Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis
Abstract
:1. Introduction
2. Discussion and Results
2.1. Chemistry
2.2. In Vitro Cytotoxicity Assay
2.3. Structure-Activity Relationships Study
2.4. Effects of Active Compounds on Cell Apoptosis
3. Materials and Methods
3.1. Instruments and Materials
3.2. Methods of Synthesis
3.2.1. Synthesis of 2-Allyl-3-hydroxy-1,4-naphthoquinone (7)
3.2.2. Synthesis of 2-Methyl-2,3-dihydrolnaphthol[1,2-b]furan-4,5-dione (8)
3.2.3. Synthesis of 2-Bromomethyl-naphtho[1-b]furan-4,5-dione (9)
3.2.4. Synthesis of TB1–9 and TC1–18
3.3. In Vitro Cytotoxicity Assay
3.4. Flow Cytometry Assay
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. 2019, 39, 22. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Weerink, L.B.; Gant, C.M.; Leeuwen, B.L.V.; De Bock, G.H.; Kouwenhoven, E.A.; Faneyte, I.F. Long-term survival in octogenarians after surgical treatment for colorectal cancer: Prevention of postoperative complications is key. Ann. Surg. Oncol. 2018, 25, 3874–3882. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the Last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef]
- Tan, Y.H.; Xiao, X.; Yao, J.N.; Han, F.; Lou, H.Y.; Luo, H.; Liang, G.Y.; Ben-David, Y.; Pan, W.D. Syntheses and Anti-cancer Activities of Glycosylated Derivatives of Diosgenin. Chem. Res. Chin. Univ. 2017, 33, 80–86. [Google Scholar] [CrossRef]
- Lan, J.J.; Huang, L.; Lou, H.Y.; Chen, C.; Liu, T.J.J.; Hu, S.C.; Yao, Y.; Song, J.R.; Luo, J.; Liu, Y.Z.; et al. Design and synthesis of novel C-14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem. 2018, 143, 1968–1980. [Google Scholar] [CrossRef]
- Lan, J.J.; Wang, N.; Huang, L.; Liu, Y.Z.; Ma, X.P.; Lou, H.Y.; Chen, C.; Feng, Y.P.; Pan, W.D. Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma. Eur. J. Med. Chem. 2019, 127, 554–566. [Google Scholar] [CrossRef]
- Song, J.R.; Lan, J.J.; Chen, C.; Hu, S.C.; Song, J.L.; Liu, W.L.; Zeng, X.Y.; Lou, H.Y.; Ben-David, Y.; Pan, W.D. Design, synthesis and bioactivity investigation of tetrandrine derivatives as potential anti-cancer agents. MedChemComm 2018, 9, 1131–1141. [Google Scholar] [CrossRef]
- Liu, F.; Yu, G.; Wang, G.; Liu, H.; Wu, X.; Wang, Q.; Liu, M.; Liao, K.; Wu, M.; Cheng, X.; et al. An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer. PLoS ONE 2012, 7, e42138. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Chen, L.; Xiao, Z.G.; Zhu, Y.H.; Jiang, H.; Jin, Y.; Gu, C.; Wu, Y.L.; Wang, L.; Zhang, W.; et al. Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA. Phytomedicine 2018, 51, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wang, L.; Wang, H.; Yang, L.Q.; Guo, H.J.; Wang, X.J. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J. Cell Biochem. 2013, 114, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Huang, C.C.; Huang, W.L.; Lin, T.K.; Liao, P.L.; Wang, P.W.; Liou, C.W.; Chuang, J.H. Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. Sci. Rep. 2017, 7, 40382. [Google Scholar] [CrossRef] [PubMed]
- Bentle, M.S.; Reinicke, K.E.; Bey, E.A.; Spitz, D.R.; Boothman, D.A. Calcium-dependent modulation of poly (ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. J. Biol. Chem. 2006, 281, 33684–33696. [Google Scholar] [CrossRef]
- Bey, E.A.; Bentle, M.S.; Reinicke, K.E.; Dong, Y.; Yang, C.R.; Girard, L.; Minna, J.D.; Bornmann, W.G.; Gao, J.M.; Boothman, D.A. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone. Proc. Natl. Acad. Sci. USA 2007, 104, 11832–11837. [Google Scholar] [CrossRef]
- Cheng, X.F.; Liu, F.; Yan, T.T.; Zhou, X.Y.; Wu, L.; Liao, K.; Wang, G.J.; Hao, H.P. , Metabolic profile, enzyme kinetics, and reaction phenotyping of β-lapachone metabolism in human liver and intestine in vitro. Mol. Pharm. 2012, 9, 3476–3485. [Google Scholar] [CrossRef]
- Huang, W.G.; Li, J.Y.; Zhang, W.; Zhou, Y.Y.; Xie, C.M.; Luo, Y.; Li, Y.F.; Wang, J.L.; Li, J.; Lu, W. Synthesis of miltirone analogues as inhibitors of Cdc25 phosphatases. Bioorg. Med. Chem. Lett. 2006, 16, 1905–1908. [Google Scholar] [CrossRef]
- Huang, W.G.; Jiang, Y.Y.; Li, Q.; Li, J.; Li, J.Y.; Lu, W.; Cai, J.C. Synthesis and biological evaluation of (±)-cryptotanshinone and its simplified analogues as potent CDC25 inhibitors. Tetrahedron 2005, 61, 1863–1870. [Google Scholar] [CrossRef]
- Bian, J.L.; Deng, B.; Xu, L.L.; Xu, X.L.; Wang, N.; Hu, T.H.; Yao, Z.Y.; Du, J.Y.; Yang, L.; Lei, Y.H.; et al. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H: Quinone oxidoreductase (NQO1). Eur. J. Med. Chem. 2014, 82, 56–67. [Google Scholar] [CrossRef]
- Bian, J.L.; Li, X.; Wang, N.; Wu, X.S.; You, Q.D.; Zhang, X.J. Discovery of quinone-directed antitumor agents selectively bioactivated by NQO1 over CPR with improved safety profile. Eur. J. Med. Chem. 2017, 129, 27–40. [Google Scholar] [CrossRef]
- Deniz, N.G.; Ozyurek, M.; Tufan, A.N.; Apak, R. One-pot synthesis, characterization, and antioxidant capacity of sulfur-and oxygen-substituted 1,4-naphthoquinones and a structural study. Monatshefte für Chemie-Chemical Monthly 2015, 146, 2117–2126. [Google Scholar] [CrossRef]
- Arenas, P.; Peña, A.; Rios, D.; Benites, J.; Muccioli, G.G.; Calderon, P.B.; Valderrama, J.A. Eco-friendly synthesis and antiproliferative evaluation of some oxygen substituted diaryl ketones. Molecules 2013, 18, 9818–9832. [Google Scholar] [CrossRef]
- Li, X.; Bian, J.L.; Wang, N.; Qian, X.; Gu, J.; Mu, T.; Fan, J.; Yang, X.W.; Li, S.Z.; Yang, T.T.; et al. Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation. Bioorg. Med. Chem. 2016, 24, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef]
- Hu, K.Z.; Wang, H.; Huang, T.; Tang, G.; Liang, X.; He, S.; Tang, X. Synthesis and biological evaluation of N-(2-[(18)F]Fluoropropionyl)-l-methionine for tumor imaging. Nucl. Med. Biol. 2013, 40, 926–932. [Google Scholar] [CrossRef]
- Kongkathip, N.; Kongkathip, B.; Siripong, P.; Sangma, C.; Luangkamin, S.; Niyomdecha, M.; Pattanapa, S.; Piyaviriyagul, S.; Kongsaeree, P. Potent antitumor activity of synthetic 1,2-Naphthoquinones and 1,4-Naphthoquinones. Bioorg. Med. Chem. 2003, 11, 3179–3191. [Google Scholar] [CrossRef]
- Weerawarna, S.A.; Guha-Biswas, M.; Nelson, W.L. Improved Syntheses of Bufuralol, 7-Ethyl-2-(2-tertbutylamino-1-hydroxyethyl)benzofuran, and 1 Oxobufuralol, 7-Acetyl-2-(2-tert-butylamino-1-hydroxyethyl)benzofuran. Heterocycl 1991, 28, 1395–1403. [Google Scholar] [CrossRef]
- Wen, Z.H.; Zhang, Y.Q.; Wang, X.H.; Zeng, X.P.; Hu, Z.X.; Liu, Y.; Xie, Y.X.; Liang, G.Y.; Zhu, J.G.; Luo, H.; et al. Novel 3′,5′-diprenylated chalcones inhibited the proliferation of cancer cells in vitro by inducing cell apoptosis and arresting cell cycle phase. Eur. J. Med. Chem. 2017, 133, 227–239. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Compounds | R | Inhibition (%) | ||
---|---|---|---|---|
PC3 | K562 | WM9 | ||
TB1 | | 92.078 ± 1.885 | 88.641 ± 3.055 | 80.287 ± 6.354 |
TB2 | | 58.700 ± 29.309 | 20.642 ± 16.695 | 9.216 ± 2.449 |
TB3 | | 91.861 ± 2.125 | 83.613 ± 10.448 | 54.153 ± 3.948 |
TB4 | | 92.224 ± 1.811 | 91.192 ± 1.479 | 87.963 ± 2.430 |
TB5 | | 30.673 ± 54.356 | 49.127 ± 33.985 | 64.870 ± 2.894 |
TB6 | | 87.165 ± 1.953 | 82.901 ± 1.484 | 89.843 ± 2.010 |
TB7 | | −7.664 ± 10.055 | 81.835 ± 1.553 | 31.754 ± 6.422 |
TB8 | | 9.692 ± 11.981 | 7.191 ± 4.705 | 49.307 ± 3.791 |
TB9 | | −17.125 ± 11.619 | 15.334 ± 9.484 | −0.591 ± 1.055 |
TC1 | | 91.027 ± 0.553 | 83.717 ± 3.469 | 84.117 ± 2.686 |
TC2 | | −0.437 ± 1.129 | 25.032±2.579 | 16.431±1.583 |
TC3 | | 78.849 ± 13.221 | 83.518 ± 12.045 | 81.670 ± 0.994 |
TC4 | | 24.242 ± 18.544 | 0.082 ± 15.067 | 15.453 ± 1.508 |
TC5 | | 89.676 ± 0.331 | 81.950 ± 12.469 | 72.452 ± 8.039 |
TC6 | | 43.133 ± 11.878 | 31.137 ± 16.045 | 63.384 ± 8.949 |
TC7 | | 82.402 ± 4.585 | 30.087 ± 20.307 | 16.191 ± 2.699 |
TC8 | | 44.842 ± 25.172 | 28.448 ± 30.220 | 0.468 ± 5.166 |
TC9 | | 89.869 ± 1.839 | 81.545 ± 6.968 | 83.003 ± 2.806 |
TC10 | | −6.375 ± 8.094 | −9.749 ± 17.889 | 1.005 ± 2.601 |
TC11 | | 90.214 ± 0.520 | 85.766 ± 1.737 | 85.807 ± 3.752 |
TC12 | | 82.522 ± 9.039 | 83.688 ± 8.252 | 61.839 ± 3.448 |
TC13 | | 74.681 ± 2.470 | 84.251 ± 1.430 | 39.955 ± 6.425 |
TC14 | | 4.453 ± 5.002 | 84.497 ± 0.876 | 90.717 ± 1.184 |
TC15 | | 84.916 ± 1.761 | 84.185 ± 0.419 | 90.135 ± 1.602 |
TC16 | | 78.720 ± 7.560 | 84.323 ± 1.273 | 90.520 ± 2.108 |
TC17 | | 86.637 ± 2.482 | 83.999 ± 0.943 | 72.021 ± 6.850 |
TC18 | | −5.220 ± 13.979 | 8.854 ± 12.236 | 1.410 ± 5.093 |
tanshinone IIA | 89.458 ± 1.987 | 82.215 ± 4.069 | 85.236 ± 3.654 | |
Paclitaxel | 81.589 ± 1.763 | 91.315 ± 2.467 | 78.369 ± 6.380 |
Compounds | IC50/µM | ||
---|---|---|---|
PC3 | K562 | WM9 | |
TB1 | 2.809 ± 0.413 | 3.157 ± 0.947 ** | 4.841 ± 0.301 |
TB3 | 1.121 ± 0.731 ** | 2.580 ± 0.285 ** | NA a |
TB4 | 3.348 ± 0.347 | 3.103 ± 0.702 ** | 3.358 ± 0.297 |
TB6 | 3.249 ± 0.464 | 2.964 ± 0.168 * | 2.774 ± 0.299 ** |
TB7 | NA | 2.981 ± 0.368 ** | NA |
TC1 | 0.347 ± 0.290 ** | 0.379 ± 0.138 | 0.406 ± 0.117 ** |
TC3 | 1.778 ± 0.835 ** | 4.647 ± 0.647 ** | 4.990 ± 0.360 |
TC5 | 3.018 ± 0.452 | 3.448 ± 0.224 ** | NA |
TC7 | 1.507 ± 0.369 ** | NA | NA |
TC9 | 0.469 ± 0.281 ** | 4.194 ± 0.139 ** | 4.027 ± 0.341 |
TC11 | 2.578 ± 0.957 | 3.565 ± 0.344 ** | 2.127 ± 0.582 ** |
TC12 | 2.963 ± 0.261 | 4.157 ± 0.677 ** | NA |
TC13 | 3.433 ± 0.444 | 4.719 ± 0.984 | NA |
TC14 | NA | 3.100 ± 0.320 ** | 2.261 ± 0.111 ** |
TC15 | 3.696 ± 0.492 | 3.644 ± 0.524 ** | 3.050 ± 0.230 * |
TC16 | 3.874 ± 0.557 | 2.640 ± 0.642 ** | 4.324 ± 0.292 |
TC17 | 1.914 ± 0.224 ** | 1.927 ± 0.414 | NA |
tanshinone IIA | 3.162 ± 3.160 | 4.638 + 1.270 | 4.261 ± 0.182 |
Paclitaxel | 4.323 ± 0.929 | 2.149 ± 0.406 | 4.835 ± 0.359 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-Y.; Sun, Z.-K.; Zeng, X.-Y.; Zhang, Y.; Wang, M.-L.; Hu, S.-C.; Song, J.-R.; Luo, J.; Chen, C.; Luo, H.; et al. Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis. Molecules 2019, 24, 4138. https://doi.org/10.3390/molecules24224138
Li S-Y, Sun Z-K, Zeng X-Y, Zhang Y, Wang M-L, Hu S-C, Song J-R, Luo J, Chen C, Luo H, et al. Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis. Molecules. 2019; 24(22):4138. https://doi.org/10.3390/molecules24224138
Chicago/Turabian StyleLi, Sheng-You, Ze-Kun Sun, Xue-Yi Zeng, Yue Zhang, Meng-Ling Wang, Sheng-Cao Hu, Jun-Rong Song, Jun Luo, Chao Chen, Heng Luo, and et al. 2019. "Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis" Molecules 24, no. 22: 4138. https://doi.org/10.3390/molecules24224138
APA StyleLi, S.-Y., Sun, Z.-K., Zeng, X.-Y., Zhang, Y., Wang, M.-L., Hu, S.-C., Song, J.-R., Luo, J., Chen, C., Luo, H., & Pan, W.-D. (2019). Potent Cytotoxicity of Novel L-Shaped Ortho-Quinone Analogs through Inducing Apoptosis. Molecules, 24(22), 4138. https://doi.org/10.3390/molecules24224138