Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = quantum cascade laser based spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3494 KiB  
Article
Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
by Paolo Vezio, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti and Alessandro Tredicucci
Photonics 2025, 12(3), 273; https://doi.org/10.3390/photonics12030273 - 16 Mar 2025
Viewed by 2726
Abstract
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated [...] Read more.
A platform for converting near-infrared (NIR) laser power modulation into the self-mixing (SM) signal of a quantum cascade laser (QCL) operating at terahertz (THz) frequencies is introduced. This approach is based on laser feedback interferometry (LFI) with a THz QCL using a metal-coated silicon nitride trampoline membrane resonator as both the external QCL laser cavity and the mechanical coupling element of the two-laser hybrid system. We show that the membrane response can be controlled with high precision and stability both in its dynamic (i.e., piezo-electrically actuated) and static state via photothermally induced NIR laser excitation. The responsivity to nanometric external cavity variations and robustness to optical feedback of the QCL LFI apparatus allows a highly sensitive and reliable transfer of the NIR power modulation into the QCL SM voltage, with a bandwidth limited by the thermal response time of the membrane resonator. Interestingly, a dual information conversion is possible thanks to the accurate thermal tuning of the membrane resonance frequency shift and displacement. Overall, the proposed apparatus can be exploited for the precise opto-mechanical control of QCL operation with advanced applications in LFI imaging and spectroscopy and in coherent optical communication. Full article
(This article belongs to the Special Issue The Three-Decade Journey of Quantum Cascade Lasers)
Show Figures

Figure 1

10 pages, 497 KiB  
Article
Towards Fast Quantum Cascade Laser Spectrometers for High-Throughput and Cost-Effective Disease Surveillance
by Mauro Pazmiño-Betancourth, Aleksandr Boldin, Victor Ochoa-Gutierrez, Richard A. Hogg, Francesco Baldini, Mario González-Jiménez, Klaas Wynne and David Childs
Spectrosc. J. 2025, 3(1), 8; https://doi.org/10.3390/spectroscj3010008 - 7 Mar 2025
Viewed by 2656
Abstract
Fourier transform infrared (FTIR) spectroscopy, coupled with machine learning (ML) analysis can be used for disease monitoring with high speed and accuracy, including the classification of mosquito samples by species, age and malaria detection. However, current FTIR instruments use low-brightness thermal light sources [...] Read more.
Fourier transform infrared (FTIR) spectroscopy, coupled with machine learning (ML) analysis can be used for disease monitoring with high speed and accuracy, including the classification of mosquito samples by species, age and malaria detection. However, current FTIR instruments use low-brightness thermal light sources to generate infrared light, which limits their ability to measure complex biological samples, especially where high spatial resolution is necessary, such as for specific mosquito tissues. Moreover, these systems lack portability, which is essential for field applications. To overcome these issues, spectrometers using quantum cascade lasers (QCLs) have become an attractive alternative for building fast, and portable systems due to their high electrical-to-optical efficiency, small size, and potential for low-cost. Here, we present a QCL-based spectrometer prototype designed for large scale, low-cost, environmental field-based disease surveillance. Full article
Show Figures

Figure 1

14 pages, 15792 KiB  
Article
A Highly Sensitive TDLAS-Based Water Vapor Isotopes Sensor Using a Quantum Cascade Laser
by Wenling Jin, Nailiang Cao and Yufei Ma
Sensors 2025, 25(3), 840; https://doi.org/10.3390/s25030840 - 30 Jan 2025
Cited by 1 | Viewed by 1153
Abstract
Based on tunable diode laser absorption spectroscopy (TDLAS), a water isotopes detection system was developed to detect the isotopic abundance of water vapor in the atmosphere. A single 1483.79 cm−1 quantum cascade laser (QCL) and a 3120 cm optical path multi-pass cell [...] Read more.
Based on tunable diode laser absorption spectroscopy (TDLAS), a water isotopes detection system was developed to detect the isotopic abundance of water vapor in the atmosphere. A single 1483.79 cm−1 quantum cascade laser (QCL) and a 3120 cm optical path multi-pass cell (MPC) were adopted in the detection system. The selected spectral range, as well as the laser technology used, is particularly interesting for the real-time monitoring of water vapor isotopes in the atmosphere. In this study, a single laser can be used to perform high-sensitivity, rapid investigations of H2O, H218O, H217O, and HDO absorption lines. Finally, we measured the abundance values of three isotopes of water vapor in the atmosphere and compared them with data from the Global Network of Isotopes in Precipitation (GNIP) website, dedicated to exploring the possibility of in situ monitoring of H₂O isotopes in the atmosphere. Full article
Show Figures

Figure 1

15 pages, 27241 KiB  
Article
Compact Quantum Cascade Laser-Based Noninvasive Glucose Sensor Upgraded with Direct Comb Data-Mining
by Liying Song, Zhiqiang Han, Hengyong Nie and Woon-Ming Lau
Sensors 2025, 25(2), 587; https://doi.org/10.3390/s25020587 - 20 Jan 2025
Cited by 1 | Viewed by 1313
Abstract
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the [...] Read more.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available. This work reports on two compact sensor system designs, both reaching the FDA accuracy benchmark. Each design commonly comprises a mid-infrared QCL for emission, a multiple attenuation total reflection prism (MATR) for data acquisition, and a computer-controlled infrared detector for data analysis. The first design translates the comb-like signals into conventional spectra, and then data-mines the resultant spectra to yield blood glucose concentrations. When a pressure actuator is employed to press the patient’s hypothenar against the MATR, the sensor accuracy is considered to reach the FDA accuracy benchmark. The second design abandons the data processing step of translating combs-to-spectra and directly data-mines the “first-hand” comb signal. Beyond increasing the measurement accuracy to the FDA accuracy benchmark, even without a pressure actuator, direct comb data-mining upgrades the sensor system with speed and data integrity, which can impact the healthcare of diabetic patients. Specifically, the sensor performance is validated with 492 glucose absorption scans in the time domain, each with 20 million datapoints measured from four subjects with glucose concentrations of 3.9–7.9 mM. The sensor data-mines 164 sets of critical singularity strengths, each comprising 4 critical singularity strengths directly from the 9840 million raw signal datapoints, and the 656 critical singularity strengths are subjected to a machine-learning regression model analysis, which yields 164 glucose concentrations. These concentrations are correlated with those measured with a standard finger-pricking glucometer. An accuracy of 99.6% is confirmed from the 164 measurements with errors not more than 15% from the reference of the standard glucometer. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 1153 KiB  
Article
Performance of a High-Speed Pyroelectric Receiver as Cryogen-Free Detector for Terahertz Absorption Spectroscopy Measurements
by Jente R. Wubs, Uwe Macherius, Xiang Lü, Lutz Schrottke, Matthias Budden, Johannes Kunsch, Klaus-Dieter Weltmann and Jean-Pierre H. van Helden
Appl. Sci. 2024, 14(10), 3967; https://doi.org/10.3390/app14103967 - 7 May 2024
Cited by 6 | Viewed by 2244
Abstract
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in [...] Read more.
The application of terahertz (THz) radiation in scientific research as well as in applied and commercial technology has expanded rapidly in recent years. One example is the progress in high-resolution THz spectroscopy based on quantum cascade lasers, which has enabled new observations in astronomy, atmospheric research, and plasma diagnostics. However, the lack of easy-to-use and miniaturised detectors has hampered the development of compact THz spectroscopy systems out of the laboratory environment. In this paper, we introduce a new high-speed pyroelectric receiver as a cryogen-free detector for THz absorption spectroscopy. Its performance is characterised by absorption spectroscopy measurements on a reference gas cell (RGC) with ammonia using a tunable THz quantum cascade laser at approximately 4.75 THz as the light source. It is shown that the receiver can record spectra up to 281 Hz without any artefacts to the observed spectral absorption profile, and the results reproduce the known pressure of ammonia in the RGC. This demonstrates that the pyroelectric receiver can be reliably used as an alternative to helium-cooled bolometers for absorption spectroscopy measurements in the THz range, with its main advantages being the high bandwidth, compactness, relatively low cost, and room-temperature operation. Its simplicity and high sensitivity make this receiver a key component for compact THz spectroscopy systems. Full article
(This article belongs to the Special Issue Terahertz Technologies and Applications)
Show Figures

Figure 1

12 pages, 3237 KiB  
Article
Mid-Infrared Photothermal Spectroscopy for the Detection of Caffeine in Beverages
by Giovanna Ricchiuti, Lisa Riedlsperger, Alicja Dabrowska, Erwin Rosenberg, Liam O’Faolain and Bernhard Lendl
Sensors 2024, 24(6), 1974; https://doi.org/10.3390/s24061974 - 20 Mar 2024
Cited by 3 | Viewed by 2867
Abstract
Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry’s need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in [...] Read more.
Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry’s need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in commercial products. In this study, we propose an alternative technique for caffeine analysis that relies on mid-infrared laser-based photothermal spectroscopy (PTS). PTS exploits the high-power output of the quantum cascade laser (QCL) sources to enhance the sensitivity of the mid-IR measurement. The laser-induced thermal gradient in the sample scales with the analytes’ absorption coefficient and concentration, thus allowing for both qualitative and quantitative assessment. We evaluated the performance of our experimental PTS spectrometer, incorporating a tunable QCL and a Mach–Zehnder interferometer, for detecting caffeine in coffee, black tea, and an energy drink. We calibrated the setup with caffeine standards (0.1–2.5 mg mL−1) and we benchmarked the setup’s capabilities against gas chromatography (GC) and Fourier-transform infrared (FTIR) spectroscopy. Quantitative results aligned with GC analysis, and limits of detection matched the research-grade FTIR spectrometer, indicating an excellent performance of our custom-made instrument. This method offers an alternative to established techniques, providing a platform for fast, sensitive, and non-destructive analysis without consumables as well as with high potential for miniaturization. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

12 pages, 1752 KiB  
Article
Time-Efficient SNR Optimization of WMS-Based Gas Sensor Using a Genetic Algorithm
by Filip Musiałek, Dariusz Szabra and Jacek Wojtas
Sensors 2024, 24(6), 1842; https://doi.org/10.3390/s24061842 - 13 Mar 2024
Cited by 8 | Viewed by 1972
Abstract
This paper presents the description of the wavelength modulation spectroscopy (WMS) experiment, the parameters of which were established by use of the Artificial Intelligence (AI) algorithm. As a result, a significant improvement in the signal power to noise power ratio (SNR) was achieved, [...] Read more.
This paper presents the description of the wavelength modulation spectroscopy (WMS) experiment, the parameters of which were established by use of the Artificial Intelligence (AI) algorithm. As a result, a significant improvement in the signal power to noise power ratio (SNR) was achieved, ranging from 1.6 to 6.5 times, depending on the harmonic. Typically, optimizing the operation conditions of WMS-based gas sensors is based on long-term simulations, complex mathematical model analysis, and iterative experimental trials. An innovative approach based on a biological-inspired genetic algorithm (GA) and custom-made electronics for laser control is proposed. The experimental setup was equipped with a 31.23 m Heriott multipass cell, software lock-in, and algorithms to control the modulation process of the quantum cascade laser (QCL) operating in the long-wavelength-infrared (LWIR) spectral range. The research results show that the applied evolutionary approach can efficiently and precisely explore a wide range of WMS parameter combinations, enabling researchers to dramatically reduce the time needed to identify optimal settings. It took only 300 s to test approximately 1.39 × 1032 combinations of parameters for key system components. Moreover, because the system is able to check all possible component settings, it is possible to unquestionably determine the operating conditions of WMS-based gas sensors for which the limit of detection (LOD) is the most favorable. Full article
Show Figures

Figure 1

21 pages, 4650 KiB  
Article
Measurement of Light-Duty Vehicle Exhaust Emissions with Light Absorption Spectrometers
by Barouch Giechaskiel, Anastasios Melas, Jacopo Franzetti, Victor Valverde, Michaël Clairotte and Ricardo Suarez-Bertoa
Technologies 2024, 12(3), 32; https://doi.org/10.3390/technologies12030032 - 28 Feb 2024
Cited by 3 | Viewed by 2876
Abstract
Light-duty vehicle emission regulations worldwide set limits for the following gaseous pollutants: carbon monoxide (CO), nitric oxides (NOX), hydrocarbons (HCs), and/or non-methane hydrocarbons (NMHCs). Carbon dioxide (CO2) is indirectly limited by fleet CO2 or fuel consumption targets. Measurements [...] Read more.
Light-duty vehicle emission regulations worldwide set limits for the following gaseous pollutants: carbon monoxide (CO), nitric oxides (NOX), hydrocarbons (HCs), and/or non-methane hydrocarbons (NMHCs). Carbon dioxide (CO2) is indirectly limited by fleet CO2 or fuel consumption targets. Measurements are carried out at the dilution tunnel with “standard” laboratory-grade instruments following well-defined principles of operation: non-dispersive infrared (NDIR) analyzers for CO and CO2, flame ionization detectors (FIDs) for hydrocarbons, and chemiluminescence analyzers (CLAs) or non-dispersive ultraviolet detectors (NDUVs) for NOX. In the United States in 2012 and in China in 2020, with Stage 6, nitrous oxide (N2O) was also included. Brazil is phasing in NH3 in its regulation. Alternative instruments that can measure some or all these pollutants include Fourier transform infrared (FTIR)- and laser absorption spectroscopy (LAS)-based instruments. In the second category, quantum cascade laser (QCL) spectroscopy in the mid-infrared area or laser diode spectroscopy (LDS) in the near-infrared area, such as tunable diode laser absorption spectroscopy (TDLAS), are included. According to current regulations and technical specifications, NH3 is the only component that has to be measured at the tailpipe to avoid ammonia losses due to its hydrophilic properties and adsorption on the transfer lines. There are not many studies that have evaluated such instruments, in particular those for “non-regulated” worldwide pollutants. For this reason, we compared laboratory-grade “standard” analyzers with FTIR- and TDLAS-based instruments measuring NH3. One diesel and two gasoline vehicles at different ambient temperatures and with different test cycles produced emissions in a wide range. In general, the agreement among the instruments was very good (in most cases, within ±10%), confirming their suitability for the measurement of pollutants. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

14 pages, 3796 KiB  
Article
Rapid Non-Contact Detection of Chemical Warfare Agents by Laser Photoacoustic Spectroscopy
by Luca Fiorani, Claudio Ciceroni, Isabella Giardina and Fabio Pollastrone
Sensors 2024, 24(1), 201; https://doi.org/10.3390/s24010201 - 29 Dec 2023
Cited by 2 | Viewed by 2201
Abstract
Nerve agents have recently been used in battlefield operations, espionage wars, and terrorist attacks. These compounds, like some pesticides, cause organophosphate poisoning. The rapid, noncontact detection of a sarin simulant in the liquid phase has been demonstrated at the Diagnostics and Metrology Laboratory [...] Read more.
Nerve agents have recently been used in battlefield operations, espionage wars, and terrorist attacks. These compounds, like some pesticides, cause organophosphate poisoning. The rapid, noncontact detection of a sarin simulant in the liquid phase has been demonstrated at the Diagnostics and Metrology Laboratory of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development using laser photoacoustic spectroscopy, an infrared absorption technology. The first measurements, carried out with an experimental system based on a quantum cascade laser and developed for the assessment of food authenticity in the “fingerprint region”, show that a detection limit of one nanolitre is within the reach of the instrument when chemometric analysis is applied. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 5604 KiB  
Article
Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia
by Soran Shadman, Thomas W. Miller and Azer P. Yalin
Sensors 2023, 23(14), 6498; https://doi.org/10.3390/s23146498 - 18 Jul 2023
Cited by 5 | Viewed by 1957
Abstract
Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that [...] Read more.
Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that can be deployed on ground-based or aerial vehicles can provide scalable solutions for high throughput measurements but require relatively compact and low-power sensor systems. This contribution presents an ammonia sensor based on wavelength modulation spectroscopy (WMS) integrated with a Herriott multi-pass cell and a quantum cascade laser (QCL) at 10.33 µm oriented to mobile use. An open-path configuration is used to mitigate sticky-gas effects and achieve high time-response. The final sensor package is relatively small (~20 L), lightweight (~3.5 kg), battery-powered (<30 W) and operates autonomously. Details of the WMS setup and analysis method are presented along with laboratory tests showing sensor accuracy (<~2%) and precision (~4 ppb in 1 s). Initial field deployments on both ground vehicles and a fixed-wing unmanned aerial vehicle (UAV) are also presented. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

19 pages, 5880 KiB  
Article
A Mid-Infrared Quantum Cascade Laser Ultra-Sensitive Trace Formaldehyde Detection System Based on Improved Dual-Incidence Multipass Gas Cell
by Tao Wu, Renzhi Hu, Pinhua Xie, Lijie Zhang, Changjin Hu, Xiaoyan Liu, Jiawei Wang, Liujun Zhong, Jinzhao Tong and Wenqing Liu
Sensors 2023, 23(12), 5643; https://doi.org/10.3390/s23125643 - 16 Jun 2023
Cited by 4 | Viewed by 2356
Abstract
Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with [...] Read more.
Formaldehyde (HCHO) is a tracer of volatile organic compounds (VOCs), and its concentration has gradually decreased with the reduction in VOC emissions in recent years, which puts forward higher requirements for the detection of trace HCHO. Therefore, a quantum cascade laser (QCL) with a central excitation wavelength of 5.68 μm was applied to detect the trace HCHO under an effective absorption optical pathlength of 67 m. An improved, dual-incidence multi-pass cell, with a simple structure and easy adjustment, was designed to further improve the absorption optical pathlength of the gas. The instrument detection sensitivity of 28 pptv (1σ) was achieved within a 40 s response time. The experimental results show that the developed HCHO detection system is almost unaffected by the cross interference of common atmospheric gases and the change of ambient humidity. Additionally, the instrument was successfully deployed in a field campaign, and it delivered results that correlated well with those of a commercial instrument based on continuous wave cavity ring-down spectroscopy (R2 = 0.967), which indicates that the instrument has a good ability to monitor ambient trace HCHO in unattended continuous operation for long periods of time. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

8 pages, 1927 KiB  
Communication
Development of a Rapid Measurement Method for Analysis of the NOx Conversion Process Based on Quantum Cascade Laser Absorption Spectroscopy
by Xi Yang, Zhirong Zhang, Shuang Yang, Pengshuai Sun, Bian Wu, Hua Xia and Runqing Yu
Sensors 2023, 23(8), 3885; https://doi.org/10.3390/s23083885 - 11 Apr 2023
Cited by 2 | Viewed by 1986
Abstract
In this study, a method for double-beam quantum cascade laser absorption spectroscopy (DB-QCLAS) was developed. Two mid-infrared distributed feedback quantum cascade laser beams were coupled in an optical cavity for the monitoring of NO and NO2 (NO at 5.26 μm; NO2 [...] Read more.
In this study, a method for double-beam quantum cascade laser absorption spectroscopy (DB-QCLAS) was developed. Two mid-infrared distributed feedback quantum cascade laser beams were coupled in an optical cavity for the monitoring of NO and NO2 (NO at 5.26 μm; NO2 at 6.13 μm). Appropriate lines in the absorption spectra were selected, and the influence of common gases in the atmosphere, such as H2O and CO2, was avoided. By analyzing the spectral lines under different pressure conditions, the appropriate measurement pressure of 111 mbar was selected. Under this pressure, the interference between adjacent spectral lines could be effectively distinguished. The experimental results show that the standard deviations for NO and NO2 were 1.57 ppm and 2.67 ppm, respectively. Moreover, in order to improve the feasibility of this technology for detecting chemical reactions between NO and O2, the standard gases of NO and O2 were used to fill the cavity. A chemical reaction instantaneously began, and the concentrations of the two gases were immediately changed. Through this experiment, we hope to develop new ideas for the accurate and rapid analysis of the process of NOx conversion and to lay a foundation for a deeper understanding of the chemical changes in atmospheric environments. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

13 pages, 6136 KiB  
Article
Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging
by Khushboo Singh, Aparajita Bandyopadhyay, Karl Bertling, Yah Leng Lim, Tim Gillespie, Dragan Indjin, Lianhe Li, Edmund H. Linfield, A. Giles Davies, Paul Dean, Aleksandar D. Rakić and Amartya Sengupta
Sensors 2023, 23(5), 2721; https://doi.org/10.3390/s23052721 - 2 Mar 2023
Cited by 10 | Viewed by 2413
Abstract
To reduce the water footprint in agriculture, the recent push toward precision irrigation management has initiated a sharp rise in photonics-based hydration sensing in plants in a non-contact, non-invasive manner. Here, this aspect of sensing was employed in the terahertz (THz) range for [...] Read more.
To reduce the water footprint in agriculture, the recent push toward precision irrigation management has initiated a sharp rise in photonics-based hydration sensing in plants in a non-contact, non-invasive manner. Here, this aspect of sensing was employed in the terahertz (THz) range for mapping liquid water in the plucked leaves of Bambusa vulgaris and Celtis sinensis. Two complementary techniques, broadband THz time-domain spectroscopic imaging and THz quantum cascade laser-based imaging, were utilized. The resulting hydration maps capture the spatial variations within the leaves as well as the hydration dynamics in various time scales. Although both techniques employed raster scanning to acquire the THz image, the results provide very distinct and different information. Terahertz time-domain spectroscopy provides rich spectral and phase information detailing the dehydration effects on the leaf structure, while THz quantum cascade laser-based laser feedback interferometry gives insight into the fast dynamic variation in dehydration patterns. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz, Mid-Infrared, and Near-Infrared Sensing)
Show Figures

Figure 1

10 pages, 3008 KiB  
Article
External-Cavity Quantum Cascade Laser-Based Gas Sensor for Sulfur Hexafluoride Detection
by Xingyu Pan, Yifan Zhang, Jiayu Zeng, Minghui Zhang and Jingsong Li
Chemosensors 2023, 11(1), 30; https://doi.org/10.3390/chemosensors11010030 - 30 Dec 2022
Cited by 6 | Viewed by 2488
Abstract
The external-cavity quantum cascade laser (ECQCL) is an ideal mid-infrared (MIR) spectral light source for determining large molecular-absorption spectral features with broad transition bands. For this paper, a gas sensor system was developed using a broadband tunable ECQCL and a direct absorption spectroscopy [...] Read more.
The external-cavity quantum cascade laser (ECQCL) is an ideal mid-infrared (MIR) spectral light source for determining large molecular-absorption spectral features with broad transition bands. For this paper, a gas sensor system was developed using a broadband tunable ECQCL and a direct absorption spectroscopy detection scheme with a short path absorption cell of 29.6 cm. For spectral signal detection, a cheap and miniaturized quartz crystal tuning fork- (QCTF) based light detector was used for laser signal detection. The characteristics of the QCTF detector were theoretically simulated and experimentally observed. To demonstrate this sensing technique, sulfur hexafluoride (SF6) was selected as the analyte, which can be used as an effective indicator to identify fault-types of gas-insulated electrical equipment. Preliminary results indicated that a good agreement was obtained between experimentally observed data and reference spectra according to the NIST database and previous publications, and the gas sensor system showed a good linear response to SF6 gas concentration. Finally, Allan–Werle deviation analysis indicated that detection limits of 1.89 ppm for SF6 were obtained with a 1 s integration time, which can be further improved to ~0.38 ppm by averaging up to 131 s. Full article
Show Figures

Figure 1

16 pages, 2016 KiB  
Review
Research on Mid-Infrared External Cavity Quantum Cascade Lasers and Applications
by Yuhang Ma, Keke Ding, Long Wei, Xuan Li, Junce Shi, Zaijin Li, Yi Qu, Lin Li, Zhongliang Qiao, Guojun Liu, Lina Zeng and Dongxin Xu
Crystals 2022, 12(11), 1564; https://doi.org/10.3390/cryst12111564 - 2 Nov 2022
Cited by 6 | Viewed by 3103
Abstract
In this paper, we review the progress of the development and application of external cavity quantum cascade lasers (ECQCLs). We concentrated on ECQCLs based on the wide tunable range for multi-component detection and applications. ECQCLs in the mid-infrared band have a series of [...] Read more.
In this paper, we review the progress of the development and application of external cavity quantum cascade lasers (ECQCLs). We concentrated on ECQCLs based on the wide tunable range for multi-component detection and applications. ECQCLs in the mid-infrared band have a series of unique spectral properties, which can be widely used in spectroscopy, gas detection, protein detection, medical diagnosis, free space optical communication, and so on, especially wide tuning range, the tuning range up to hundreds of wavenumbers; therefore, ECQCLs show great applications potential in many fields. In this paper, the main external cavity structures of ECQCLs are reviewed and compared, such as the Littrow structure, the Littman structure, and some new structures. Some new structures include the intra-cavity out-coupling structure, multimode interference (MMI) structure, and acousto-optic modulator (AOM) control structure. At the same time, the application research of ECQCLs in gas detection, protein detection, and industry detection are introduced in detail. The results show that the use of diffraction gratings as optical feedback elements can not only achieve wide tuning, but it also has low cost, which is beneficial to reduce the complexity of the laser structure. Therefore, the use of diffraction gratings as optical feedback elements is still the mainstream direction of ECQCLs, and ECQCLs offer a further new option for multi-component detection. Full article
(This article belongs to the Special Issue Frontiers of Semiconductor Lasers)
Show Figures

Figure 1

Back to TopTop