivary glands. In this study, we determined neuronal dysregulation and impaired methylglyoxal (MGO) detoxification, possibly through reduced protein expression of glyoxalase Parkinson’s Disease (PD) Protein 7 (encoded by the PARK7 gene) in major salivary glands of xerostomic patients. Indeed, impaired MGO detoxification has been previously shown to cause salivary gland dysfunction in a mouse model of type 2 diabetes. Based on other DEPs associated with neurodegenerative disorders, our results also suggest a possible deficiency in the parasympathetic nervous system innervation of salivary glands, warranting further investigation. Full article
(This article belongs to the Special Issue Molecular Perspective in Autoimmune Diseases)
Show Figures

Figure 1

18 pages, 2355 KiB  
Article
Preventive Gastroprotective Effect of a Functional Food Based on Quinoa (Chenopodium quinoa Willd.) and Quercetin in a Murine Model of Ibuprofen-Induced Gastric Damage
by Maribel Valenzuela-González, José Luis Cárdenas-López, Armando Burgos-Hernández, Norma Julieta Salazar-López, Manuel Viuda-Martos, Mónica A. Villegas-Ochoa, Gustavo Martínez-Coronilla, J. Abraham Domínguez-Avila, Shela Gorinstein, Gustavo A. González-Aguilar and Rosario Maribel Robles-Sánchez
Antioxidants 2025, 14(7), 893; https://doi.org/10.3390/antiox14070893 - 21 Jul 2025
Viewed by 423
Abstract
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, [...] Read more.
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, such as dietary antioxidant therapies. The objective of this study was to evaluate the gastroprotective activity of quinoa (Chenopodium quinoa Willd.) on ibuprofen (IBP)-induced gastric ulcers in a rat model. Quinoa cookies were formulated with heat-treated quinoa using microwave radiation. The intestinal bioaccessibility of phenols and flavonoids, and the antioxidant activity of microwaved quinoa cookies (MQCs) were notably higher than quinoa cookies without thermal treatment (RQCs): 132% TPC, 52% TFC, 1564% TEAC vs. 67% TPC, 24% TFC, and 958% TEAC, respectively. Basal diets were supplemented with MQCs (20%) and quercetin (Q, 0.20%) as a reference flavonoid and administered for 30 days. Gastric lesions were induced by intragastric IBP doses, with OMP treatment as a positive control. Gastric damage index (macroscopic study), histological score (microscopic study), and plasma antioxidant enzyme activity (SOD and CAT) were evaluated. Macroscopic results showed that the addition of MQCs, Q, and OMP decreased the gastric damage index (GDI) by 50%, 40%, and 3%, respectively, as compared to IBP (GDI 100%). Histological analyses showed neutrophil infiltration and congested blood vessels in IBP-treated tissues; in contrast, the experimental diet groups showed lower infiltration for MQC > OMP > Q, respectively. A significant increase in SOD and CAT enzyme activity was observed in the MQC and Q groups as compared to the IBP group. We conclude that a reduction in the GDI and histological score was observed in IBP-induced murine models fed diets containing 20% MQC and 0.20% Q, demonstrating a preventive gastroprotective effect. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

15 pages, 2610 KiB  
Article
CT-Based Radiomics for a priori Predicting Response to Chemoradiation in Locally Advanced Lung Adenocarcinoma
by Erika Z. Chung, Laurentius O. Osapoetra, Patrick Cheung, Ian Poon, Alexander V. Louie, May Tsao, Yee Ung, Mateus T. Cunha, Ines B. Menjak and Gregory J. Czarnota
Cancers 2025, 17(14), 2386; https://doi.org/10.3390/cancers17142386 - 18 Jul 2025
Viewed by 295
Abstract
The standard treatment for patients with locally advanced non-small cell lung cancer (NSCLC) is concurrent chemoradiation. However, clinical responses are heterogeneous and generally not known until after the completion of therapy. Multiple studies have investigated imaging predictors (radiomics) for different cancer histologies, but [...] Read more.
The standard treatment for patients with locally advanced non-small cell lung cancer (NSCLC) is concurrent chemoradiation. However, clinical responses are heterogeneous and generally not known until after the completion of therapy. Multiple studies have investigated imaging predictors (radiomics) for different cancer histologies, but little exists for NSCLC. The objective of this study was to develop a multivariate CT-based radiomics model to a priori predict responses to definitive chemoradiation in patients with lung adenocarcinoma. Methods: Patients diagnosed with locally advanced unresectable lung adenocarcinoma who had undergone chemoradiotherapy followed by at least one dose of maintenance durvalumab were included. The PyRadiomics Python library was used to determine statistical, morphological, and textural features from normalized patient pre-treatment CT images and their wavelet-filtered versions. A nested leave-one-out cross-validation was used for model building and evaluation. Results: Fifty-seven patients formed the study cohort. The clinical stage was IIIA-C in 98% of patients. All but one received 6000–6600 cGy of radiation in 30–33 fractions. All received concurrent platinum-based chemotherapy. Based on RECIST 1.1, 20 (35%) patients were classified as responders (R) to chemoradiation and 37 (65%) patients as non-responders (NR). A three-feature model based on a KNN k = 1 machine learning classifier was found to have the best performance, achieving a recall, specificity, accuracy, balanced accuracy, precision, negative predictive value, F1-score, and area under the curve of 84%, 70%, 80%, 77%, 84%, 70%, 84%, and 0.77, respectively. Conclusions: Our results suggest that a CT-based radiomics model may be able to predict chemoradiation response for lung adenocarcinoma patients with estimated accuracies of 77–84%. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment
by Bandar Aldhubiab and Rashed M. Almuqbil
Pharmaceuticals 2025, 18(7), 1057; https://doi.org/10.3390/ph18071057 - 18 Jul 2025
Viewed by 443
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) [...] Read more.
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) has emerged as an advanced, selective and more controlled therapeutic approach, which has minimal systemic toxicity and fewer side effects. PDT is a less invasive therapy that targets all cells or tissues that possess the photosensitizer (PS) itself, without affecting the surrounding healthy tissues. Polymeric NPs (PNPs) as carriers can improve the targeting ability and stability of PSs and co-deliver various anticancer agents to achieve combined cancer therapy. Because of their versatile tuneable features, these PNPs have the capacity to open tight junctions of the blood–brain barrier (BBB), easily transport drugs across the BBB, protect against enzymatic degradation, prolong the systemic circulation, and sustainably release the drug. Conjugated polymer NPs, poly(lactic-co-glycolic acid)-based NPs, lipid–polymer hybrid NPs, and polyethylene-glycolated PNPs have demonstrated great potential in PDT owing to their unique biocompatibility and optical properties. Although the combination of PDT and PNPs has great potential and can provide several benefits over conventional cancer therapies, there are several limitations that are hindering its translation into clinical use. This review aims to summarize the recent advances in the combined use of PNPs and PDT in the case of glioblastoma treatment. By evaluating various types of PDT and PNPs, this review emphasizes how these innovative approaches can play an important role in overcoming glioblastoma-associated critical challenges, including BBB and tumour heterogeneity. Furthermore, this review also discusses the challenges and future directions for PNPs and PDT, which provides insight into the potential solutions to various problems that are hindering their clinical translation in glioblastoma treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop