Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = quinone analog

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 16653 KiB  
Review
Alkoxyalkylation of Electron-Rich Aromatic Compounds
by Péter Simon, Bálint Lőrinczi and István Szatmári
Int. J. Mol. Sci. 2024, 25(13), 6966; https://doi.org/10.3390/ijms25136966 - 26 Jun 2024
Cited by 2 | Viewed by 2453
Abstract
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance [...] Read more.
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives. Full article
Show Figures

Figure 1

24 pages, 16539 KiB  
Review
What We Are Learning from the Diverse Structures of the Homodimeric Type I Reaction Center-Photosystems of Anoxygenic Phototropic Bacteria
by Robert A. Niederman
Biomolecules 2024, 14(3), 311; https://doi.org/10.3390/biom14030311 - 6 Mar 2024
Cited by 2 | Viewed by 2308
Abstract
A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. [...] Read more.
A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.2-Å X-ray structure of the RC-PS of Heliomicrobium modesticaldum revealed that the core PshA apoprotein (PshA-1 and PshA-2 homodimeric pair) exhibits a structurally conserved PSI arrangement comprising five C-terminal transmembrane α-helices (TMHs) forming the RC domain and six N-terminal TMHs coordinating the light-harvesting (LH) pigments. The Hmi. modesticaldum structure lacked quinone molecules, indicating that electrons were transferred directly from the A0 (81-OH-chlorophyll (Chl) a) acceptor to the FX [4Fe-4S] component, serving as the terminal RC acceptor. A pair of additional TMHs designated as Psh X were also found that function as a low-energy antenna. The 2.5-Å resolution cryo-electron microscopy (cryo-EM) structure for the RC-PS of the green sulfur bacterium Chlorobaculum tepidum included a pair of Fenna–Matthews–Olson protein (FMO) antennae, which transfer excitations from the chlorosomes to the RC-PS (PscA-1 and PscA-2) core. A pair of cytochromes cZ (PscC) molecules was also revealed, acting as electron donors to the RC bacteriochlorophyll (BChl) a’ special pair, as well as PscB, housing the [4Fe-4S] cluster FA and FB, and the associated PscD protein. While the FMO components were missing from the 2.6-Å cryo-EM structure of the Zn- (BChl) a’ special pair containing RC-PS of Chloracidobacterium thermophilum, a unique architecture was revealed that besides the (PscA)2 core, consisted of seven additional subunits including PscZ in place of PscD, the PscX and PscY cytochrome c serial electron donors and four low mol. wt. subunits of unknown function. Overall, these diverse structures have revealed that (i) the HB RC-PS is the simplest light–energy transducing complex yet isolated and represents the closest known homolog to a common homodimeric RC-PS ancestor; (ii) the symmetrically localized Ca2+-binding sites found in each of the Type I homodimeric RC-PS structures likely gave rise to the analogously positioned Mn4CaO5 cluster of the PSII RC and the TyrZ RC donor site; (iii) a close relationship between the GSB RC-PS and the PSII Chl proteins (CP)43 and CP47 was demonstrated by their strongly conserved LH-(B)Chl localizations; (iv) LH-BChls of the GSB-RC-PS are also localized in the conserved RC-associated positions of the PSII ChlZ-D1 and ChlZ-D2 sites; (v) glycosylated carotenoids of the GSB RC-PS are located in the homologous carotenoid-containing positions of PSII, reflecting an O2-tolerance mechanism capable of sustaining early stages in the evolution of oxygenic photosynthesis. In addition to the close relationships found between the homodimeric RC-PS and PSII, duplication of the gene encoding the ancestral Type I RC apoprotein, followed by genetic divergence, may well account for the appearance of the heterodimeric Type I and Type II RCs of the extant oxygenic phototrophs. Accordingly, the long-held view that PSII arose from the anoxygenic Type II RC is now found to be contrary to the new evidence provided by Type I RC-PS homodimer structures, indicating that the evolutionary origins of anoxygenic Type II RCs, along with their distinct antenna rings are likely to have been preceded by the events that gave rise to their oxygenic counterparts. Full article
(This article belongs to the Collection Feature Papers in Molecular Structure and Dynamics)
Show Figures

Figure 1

13 pages, 2023 KiB  
Article
Proline Dehydrogenase and Pyrroline 5 Carboxylate Dehydrogenase from Mycobacterium tuberculosis: Evidence for Substrate Channeling
by Santosh Kumar, Steven Sega, Jamie K. Lynn-Barbe, Dannika L. Harris, Jordan T. Koehn, Debbie C. Crans and Dean C. Crick
Pathogens 2023, 12(9), 1171; https://doi.org/10.3390/pathogens12091171 - 18 Sep 2023
Cited by 2 | Viewed by 2074
Abstract
In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate (P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to glutamate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for the replication of pathogenic M. tuberculosis. Highly active [...] Read more.
In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate (P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to glutamate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for the replication of pathogenic M. tuberculosis. Highly active enzymes were expressed and purified using a Mycobacterium smegmatis expression system. The purified enzymes were characterized using natural substrates and chemically synthesized analogs. The structural requirements of the quinone electron acceptor were examined. PruB displayed activity with all tested lipoquinone analogs (naphthoquinone or benzoquinone). In PruB assays utilizing analogs of the native naphthoquinone [MK-9 (II-H2)] specificity constants Kcat/Km were an order of magnitude greater for the menaquinone analogs than the benzoquinone analogs. In addition, mycobacterial PruA was enzymatically characterized for the first time using exogenous chemically synthesized P5C. A Km value of 120 ± 0.015 µM was determined for P5C, while the Km value for NAD+ was shown to be 33 ± 4.3 µM. Furthermore, proline competitively inhibited PruA activity and coupled enzyme assays, suggesting that the recombinant purified monofunctional PruB and PruA enzymes of M. tuberculosis channel substrate likely increase metabolic flux and protect the bacterium from methylglyoxal toxicity. Full article
(This article belongs to the Special Issue Biology of Mycobacterial Pathogens)
Show Figures

Figure 1

21 pages, 3769 KiB  
Article
A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells
by Matías Monroy-Cárdenas, Víctor Andrades, Cristopher Almarza, María Jesús Vera, Jorge Martínez, Rodrigo Pulgar, John Amalraj, Ramiro Araya-Maturana and Félix A. Urra
Antioxidants 2023, 12(8), 1597; https://doi.org/10.3390/antiox12081597 - 10 Aug 2023
Cited by 8 | Viewed by 2912
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV–1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in [...] Read more.
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV–1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV–1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV–1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV–1 is a NOQ1 substrate. Importantly, FRV–1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV–1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 1934 KiB  
Article
Mitochondria-Targeted Antioxidant SkQ1 Prevents the Development of Experimental Colitis in Mice and Impairment of the Barrier Function of the Intestinal Epithelium
by Artem V. Fedorov, Maria A. Chelombitko, Daniil A. Chernyavskij, Ivan I. Galkin, Olga Yu. Pletjushkina, Tamara V. Vasilieva, Roman A. Zinovkin and Boris V. Chernyak
Cells 2022, 11(21), 3441; https://doi.org/10.3390/cells11213441 - 31 Oct 2022
Cited by 13 | Viewed by 4324
Abstract
Mitochondria-targeted antioxidants have become promising candidates for the therapy of various pathologies. The mitochondria-targeted antioxidant SkQ1, which is a derivative of plastoquinone, has been successfully used in preclinical studies for the treatment of cardiovascular and renal diseases, and has demonstrated anti-inflammatory activity in [...] Read more.
Mitochondria-targeted antioxidants have become promising candidates for the therapy of various pathologies. The mitochondria-targeted antioxidant SkQ1, which is a derivative of plastoquinone, has been successfully used in preclinical studies for the treatment of cardiovascular and renal diseases, and has demonstrated anti-inflammatory activity in a number of inflammatory disease models. The present work aimed to investigate the therapeutic potential of SkQ1 and C12TPP, the analog of SkQ1 lacking the antioxidant quinone moiety, in the prevention of sodium dextran sulfate (DSS) experimental colitis and impairment of the barrier function of the intestinal epithelium in mice. DSS-treated animals exhibited weight loss, bloody stool, dysfunction of the intestinal epithelium barrier (which was observed using FITC-dextran permeability), reduced colon length, and histopathological changes in the colon mucosa. SkQ1 prevented the development of clinical and histological changes in DSS-treated mice. SkQ1 also reduced mRNA expression of pro-inflammatory molecules TNF, IL-6, IL-1β, and ICAM-1 in the proximal colon compared with DSS-treated animals. SkQ1 prevented DSS-induced tight junction disassembly in Caco-2 cells. Pretreatment of mice by C12TPP did not protect against DSS-induced colitis. Furthermore, C12TPP did not prevent DSS-induced tight junction disassembly in Caco-2 cells. Our results suggest that SkQ1 may be a promising therapeutic agent for the treatment of inflammatory bowel diseases, in particular ulcerative colitis. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

37 pages, 16168 KiB  
Review
Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones
by Margaret M. Braasch-Turi, Jordan T. Koehn and Debbie C. Crans
Int. J. Mol. Sci. 2022, 23(21), 12856; https://doi.org/10.3390/ijms232112856 - 25 Oct 2022
Cited by 11 | Viewed by 3073
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, [...] Read more.
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes. Full article
(This article belongs to the Special Issue Lipids: From the Structure, Function and Evolution to Applications)
Show Figures

Graphical abstract

15 pages, 3337 KiB  
Article
Production of Fungal Quinones: Problems and Prospects
by Johan Vormsborg Christiansen, Thomas Ostenfeld Larsen and Jens Christian Frisvad
Biomolecules 2022, 12(8), 1041; https://doi.org/10.3390/biom12081041 - 28 Jul 2022
Cited by 6 | Viewed by 2666
Abstract
Fungal quinones can be used for a variety of applications, such as pharmaceuticals, food colorants, textile dyes, and battery electrolytes. However, when producing quinones by fungal cultivation, many considerations arise regarding the feasibility of a production system, such as the quinone yield, purity, [...] Read more.
Fungal quinones can be used for a variety of applications, such as pharmaceuticals, food colorants, textile dyes, and battery electrolytes. However, when producing quinones by fungal cultivation, many considerations arise regarding the feasibility of a production system, such as the quinone yield, purity, ease of extraction, and the co-production of mycotoxins. In this work, we display the initial screening of filamentous fungi for quinone production and evaluate their potential for future optimization. We investigated toluquinone (TQ) potentially produced by Penicillium cf. griseofulvum, terreic acid (TA) produced by Aspergillus parvulus and A. christenseniae, and anthraquinone (AQ) monomers and dimers produced by Talaromyces islandicus. The strains grew on various agar and/or liquid media and were analyzed by ultra-high-performance liquid chromatography–diode array detection–quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QTOF MS). In the case of AQs, feature-based molecular networking (FBMN) was used for the identification of AQ analogs. TQ was not observed in the production strains. TA constituted one of the major chromatogram peaks and was secreted into the growth medium by A. parvulus. The AQs constituted many major chromatogram peaks in the mycelium extracts and endocrocin and citreorosein were observed extracellularly in small amounts. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Graphical abstract

21 pages, 6830 KiB  
Review
Antioxidant Activity of Natural Hydroquinones
by Rosa M. Giner, José Luis Ríos and Salvador Máñez
Antioxidants 2022, 11(2), 343; https://doi.org/10.3390/antiox11020343 - 9 Feb 2022
Cited by 35 | Viewed by 5666
Abstract
Secondary metabolites derived from hydroquinone are quite rare in nature despite the original simplicity of its structure, especially when compared to other derivatives with which it shares biosynthetic pathways. However, its presence in a prenylated form is somewhat relevant, especially in the marine [...] Read more.
Secondary metabolites derived from hydroquinone are quite rare in nature despite the original simplicity of its structure, especially when compared to other derivatives with which it shares biosynthetic pathways. However, its presence in a prenylated form is somewhat relevant, especially in the marine environment, where it is found in different algae and invertebrates. Sometimes, more complex molecules have also been identified, as in the case of polycyclic diterpenes, such as those possessing an abietane skeleton. In every case, the presence of the dihydroxy group in the para position gives them antioxidant capacity, through its transformation into para-quinones.This review focuses on natural hydroquinones with antioxidant properties referenced in the last fifteen years. This activity, which has been generally demonstrated in vitro, should lead to relevant pharmacological properties, through its interaction with enzymes, transcription factors and other proteins, which may be particularly relevant for the prevention of degenerative diseases of the central nervous system, or also in cancer and metabolic or immune diseases. As a conclusion, this review has updated the pharmacological potential of hydroquinone derivatives, despite the fact that only a small number of molecules are known as active principles in established medicinal plants. The highlights of the present review are as follows: (a) sesquiterpenoid zonarol and analogs, whose activity is based on the stimulation of the Nrf2/ARE pathway, have a neuroprotective effect; (b) the research on pestalotioquinol and analogs (aromatic ene-ynes) in the pharmacology of atherosclerosis is of great value, due to their agonistic interaction with LXRα; and (c) prenylhydroquinones with a selective effect on tyrosine nitration or protein carbonylation may be of interest in the control of post-translational protein modifications, which usually appear in chronic inflammatory diseases. Full article
Show Figures

Figure 1

28 pages, 3457 KiB  
Article
Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis
by Carlos Fernandes, Afonso J. C. Videira, Caroline D. Veloso, Sofia Benfeito, Pedro Soares, João D. Martins, Beatriz Gonçalves, José F. S. Duarte, António M. S. Santos, Paulo J. Oliveira, Fernanda Borges, José Teixeira and Filomena S. G. Silva
Biomolecules 2021, 11(11), 1605; https://doi.org/10.3390/biom11111605 - 29 Oct 2021
Cited by 11 | Viewed by 3548
Abstract
Mitochondriotropic antioxidants (MC3, MC6.2, MC4 and MC7.2) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally [...] Read more.
Mitochondriotropic antioxidants (MC3, MC6.2, MC4 and MC7.2) based on dietary antioxidants and analogs (caffeic, hydrocaffeic, trihydroxyphenylpropanoic and trihydroxycinnamic acids) were developed. In this study, we evaluate and compare the cytotoxicity profile of novel mitochondria-targeted molecules (generally known as MitoCINs) on human HepG2 and differentiated SH-SY5Y cells with the quinone-based mitochondria-targeted antioxidants MitoQ and SkQ1 and with two non-targeted antioxidants, resveratrol and coenzyme Q10 (CoQ10). We further evaluate their effects on mitochondrial membrane potential, cellular oxygen consumption and extracellular acidification rates. Overall, MitoCINs derivatives reduced cell viability at concentrations about six times higher than those observed with MitoQ and SkQ1. A toxicity ranking for both cell lines was produced: MC4 < MC7.2 < MC3 < MC6.2. These results suggest that C-6 carbon linker and the presence of a pyrogallol group result in lower cytotoxicity. MC3 and MC6.2 affected the mitochondrial function more significantly relative to MitoQ, SkQ1, resveratrol and CoQ10, while MC4 and MC7.2 displayed around 100–1000 times less cytotoxicity than SkQ1 and MitoQ. Based on the mitochondrial and cytotoxicity cellular data, MC4 and MC7.2 are proposed as leads that can be optimized to develop safe drug candidates with therapeutic application in mitochondrial oxidative stress-related diseases. Full article
Show Figures

Figure 1

42 pages, 2399 KiB  
Review
Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity
by Narimantas Čėnas, Aušra Nemeikaitė-Čėnienė and Lidija Kosychova
Int. J. Mol. Sci. 2021, 22(16), 8534; https://doi.org/10.3390/ijms22168534 - 8 Aug 2021
Cited by 22 | Viewed by 4906
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The [...] Read more.
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

13 pages, 2440 KiB  
Communication
Tuning the Catalytic Water Oxidation Activity through Structural Modifications of High-Nuclearity Mn-oxo Clusters [Mn18M] (M = Sr2+, Mn2+)
by Joaquín Soriano-López, Rory Elliott, Amal C. Kathalikkattil, Ayuk M. Ako and Wolfgang Schmitt
Water 2021, 13(15), 2042; https://doi.org/10.3390/w13152042 - 27 Jul 2021
Cited by 3 | Viewed by 2879
Abstract
The water oxidation half-reaction is considered the bottleneck in the development of technological advances to replace fossil fuels with sustainable and economically affordable energy sources. In natural photosynthesis, water oxidation occurs in the oxygen evolving complex (OEC), a manganese-oxo cluster {Mn4CaO [...] Read more.
The water oxidation half-reaction is considered the bottleneck in the development of technological advances to replace fossil fuels with sustainable and economically affordable energy sources. In natural photosynthesis, water oxidation occurs in the oxygen evolving complex (OEC), a manganese-oxo cluster {Mn4CaO5} with a cubane-like topology that is embedded within a redox-active protein environment located in photosystem II (PS II). Therefore, the preparation of biomimetic manganese-based compounds is appealing for the development of efficient and inexpensive water oxidation catalysts. Here, we present the water oxidation catalytic activity of a high-nuclearity mixed-metal manganese-strontium cluster, [MnIII12MnII6Sr(μ4-O8)(μ3-Cl)8(HLMe)12(MeCN)6]Cl2∙15MeOH (Mn18Sr) (HLMe = 2,6-bis(hydroxymethyl)-p-cresol), in neutral media. This biomimetic mixed-valence cluster features different cubane-like motifs and it is stabilized by redox-active, quinone-like organic ligands. The complex displays a low onset overpotential of 192 mV and overpotentials of 284 and 550 mV at current densities of 1 mA cm−2 and 10 mA cm−2, respectively. Direct O2 evolution measurements under visible light-driven water oxidation conditions demonstrate the catalytic capabilities of this cluster, which exhibits a turnover frequency of 0.48 s−1 and a turnover number of 21.6. This result allows for a direct comparison to be made with the structurally analogous Mn-oxo cluster [MnIII12MnII74-O)83-OCH3)23-Br)6(HLMe)12(MeOH)5(MeCN)]Br2·9MeCN·MeOH (Mn19), the water oxidation catalytic activity of which was recently reported by us. This work highlights the potential of this series of compounds towards the water oxidation reaction and their amenability to induce structural changes that modify their reactivity. Full article
(This article belongs to the Special Issue Immobilized Molecular Water Oxidation Catalysts)
Show Figures

Figure 1

24 pages, 9604 KiB  
Review
A Survey of Synthetic Routes and Antitumor Activities for Benzo[g]quinoxaline-5,10-diones
by Alain G. Giuglio-Tonolo, Christophe Curti, Thierry Terme and Patrice Vanelle
Molecules 2020, 25(24), 5922; https://doi.org/10.3390/molecules25245922 - 14 Dec 2020
Cited by 5 | Viewed by 4386
Abstract
Anthracycline antibiotics play an important role in cancer chemotherapy. The need to improve their therapeutic index has stimulated an ongoing search for anthracycline analogs with enhanced properties. This review aims to summarize the common synthetic approaches to benzo[g]quinoxaline-5,10-diones and their uses [...] Read more.
Anthracycline antibiotics play an important role in cancer chemotherapy. The need to improve their therapeutic index has stimulated an ongoing search for anthracycline analogs with enhanced properties. This review aims to summarize the common synthetic approaches to benzo[g]quinoxaline-5,10-diones and their uses in heterocyclic chemistry. Because of the valuable biological activities of the 1,4-diazaanthraquinone compounds, a summary of the most promising heterocyclic quinones is provided together with their antitumor properties. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

14 pages, 3563 KiB  
Article
Effects of Chemically-Modified Polypyridyl Ligands on the Structural and Redox Properties of Tricarbonylmanganese(I) Complexes
by Takatoshi Kanno, Tsugiko Takase and Dai Oyama
Molecules 2020, 25(24), 5921; https://doi.org/10.3390/molecules25245921 - 14 Dec 2020
Cited by 3 | Viewed by 2921
Abstract
Carbonyl complexes with manganese(I) as the central metal are very attractive catalysts. The introduction of redox-active ligands, such as quinones and methyl viologen analogs into these catalysts, would be expected to lead to superior catalyst performances, since they can function as excellent electron [...] Read more.
Carbonyl complexes with manganese(I) as the central metal are very attractive catalysts. The introduction of redox-active ligands, such as quinones and methyl viologen analogs into these catalysts, would be expected to lead to superior catalyst performances, since they can function as excellent electron carriers. In this study, we synthesized four tricarbonylmanganese(I) complexes containing typical bidentate polypyridyl ligands, including 1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy) frameworks bound to redox-active ortho-quinone/catechol or methyl viologen-like units. The molecular structures of the resulting complexes were determined by X-ray crystallography to clarify their steric features. As expected from the infrared (IR) data, three CO ligands for each complex were coordinated in the facial configuration around the central manganese(I) atom. Additionally, the structural parameters were found to differ significantly between the quinone/catechol units. Electrochemical analysis revealed some differences between them and their reference complexes, namely [MnBr(CO)3(phen)] and [MnBr(CO)3(bpy)]. Notably, interconversions induced by two-electron/two-proton transfers between the quinone and catechol units were observed in the phenanthroline-based complexes. This work indicated that the structural and redox properties in tricarbonylmanganese(I) complexes were significantly affected by chemically modified polypyridyl ligands. A better understanding of structures and redox behaviors of the present compounds would facilitate the design of new manganese complexes with enhanced properties. Full article
Show Figures

Figure 1

11 pages, 1632 KiB  
Article
In Vitro Antiproliferative Evaluation of Synthetic Meroterpenes Inspired by Marine Natural Products
by Concetta Imperatore, Gerardo Della Sala, Marcello Casertano, Paolo Luciano, Anna Aiello, Ilaria Laurenzana, Claudia Piccoli and Marialuisa Menna
Mar. Drugs 2019, 17(12), 684; https://doi.org/10.3390/md17120684 - 5 Dec 2019
Cited by 14 | Viewed by 3535
Abstract
Several marine natural linear prenylquinones/hydroquinones have been identified as anticancer and antimutagenic agents. Structure-activity relationship studies on natural compounds and their synthetic analogs demonstrated that these effects depend on the length of the prenyl side chain and on the type and position of [...] Read more.
Several marine natural linear prenylquinones/hydroquinones have been identified as anticancer and antimutagenic agents. Structure-activity relationship studies on natural compounds and their synthetic analogs demonstrated that these effects depend on the length of the prenyl side chain and on the type and position of the substituent groups in the quinone moiety. Aiming to broaden the knowledge of the underlying mechanism of the antiproliferative effect of these prenylated compounds, herein we report the synthesis of two quinones 4 and 5 and of their corresponding dioxothiazine fused quinones 6 and 7 inspired to the marine natural product aplidinone A (1), a geranylquinone featuring the 1,1-dioxo-1,4-thiazine ring isolated from the ascidian Aplidium conicum. The potential effects on viability and proliferation in three different human cancer cell lines, breast adenocarcinoma (MCF-7), pancreas adenocarcinoma (Bx-PC3) and bone osteosarcoma (MG-63), were investigated. The methoxylated geranylquinone 5 exerted the highest antiproliferative effect exhibiting a comparable toxicity in all three cell lines analyzed. Interestingly, a deeper investigation has highlighted a cytostatic effect of quinone 5 referable to a G0/G1 cell-cycle arrest in BxPC-3 cells after 24 h treatment. Full article
Show Figures

Graphical abstract

18 pages, 10732 KiB  
Article
Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis
by Sheng-You Li, Ze-Kun Sun, Xue-Yi Zeng, Yue Zhang, Meng-Ling Wang, Sheng-Cao Hu, Jun-Rong Song, Jun Luo, Chao Chen, Heng Luo and Wei-Dong Pan
Molecules 2019, 24(22), 4138; https://doi.org/10.3390/molecules24224138 - 15 Nov 2019
Cited by 7 | Viewed by 3529
Abstract
Twenty-seven L-shaped ortho-quinone analogs were designed and synthesized using a one pot double-radical synthetic strategy followed by removing methyl at C-3 of the furan ring and introducing a diverse side chain at C-2 of the furan ring. The synthetic derivatives were investigated for [...] Read more.
Twenty-seven L-shaped ortho-quinone analogs were designed and synthesized using a one pot double-radical synthetic strategy followed by removing methyl at C-3 of the furan ring and introducing a diverse side chain at C-2 of the furan ring. The synthetic derivatives were investigated for their cytotoxicity activities against human leukemia cells K562, prostate cancer cells PC3, and melanoma cells WM9. Compounds TB1, TB3, TB4, TB6, TC1, TC3, TC5, TC9, TC11, TC12, TC14, TC15, TC16, and TC17 exhibited a better broad-spectrum cytotoxicity on three cancer cells. TB7 and TC7 selectively displayed potent inhibitory activities on leukemia cells K562 and prostate cancer cells PC3, respectively. Further studies indicated that TB3, TC1, TC3, TC7, and TC17 could significantly induce the apoptosis of PC3 cells. TC1 and TC17 significantly induced apoptosis of K562 cells. TC1, TC11, and TC14 induced significant apoptosis of WM9 cells. The structure-activity relationships evaluation showed that removing methyl at C-3 of the furan ring and introducing diverse side chains at C-2 of the furan ring is an effective strategy for improving the anticancer activity of L-shaped ortho-quinone analogs. Full article
(This article belongs to the Special Issue Anticancer Agents: Design, Synthesis and Evaluation)
Show Figures

Figure 1

Back to TopTop