Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = quick green scan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7435 KB  
Article
Spatial and Temporal Variability in Bioswale Infiltration Rate Observed during Full-Scale Infiltration Tests: Case Study in Riga Latvia
by Jurijs Kondratenko, Floris C. Boogaard, Jānis Rubulis and Krišs Maļinovskis
Water 2024, 16(16), 2219; https://doi.org/10.3390/w16162219 - 6 Aug 2024
Cited by 3 | Viewed by 3677
Abstract
Urban nature-based solutions (NBSs) are widely implemented to collect, store, and infiltrate stormwater. This study addressed infiltration rate as a measure of the performance of bioretention solutions. Quick scan research was conducted, starting with mapping over 25 locations of implemented green infrastructure in [...] Read more.
Urban nature-based solutions (NBSs) are widely implemented to collect, store, and infiltrate stormwater. This study addressed infiltration rate as a measure of the performance of bioretention solutions. Quick scan research was conducted, starting with mapping over 25 locations of implemented green infrastructure in Riga, Latvia. Basic information, such as location, characteristics, as well as photos and videos, has been uploaded to the open-source database ClimateScan. From this, eight bioswales installed in the period 2017–2022 were selected for hydraulic testing, measuring the infiltration capacity of bio-retention solutions. The results show a high temporal and spatial variation of infiltration rate for the bioswales, even those developed with similar designs: 0.1 to 7.7 m/d, mean 2.0 m/d, coefficient of variation 1.0. The infiltration capacity decreased after saturation: a 30% to 58% decrease in infiltration rate after refilling storage volume. The variation in infiltration rate as well as infiltration rate decrease on saturation is similar to other full-scale studies done internationally. The infiltration rate of most bioswales falls within the range specified by international guidelines, all swales empty within 48 h. Most bioswales empty several times within one day, questioning the effectiveness of water retention and water availability for dry periods. The results are of importance for stakeholders involved in the implementation of NBS and will be used to set up Latvian guidelines for design, construction, and maintenance. Full article
Show Figures

Figure 1

19 pages, 5159 KB  
Article
Green and Fast Extraction of Chitin from Waste Shrimp Shells: Characterization and Application in the Removal of Congo Red Dye
by Fatma Zohra Gharbi, Nabil Bougdah, Youghourta Belhocine, Najoua Sbei, Seyfeddine Rahali, Maamar Damous and Mahamadou Seydou
Separations 2023, 10(12), 599; https://doi.org/10.3390/separations10120599 - 13 Dec 2023
Cited by 3 | Viewed by 6279
Abstract
Due to their detrimental and carcinogenic effects, synthetic organic dyes pose significant environmental and health risks. Consequently, addressing the bioremediation of industrial wastewater containing these organic dyes has become an urgent environmental concern. The adsorption using low-cost and green materials is one of [...] Read more.
Due to their detrimental and carcinogenic effects, synthetic organic dyes pose significant environmental and health risks. Consequently, addressing the bioremediation of industrial wastewater containing these organic dyes has become an urgent environmental concern. The adsorption using low-cost and green materials is one of the best alternative techniques for the removal of dyes. This study aims to investigate the use of chitin to eliminate Congo red (CR), an anionic dye, from wastewater. The chitin was produced from shrimp shell in a quick and environmentally friendly manner by utilizing a co-solvent (glycerol/citric acid (GLC)). The resulting adsorbent was characterized through various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and FT-IR spectroscopy. The effectiveness of CR removal with chitin was studied with respect to contact time, adsorbent dose, initial pH, equilibrium isotherms, and kinetic and thermodynamic parameters. It was observed that variations in the dye concentration and pH significantly influenced the removal of CR with chitin. Under optimal operating conditions (pH = 7, contact time = 130 min, temperature = 50 °C), the adsorption capacity reached 29.69 ± 0.2 mg/g. The experimental data revealed that CR adsorption onto a chitin adsorbent is better represented by a Langmuir isotherm. Full article
Show Figures

Figure 1

15 pages, 2528 KB  
Article
Identifying the Producer and Grade of Matcha Tea through Three-Dimensional Fluorescence Spectroscopy Analysis and Distance Discrimination
by Yue Xu, Xiangyang Zhou and Wenjuan Lei
Foods 2023, 12(19), 3614; https://doi.org/10.3390/foods12193614 - 28 Sep 2023
Cited by 7 | Viewed by 2843
Abstract
The three-dimensional fluorescence spectroscopy features the advantage of obtaining emission spectra at different excitation wavelengths and providing more detailed information. This study established a simple method to discriminate both the producer and grade of matcha tea by coupling three-dimensional fluorescence spectroscopy analysis and [...] Read more.
The three-dimensional fluorescence spectroscopy features the advantage of obtaining emission spectra at different excitation wavelengths and providing more detailed information. This study established a simple method to discriminate both the producer and grade of matcha tea by coupling three-dimensional fluorescence spectroscopy analysis and distance discrimination. The matcha tea was extracted three times and three-dimensional fluorescence spectroscopies of these tea infusions were scanned; then, the dimension of three-dimensional fluorescence spectroscopies was reduced by the integration at three specific areas showing local peaks of fluorescence intensity, and a series of vectors were constructed based on a combination of integrated vectors of the three tea infusions; finally, four distances were used to discriminate the producer and grade of matcha tea, and two discriminative patterns were compared. The results indicated that proper vector construction, appropriate discriminative distance, and correct steps are three key factors to ensure the high accuracy of the discrimination. The vector based on the three-dimensional fluorescence spectroscopy of all three tea infusions resulted in a higher accuracy than those only based on spectroscopy of one or two tea infusions, and the first tea infusion was more sensitive than the other tea infusion. The Mahalanobis distance had a higher accuracy that was up to 100% when the vector is appropriate, while the other three distances were about 60–90%. The two-step discriminative pattern, identifying the producer first and the grade second, showed a higher accuracy and a smaller uncertainty than the one-step pattern of identifying both directly. These key conclusions above help discriminate the producer and grade of matcha in a quick, accurate, and green method through three-dimensional fluorescence spectroscopy, as well as in quality inspections and identifying the critical parameters of the producing process. Full article
Show Figures

Figure 1

9 pages, 10889 KB  
Article
Characterization of Green Part of Steel from Metal Injection Molding: An Analysis Using Moldflow
by I Putu Widiantara, Rosy Amalia Kurnia Putri, Da In Han, Warda Bahanan, Eun Hye Lee, Chang Hoon Woo, Jee-Hyun Kang, Jungho Ryu and Young Gun Ko
Materials 2023, 16(6), 2516; https://doi.org/10.3390/ma16062516 - 22 Mar 2023
Cited by 7 | Viewed by 3843
Abstract
Metal injection molding (MIM) is a quick manufacturing method that produces elaborate and complex items accurately and repeatably. The success of MIM is highly impacted by green part characteristics. This work characterized the green part of steel produced using MIM from feedstock with [...] Read more.
Metal injection molding (MIM) is a quick manufacturing method that produces elaborate and complex items accurately and repeatably. The success of MIM is highly impacted by green part characteristics. This work characterized the green part of steel produced using MIM from feedstock with a powder/binder ratio of 93:7. Several parameters were used, such as dual gates position, injection temperature of ~150 °C, and injection pressure of ~180 MPa. Analysis using Moldflow revealed that the aformentioned parameters were expected to produce a green part with decent value of confidence to fill. However, particular regions exhibited high pressure drop and low-quality prediction, which may lead to the formation of defects. Scanning electron microscopy, as well as three-dimensional examination using X-ray computed tomography, revealed that only small amounts of pores were formed, and critical defects such as crack, surface wrinkle, and binder separation were absent. Hardness analysis revealed that the green part exhibited decent homogeneity. Therefore, the observed results could be useful to establish guidelines for MIM of steel in order to obtain a high quality green part. Full article
Show Figures

Figure 1

19 pages, 9897 KB  
Article
The Use of an Airborne Laser Scanner for Rapid Identification of Invasive Tree Species Acer negundo in Riparian Forests
by Dominik Mielczarek, Piotr Sikorski, Piotr Archiciński, Wojciech Ciężkowski, Ewa Zaniewska and Jarosław Chormański
Remote Sens. 2023, 15(1), 212; https://doi.org/10.3390/rs15010212 - 30 Dec 2022
Cited by 17 | Viewed by 3547
Abstract
Invasive species significantly impact ecosystems, which is fostered by global warming. Their removal generates high costs to the greenery managers; therefore, quick and accurate identification methods can allow action to be taken with minimal impact on ecosystems. Remote sensing techniques such as Airborne [...] Read more.
Invasive species significantly impact ecosystems, which is fostered by global warming. Their removal generates high costs to the greenery managers; therefore, quick and accurate identification methods can allow action to be taken with minimal impact on ecosystems. Remote sensing techniques such as Airborne Laser Scanning (ALS) have been widely applied for this purpose. However, many species of invasive plants, such as Acer negundo L., penetrate the forests under the leaves and thus make recognition difficult. The strongly contaminated riverside forests in the Vistula valley were examined in the gradient of the center of Warsaw and beyond its limits within a Natura 2000 priority habitat (91E0), namely, alluvial and willow forests and poplars. This work aimed to assess the potentiality of a dual-wavelength ALS in identifying the stage of the A. negundo invasion. The research was carried out using over 500 test areas of 4 m diameter within the riparian forests, where the habitats did not show any significant traces of transformation. LiDAR bi-spectral data with a density of 6 points/m2 in both channels were acquired with a Riegl VQ-1560i-DW scanner. The implemented approach is based on crown parameters obtained from point cloud segmentation. The Adaptive Mean Shift 3D algorithm was used to separate individual crowns. This method allows for the delineation of individual dominant trees both in the canopy (horizontal segmentation) and undergrowth (vertical segmentation), taking into account the diversified structure of tree stands. The geometrical features and distribution characteristics of the GNDVI (Green Normalized Vegetation Index) were calculated for all crown segments. These features were found to be essential to distinguish A. negundo from other tree species. The classification was based on the sequential additive modeling algorithm using a multi-class loss function. Results with a high accuracy, exceeding 80%, allowed for identifying and localizing tree crowns belonging to the invasive species. With the presented method, we could determine dendrometric traits such as the age of the tree, its height, and the height of the covering leaves of the trees. Full article
Show Figures

Graphical abstract

12 pages, 5762 KB  
Article
Biomedical and Textile Applications of Alternanthera sessilis Leaf Extract Mediated Synthesis of Colloidal Silver Nanoparticle
by Nivedhitha Kabeerdass, Karthikeyan Murugesan, Natarajan Arumugam, Abdulrahman I. Almansour, Raju Suresh Kumar, Sinouvassane Djearamane, Ashok Kumar Kumaravel, Palanivel Velmurugan, Vinayagam Mohanavel, Subbiah Suresh Kumar, Selvaraj Vijayanand, Parasuraman Padmanabhan, Balázs Gulyás and Maghimaa Mathanmohun
Nanomaterials 2022, 12(16), 2759; https://doi.org/10.3390/nano12162759 - 12 Aug 2022
Cited by 19 | Viewed by 4211
Abstract
The aqueous extract of Alternanthera sessilis (As) acts as the precursors for the quick reduction of silver ions, which leads to the formation of silver nanoparticles. In the agar, well diffusion method of the Klebsiella pneumoniae shows the minimal inhibitory concentration of 12 [...] Read more.
The aqueous extract of Alternanthera sessilis (As) acts as the precursors for the quick reduction of silver ions, which leads to the formation of silver nanoparticles. In the agar, well diffusion method of the Klebsiella pneumoniae shows the minimal inhibitory concentration of 12 mm against A. sessilis mediated silver nanoparticles (As-AgNPs) at 60 µg/mL concentration. Fabric treated with novel AS-AgNPs is tested against the K. pneumoniae and shows an inhibitory action of 12 mm with mixed cotton that determines the antimicrobial efficacy of the fabrics. Uv- visible spectrophotometer was performed, showing a surface plasmon resonance peak at 450 nm cm−1. FTIR shows the vibration and the infrared radiation at a specific wavelength of 500–4000 cm−1. The HR-TEM analysis showed the presence of black-white crystalline, spherical-shaped As-AgNPs embedded on the fabrics range of 15 nm–40 nm. In the scanning electron microscope, the presence of small ball-shaped As-AgNPs embedded on the fabrics at a voltage of 30 KV was found with a magnification of 578X. EDAX was performed in which the nanoparticles show a peak of 2.6–3.9 KeV, and it also reveals the presence of the composition, distribution, and elemental mapping of the nanoparticles. The cytotoxic activity of synthesized nanosilver was carried out against L929 cell lines, which show cell viability at a concentration of 2.5 µg mL−1. Cell proliferation assay shows no cytotoxicity against L929 cell lines for 24 h. In this study, the green synthesis of silver nanoparticles from A. sessilis appears to be a cheap, eco-friendly, and alternative approach for curing infectious ulcers on the floor of the stratum corneum. Nanotechnology conjoined with herbal therapeutics provides a promising solution for wound management. Full article
Show Figures

Figure 1

16 pages, 1507 KB  
Article
Predictive Multi Experiment Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS
by Eleonora Oliva, Federico Fanti, Sara Palmieri, Eduardo Viteritti, Fabiola Eugelio, Alessia Pepe, Dario Compagnone and Manuel Sergi
Molecules 2022, 27(10), 3089; https://doi.org/10.3390/molecules27103089 - 11 May 2022
Cited by 31 | Viewed by 5102
Abstract
Polyphenols (PCs) are a numerous class of bioactive molecules and are known for their antioxidant activity. In this work, the potential of the quadrupole/linear ion trap hybrid mass spectrometer (LIT-QqQ) was exploited to develop a semi-untargeted method for the identification of polyphenols in [...] Read more.
Polyphenols (PCs) are a numerous class of bioactive molecules and are known for their antioxidant activity. In this work, the potential of the quadrupole/linear ion trap hybrid mass spectrometer (LIT-QqQ) was exploited to develop a semi-untargeted method for the identification of polyphenols in different food matrices: green coffee, Crocus sativus L. (saffron) and Humulus lupulus L. (hop). Several conjugate forms of flavonoids and hydroxycinnamic acid were detected using neutral loss (NL) as a survey scan coupled with dependent scans with enhanced product ion (EPI) based on information-dependent acquisition (IDA) criteria. The presented approach is focused on a specific class of molecules and provides comprehensive information on the different conjugation models that are related to specific base molecules, thus allowing a quick and effective identification of all possible combinations, such as mono-, di-, or tri-glycosylation or another type of conjugation such as quinic acid esters. Full article
Show Figures

Graphical abstract

19 pages, 2610 KB  
Article
Efficient Matrix Cleanup of Soft-Gel-Type Dietary Supplements for Rapid Screening of 92 Illegal Adulterants Using EMR-Lipid dSPE and UHPLC-Q/TOF-MS
by Beom Hee Kim, Wonwoong Lee, You Lee Kim, Ji Hyun Lee and Jongki Hong
Pharmaceuticals 2021, 14(6), 570; https://doi.org/10.3390/ph14060570 - 15 Jun 2021
Cited by 7 | Viewed by 3960
Abstract
An efficient matrix cleanup method was developed for the rapid screening of 92 illegal adulterants (25 erectile dysfunction drugs, 15 steroids, seven anabolic steroids, 12 antihistamines, 12 nonsteroidal anti-inflammatory drugs (NSAIDs), four diuretics, and 17 weight-loss drugs) in soft-gel-type supplements by ultra-high performance [...] Read more.
An efficient matrix cleanup method was developed for the rapid screening of 92 illegal adulterants (25 erectile dysfunction drugs, 15 steroids, seven anabolic steroids, 12 antihistamines, 12 nonsteroidal anti-inflammatory drugs (NSAIDs), four diuretics, and 17 weight-loss drugs) in soft-gel-type supplements by ultra-high performance liquid chromatography-quadrupole/time of flight-mass spectrometry (UHPLC-Q/TOF-MS). As representative green chemistry methods, three sample preparation methods (dispersive liquid-liquid microextraction (DLLME), “quick, easy, cheap, effective, rugged, and safe” dispersive solid-phase extraction (QuEChERS-dSPE), and enhanced matrix removal-lipid (EMR-Lipid) dSPE) were evaluated for matrix removal efficiency, recovery rate, and matrix effect. In this study, EMR-Lipid dSPE was shown to effectively remove complicated matrix contents in soft-gels, compared to DLLME and QuEChERS-dSPE. For the rapid screening of a wide range of adulterants, extracted common ion chromatogram (ECIC) and neutral loss scan (NLS) based on specific common MS/MS fragments were applied to randomly collected soft-gel-type dietary supplement samples using UHPLC-Q/TOF-MS. Both ECICs and NLSs enabled rapid and simple screening of multi-class adulterants and could be an alternative to the multiple reaction monitoring (MRM) method. The developed method was validated in terms of limit of detection (LOD), precision, accuracy, recovery, and matrix effects. The range of LODs was 0.1–16 ng/g. The overall precision values were within 0.09–14.65%. The accuracy ranged from 81.6% to 116.6%. The recoveries and matrix effects of 92 illegal adulterants ranged within 16.9–119.4% and 69.8–114.8%, respectively. The established method was successfully applied to screen and identify 92 illegal adulterants in soft-gels. This method can be a promising tool for the high-throughput screening of various adulterants in dietary supplements and could be used as a more environmentally friendly routine analytical method for screening dietary supplements illegally adulterated with multi-class drug substances. Full article
(This article belongs to the Special Issue Analytical Techniques in the Pharmaceutical Sciences)
Show Figures

Figure 1

14 pages, 3760 KB  
Article
Portable XRF Quick-Scan Mapping for Potential Toxic Elements Pollutants in Sustainable Urban Drainage Systems: A Methodological Approach
by Guri Venvik and Floris C. Boogaard
Sci 2020, 2(3), 64; https://doi.org/10.3390/sci2030064 - 14 Aug 2020
Cited by 4 | Viewed by 5295
Abstract
Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often [...] Read more.
Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 m) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities. Full article
(This article belongs to the Section Open Innovation)
Show Figures

Figure 1

14 pages, 4380 KB  
Article
Preparation of a Highly Porous Carbon Material Based on Quinoa Husk and Its Application for Removal of Dyes by Adsorption
by Siji Chen, Shanshan Tang, Yang Sun, Gang Wang, Huan Chen, Xiaoxiao Yu, Yingjie Su and Guang Chen
Materials 2018, 11(8), 1407; https://doi.org/10.3390/ma11081407 - 11 Aug 2018
Cited by 34 | Viewed by 4970
Abstract
A porous carbon material was prepared from quinoa husk (QH) by carbonization and chemical activation with KOH. A series of experiments, including SEM (Scanning electron microscopy), FT-IR (Fourier transform infrared), XRD (X-ray diffraction), Raman, X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption, were [...] Read more.
A porous carbon material was prepared from quinoa husk (QH) by carbonization and chemical activation with KOH. A series of experiments, including SEM (Scanning electron microscopy), FT-IR (Fourier transform infrared), XRD (X-ray diffraction), Raman, X-ray photoelectron spectroscopy (XPS), and N2 adsorption/desorption, were carried out on the porous carbon produced from quinoa husk (PC–QH). The results showed that PC–QH was mainly composed of activated carbon and graphite. Moreover, PC–QH exhibited a high level of porosity with a BET (the Brunauer–Emmett–Teller theory) surface area of 1713 m2 g−1. As a representative dye, malachite green (MG) was selected to evaluate the performance of PC–QH to absorb the contaminants in dyeing wastewater. In batch adsorption experiments, PC–QH exhibited a high adsorption rate toward malachite green (MG). An uptake capacity of 599.90 mg g−1 was achieved in the initial 5 min, and the MG adsorption capacity of PC–QH reached 1365.10 mg g−1, which was higher than many other adsorbents. The adsorption data were well fitted with the Freundlich isotherm model and the pseudo-second-order kinetic model. PC–QH also displayed a high absorption rate to rhodamine B (RhB), methyl violet (MV), methylene blue (MB), and methyl orange (MO). The results in this study suggest that PC–QH can be a promising adsorbent for quick treatment of dyeing wastewater. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

28 pages, 2140 KB  
Article
Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes
by Aldona Kluczek
Sustainability 2017, 9(1), 88; https://doi.org/10.3390/su9010088 - 11 Jan 2017
Cited by 18 | Viewed by 8750
Abstract
The heating sector has begun implementing technologies and practices to tackle the environmental and social–economic problems caused by their production process. The purpose of this paper is to develop a methodology, “the Quick-Green-Scan”, that caters for the need of quick assessment decision-makers to [...] Read more.
The heating sector has begun implementing technologies and practices to tackle the environmental and social–economic problems caused by their production process. The purpose of this paper is to develop a methodology, “the Quick-Green-Scan”, that caters for the need of quick assessment decision-makers to improve green manufacturing performance in companies that produce heating devices. The study uses a structured approach that integrates Life Cycle Assessment-based indicators, framework and linguistic scales (fuzzy numbers) to evaluate the extent of greening of the enterprise. The evaluation criteria and indicators are closely related to the current state of technology, which can be improved. The proposed methodology has been created to answer the question whether a company acts on the opportunity to be green and whether these actions are contributing towards greening, maintaining the status quo or moving away from a green outcome. Results show that applying the proposed improvements in processes helps move the facility towards being a green enterprise. Moreover, the methodology, being particularly quick and simple, is a practical tool for benchmarking, not only in the heating industry, but also proves useful in providing comparisons for facility performance in other manufacturing sectors. Full article
(This article belongs to the Special Issue Air Pollution Monitoring and Sustainable Development)
Show Figures

Figure 1

Back to TopTop